

Gravity field recovery with nano-satellites of the Spire constellation

T. Grombein¹, D. Arnold², M. Lasser², A. Jäggi²

¹ Geodetic Institute, Karlsruhe Institute of Technology ² Astronomical Institute, University of Bern

Introduction

Nano-satellites as gravity field sensors

- A huge number of nano-satellites is collecting GPS data
- Data allows to recover large-scale gravity field information
- Big potential to increase the spatial-temporal coverage
- However: limited data access and quality

Spire Global constellation

- More than 100 nano-satellites in low Earth orbit
- CubeSats (standardized platform, low cost)
- High-quality dual-frequency GPS receivers
- Data provision via ESA project (Third Party Mission)

10 x 10 x 34 cm, 4.7 kg

Research questions

- 1) What can be expected from monthly Spire-based gravity fields?
- 2) Can a Swarm gravity field profit from additional Spire data?

Method overview

Orbit and gravity field recovery

- Celestial Mechanics Approach
- Two-step procedure
 - 1) GPS tracking data → Kinematic orbit positions
 - 2) Kinematic orbit positions → Gravity field recovery

Processing with the Bernese GNSS software

- GNSS products of the CODE analysis center
- In-flight calibrated phase center variation (PCV) maps
- Unmodeled forces are absorbed by empirical parameters

Data overview (May – Oct 2020)

Spire CubeSats					Altitude	Inclination	Sampling
	FM099	FM101	FM102		~ 505 km	~ 97.5°	1s
FM103	FM104	FM106	FM107	FM108	~ 530 km	~ 97.5°	1s
		FM115			~ 570 km	~ 37.0°	1s

Data overview (May – Oct 2020)

Satellite altitudes

Modified from http://thermosphere.tudelft.nl/page1.html

Spire orbit determination

GPS carrier phase residuals

Commercial CubeSat

Scientific satellite

Monthly Spire gravity fields

Difference degree amplitudes

Differences with respect to a superior GRACE-FO model

Difference degree amplitudes

700 km Gauss-filtered

Difference degree amplitudes

Geoid height differences

Artifacts in Est/West-direction are correlated with locations of yaw flips

Difference degree amplitudes

Difference degree amplitudes

Difference degree amplitudes

Difference degree amplitudes

Solutions based on 9 CubeSats can reach a quality level comparable to Swarm-B

RMS values of geoid height differences

Difference degree amplitudes

Difference degree amplitudes

Difference degree amplitudes

Summary and outlook

Take home messages

- 1) GPS data of Spire CubeSats allow to recover monthly gravity fields
- 2) Individual CubeSat solutions cannot compete with scientific missions
- 3) Accumulation of CubeSat solutions significantly increases the quality
- 4) Solutions based on 9 CubeSats can improve a Swarm-B model

Next steps

- Process Spire data of further CubeSats and longer time spans
- Detailed analysis on the impact of low-inclined CubeSats
- Feasibility to increase the temporal resolution (< 1 month)

Thank you for your attention

Contact: grombein@kit.edu

We acknowledge the support from Spire Global and the provision of Spire data by ESA