Orbital decay of low Earth orbiting satellites during geomagnetic storms

Levin Walter¹, Vanessa-Maria Mercea¹, Daniel Arnold¹, Adrian Jäggi¹

¹Astronomical Institute, University of Bern

November 09, 2024

Contact: levin.walter@students.unibe.ch

Astronomical Institute, University of Bern

Coronal Mass Ejections

- explosive event
- ejected plasma
- magnetic cloud characteristics
- $\bullet\,$ can cause $geomagnetic\,\,storms \rightarrow\,$ thermosphere heats up

Geomagnetic Storms

Expansion of upper atmosphere

 \rightarrow higher air density at low Earth orbit (LEO) altitude

Astronomical Institute, University of Bern

22nd Swiss Geoscience Meeting 2024 Basel

Procedure

Orbit Perturbations

Other perturbations besides air drag:

- • Gravitational field of Earth: largest periodic perturbation due to oblateness $(C_{2,0})$
 - Radiation pressure: Solar, Earth, ...
 - Other celestial bodies: Sun, Moon, tidal effects, ...

Fit Model Approach

Time varying trend + periodic variations: $a(t) = \bar{a}(t) + \sum_{r=1}^{\infty} \left(\mu_r(t) \sin(\omega_r t) + \eta_r(t) \cos(\omega_r t) \right)$

ightarrow Orbital decay $=rac{\mathrm{d}}{\mathrm{d}t}ar{a}ig(tig)$

Least squares adjustment for $\bar{a}(t)$, $\mu_r(t)$ and $\eta_r(t)$:

- Piecewise linear representation
 - ightarrow 10 subintervals per day
- Tikhonov regularisation:

 $(x_{n+1} - x_n) - (x_n - x_{n-1}) \approx 0, \quad \forall x \in \{\bar{a}, \mu_r, \eta_r\}.$ In matrix notation: $C \cdot \vec{x} = \vec{0}$

Add to normal equation system: $N \rightarrow N + \psi \cdot N_{constr}$, $N_{constr} = C^{T} \cdot C$

 \rightarrow Control constraining with ψ

Fit Model Approach - Simulation

- 3 periods simulated, 1 modelled
- $-61 \,\mathrm{md}^{-1}$ drift

- \bullet geomagnetic storm \rightarrow Gauss error function
- $\bullet~{\rm Experiment}$ with ψ

Gaussian Approach

Integrate Gauss's perturbation equation

radial acceleration along-track acceleration $\dot{a} = 2\sqrt{\frac{a^3}{\gamma(1-e^2)}} \left\{ e\sin\left(u-\omega\right) \overset{\checkmark}{R} + \left[1+e\cos\left(u-\omega\right)\right] \overset{\checkmark}{S} \right\}$

Smooth obtained orbital slope Accelerations: PCAs or accelerometer (ACC) data

GRACE-FO-1 in 2018: Gaussian Approach Altitude: 489 km - 508 km

GRACE-FO-1 in 2023

SENTINEL-1A in 2023

Altitude: 691 km - 709 km

SENTINEL-1A in 2023

Altitude: 691 km - 709 km

Astronomical Institute, University of Bern

Swarm-A in 2024

Altitude: 464 km - 484 km

Astronomical Institute, University of Bern

Altitude: 784 km - 802 km

Conclusion

Fit model approach

- problematic: low orbital decay, frequent manoeuvres and not modelled long periods
- $\bullet\,$ strong constraining $\rightarrow\,$ underestimation of orbital decay during geomagnetic storm

Gaussian approach

- low geomagnetic activity observable
- PCAs as alternative, but noisier
- low quality at day boundaries, especially for manoeuvre days
- quasi-instantaneous reaction to manoeuvres but orbital changes not realistic

Intense geomagnetic storms induce steep and deep drops in the orbital decay. Both methods have potential for improvement.

Thank you for your attention!

Astronomical Institute, University of Bern