u^b Genesis orbit and geodetic parameter estimation based on GNSS: Impact of non-gravitational force model deficiencies

D. Arnold¹ A. Miller¹ O. Montenbruck² P. Steigenberger² R. Dach¹ A. Jäggi¹

¹Astronomical Institute, University of Bern, Switzerland ²German Space Operations Center, Weßling, Germany

> COSPAR 2024 – 45th Scientific Assembly Busan, Korea PSD.1 July 17, 2024

$u^{\scriptscriptstyle b}$ Genesis mission

- 1 satellite with instruments for 4 space geodetic techniques GNSS, SLR, DORIS, VLBI, space ties
- Aim: Contribute to an improved International Terrestrial Reference Frame
- Approved at ESA's Ministerial Council in 2022, part of FutureNAV, launch in 2028

Cesa

genesis

$\boldsymbol{u}^{\scriptscriptstyle b}$ Genesis satellite and orbit

Kur et al. (2024) (DOI 10.1007/s00190-024-01869-8) have recently studied the benefit of Genesis for Galileo orbit and clock determination.

- 6000 km altitude polar orbit (VLBI visibility)
- \rightarrow rather unfavorable GNSS tracking conditions
- \rightarrow zenith- and nadir-pointing GNSS antennas

July 17, 2024 3

u^b Non-gravitational force modeling

For Genesis, a dynamic orbit modeling is desired, as empirical orbit parameters might correlate significantly with specific geodetic parameters

- → requires detailed explicit modeling of non-gravitational (radiation-induced) forces
- ightarrow requires proper description of satellite geometry and optical surface properties

Question

How do uncertainties in the Genesis macro model affect the contribution of Genesis to global TRF solutions?

$u^{\scriptscriptstyle b}$ Methods

u^{\flat} Methods

u^{\flat} Ground stations

Selection of 100 IGS ground stations:

u^{\flat} Simulation

- Day 001, 011, ..., 361 of 2023 (37 days)
- Genesis orbit (5957 km, 95.5°): Dynamic orbit propagated using radiation pressure models based on 8-plate macro model for box and wing and nominal yaw attitude
- GNSS products: CODE final orbits, clocks, ERPs, biases
- Station coordinates: IGS cumulative SINEX, PSD, ITRF2020 seasonal harmonics, solid Earth tides, pole tides, ocean loading
- Ionosphere: CODE GIMs (ground stations), NeQuick-G (Genesis)
- Troposphere: GPT/GMF model

u^{\flat} Estimation

- Undifferenced GNSS data processing
- Carrier phase ambiguities fixed in PPP-AR
- Estimated parameters:
 - Station coordinates
 - Earth rotation parameters
 - Geocenter coordinates
 - Site-specific troposphere parameters
 - GNSS satellite orbits
 - GNSS satellite clocks
 - Genesis orbit (initial cond. and constrained 30' piecewise-const. acc., no scaling)
 - Station and Genesis receiver clocks
 - Observable-specific code biases
- Data sampling: 180 s (\rightarrow about 83'000 parameters/day)
- Code and phase data for ground stations, only phase data for Genesis (\rightarrow about 1'800'000 observations/day)

8 July 17, 2024

Procedures: Kobel et al. (2024), DOI 10.1016/j.asr.2024.04.015

u^b "Zero" test: Coordinates

PPP (only estimate station-related parameters) using CODE final GNSS products and the correct macro model. Differences to "true" coordinates:

Same order of magnitude as differences between different IGS ACs (e.g., 4.10/3.32/2.76 mm for CODE vs. ESA for day 23/001) \rightarrow realistic model uncertainties

u^{\flat} "Zero" test: Genesis orbit

Genesis POD using CODE final GNSS products and the correct macro model. Differences to "true" Genesis orbit:

u^{\flat} "Zero" test: Genesis orbit

Genesis POD using CODE final GNSS products and the correct macro model. Differences to "true" Genesis orbit:

Zenith-antenna based POD more challenging

10 July 17, 2024

u^{\flat} "Zero" test: Genesis orbit

Genesis POD using CODE final GNSS products and the correct macro model. Differences to "true" Genesis orbit:

u^{\flat} Full parameter estimation: GNSS orbits

Estimating orbit and geodetic parameters using ground stations and Genesis data and correct macro model. Differences of estimated GPS orbits compared to "true" orbits:

 Notice: The "true" orbits (CODE final) are 3-day orbits, while here only 1-day orbits are computed (→ slightly degraded comparison).

u^b Full parameter estimation: Geocenter

Formal errors of geocenter *z* coordinates, using correct macro model:

Significant reduction of formal errors due to Genesis

12 July 17, 2024

u^{\flat} Macro model error 1

Change visual and IR optical properties of satellite body surfaces by 0.1:

\mathtt{Nr}	A [m^2] n1	n2	n3	IRF	(spec	IRKdif	VIKspec	VIKdif	Comment
***	****** ***	***** ***	***** **	***** **	******	******	******	******	*****
1	0.90	1.0	0.0	0.0	0.200	0.040	0.200	0.050	+X
2	0.90	-1.0	0.0	0.0	0.200	0.050	0.250	0.050	-X For simulation
3	0.90	0.0	1.0	0.0	0.200	0.040	0.200	0.050	+Y
4	0.90	0.0	-1.0	0.0	0.200	0.050	0.250	0.050	-Y
5	0.64	0.0	0.0	1.0	0.200	0.040	0.200	0.050	+Z
6	0.64	0.0	0.0	-1.0	0.200	0.050	0.250	0.050	-Z
7	3.40	1.0	0.0	0.0	0.310	0.000	0.180	0.000	Solar panel front
8	3.40	-1.0	0.0	0.0	0.000	0.270	0.000	0.190	Solar panel back
\mathtt{Nr}	A [m^2] n1	n2	n3	IRF	spec	IRKdif	VIKspec	VIKdif	Comment
Nr ***	A [m^2] n1 ******** ***	n2 ****** ***	n3 ***** **	IRF ***** **	(spec ******	IRKdif ********	VIKspec	VIKdif *******	Comment ******
Nr *** 1	A [m^2] n1 ******* *** 0.90	n2 ***** *** 1.0	n3 ***** ** 0.0	IRF ****** ** 0.0	(spec ******* 0.300	IRKdif ******** 0.140	VIKspec ******** 0.300	VIKdif ******** 0.150	Comment ************************************
Nr *** 1 2	A [m ²] n1 ******* *** 0.90 0.90	n2 ***** *** 1.0 -1.0	n3 ***** ** 0.0 0.0	IR# ****** ** 0.0 0.0	<pre> (spec ****** 0.300 0.300 0.300 </pre>	IRKdif ******* 0.140 0.150	VIKspec ******** 0.300 0.350	VIKdif ******* 0.150 0.150	Comment ************************************
Nr *** 1 2 3	A [m ²] n1 ******* *** 0.90 0.90 0.90 0.90	n2 ***** *** 1.0 -1.0 0.0	n3 ***** ** 0.0 0.0 1.0	IRF ****** ** 0.0 0.0 0.0	(spec ******* 0.300 0.300 0.300	IRKdif ******** 0.140 0.150 0.140	VIKspec ******** 0.300 0.350 0.300	VIKdif ******* 0.150 0.150 0.150 0.150	Comment ************************************
Nr *** 1 2 3 4	A [m ²] n1 ******** *** 0.90 0.90 0.90 0.90 0.90	n2 ****** *** 1.0 -1.0 0.0 0.0	n3 ****** ** 0.0 0.0 1.0 -1.0	IR# ****** ** 0.0 0.0 0.0 0.0	(spec ****** 0.300 0.300 0.300 0.300	IRKdif ******** 0.140 0.150 0.140 0.150	VIKspec ******** 0.300 0.350 0.300 0.350	VIKdif ******** 0.150 0.150 0.150 0.150 0.150	Comment ************************************
Nr *** 1 2 3 4 5	A [m ²] n1 ******** *** 0.90 0.90 0.90 0.90 0.90 0.64	n2 ***** *** 1.0 -1.0 0.0 0.0 0.0 0.0	n3 ****** ** 0.0 0.0 1.0 -1.0 0.0	IRP ****** ** 0.0 0.0 0.0 0.0 1.0	(spec ******* 0.300 0.300 0.300 0.300 0.300	IRKdif ******** 0.140 0.150 0.140 0.150 0.140	VIKspec ********* 0.300 0.350 0.300 0.350 0.300	VIKdif ******** 0.150 0.150 0.150 0.150 0.150 0.150	Comment ************************************
Nr *** 1 2 3 4 5 6	A [m^2] n1 ******* *** 0.90 0.90 0.90 0.90 0.90 0.64 0.64	n2 ***** *** 1.0 -1.0 0.0 0.0 0.0 0.0 0.0	n3 ****** ** 0.0 0.0 1.0 -1.0 0.0 0.0	IRF 0.0 0.0 0.0 0.0 0.0 1.0 -1.0	(spec ******* 0.300 0.300 0.300 0.300 0.300 0.300 0.300	IRKdif ******** 0.140 0.150 0.140 0.150 0.140 0.150	VIKspec ********* 0.300 0.350 0.300 0.350 0.300 0.350	VIKdif ******** 0.150 0.150 0.150 0.150 0.150 0.150 0.150	Comment ************************************
Nr *** 1 2 3 4 5 6 7	A [m ²] n1 ******** *** 0.90 0.90 0.90 0.90 0.64 0.64 3.40	n2 ***** *** 1.0 -1.0 0.0 0.0 0.0 0.0 0.0 1.0	n3 ****** ** 0.0 0.0 1.0 -1.0 0.0 0.0 0.0 0.0	IRF 0.0 0.0 0.0 0.0 1.0 -1.0 0.0	(spec ******* 0.300 0.300 0.300 0.300 0.300 0.300 0.310	IRKdif ******** 0.140 0.150 0.140 0.150 0.140 0.150 0.000	VIKspec ******** 0.300 0.350 0.300 0.350 0.300 0.350 0.350 0.180	VIKdif ******* 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.000	Comment **************** +X -X For reconstruction +Y -Y +Z -Z Solar panel front

13 July 17, 2024

u^{\flat} Macro model error 2

Change visual and IR optical properties of solar panel front by 0.1:

\mathtt{Nr}	A [m^2] n1	n2	n3	1	IRKspec	IRKdif	VIKspec	VIKdif	Comment
***	******	***** **	****** ***	****	******	******	******	******	*****
1	0.90	1.0	0.0	0.0	0.200	0.040	0.200	0.050	+X
2	0.90	-1.0	0.0	0.0	0.200	0.050	0.250	0.050	-x For simulation
3	0.90	0.0	1.0	0.0	0.200	0.040	0.200	0.050	+Υ
4	0.90	0.0	-1.0	0.0	0.200	0.050	0.250	0.050	-Y
5	0.64	0.0	0.0	1.0	0.200	0.040	0.200	0.050	+Z
6	0.64	0.0	0.0	-1.0	0.200	0.050	0.250	0.050	-Z
7	3.40	1.0	0.0	0.0	0.310	0.000	0.180	0.000	Solar panel front
8	3.40	-1.0	0.0	0.0	0.000	0.270	0.000	0.190	Solar panel back
									-
Nr	A [m^2] n1	n2	n3	1	IRKspec	IRKdif	VIKspec	VIKdif	Comment
Nr ***	A [m^2] n1 ******* ***	n2 ***** **	n3 ****** ***	: *****	[RKspec *******	IRKdif *******	VIKspec *******	VIKdif *******	Comment ******
Nr *** 1	A [m ²] n1 ******* *** 0.90	n2 ***** ** 1.0	n3 ****** *** 0.0	: ****** 0.0	IRKspec ******** 0.200	IRKdif ******** 0.040	VIKspec ******** 0.200	VIKdif ******** 0.050	Comment ************************************
Nr *** 1 2	A [m ²] n1 ******* *** 0.90 0.90	n2 ***** ** 1.0 -1.0	n3 ****** *** 0.0 0.0	[***** 0.0 0.0	RKspec ******* 0.200 0.200	IRKdif ******* 0.040 0.050	VIKspec ******* 0.200 0.250	VIKdif ******* 0.050 0.050	Comment ************************************
Nr *** 1 2 3	A [m ²] n1 ******* *** 0.90 0.90 0.90	n2 ****** ** 1.0 -1.0 0.0	n3 ****** *** 0.0 0.0 1.0	[****** 0.0 0.0 0.0	IRKspec ******** 0.200 0.200 0.200	IRKdif ******** 0.040 0.050 0.040	VIKspec ******* 0.200 0.250 0.200	VIKdif ******* 0.050 0.050 0.050	Comment ************************************
Nr *** 1 2 3 4	A [m ²] n1 ******** *** 0.90 0.90 0.90 0.90 0.90	n2 ****** ** 1.0 -1.0 0.0 0.0	n3 ****** *** 0.0 0.0 1.0 -1.0	[***** 0.0 0.0 0.0 0.0	IRKspec ******** 0.200 0.200 0.200 0.200 0.200	IRKdif ******** 0.040 0.050 0.040 0.050	VIKspec ******* 0.200 0.250 0.200 0.250	VIKdif ******** 0.050 0.050 0.050 0.050	Comment ************************************
Nr *** 1 2 3 4 5	A [m^2] n1 ******** *** 0.90 0.90 0.90 0.90 0.90 0.64	n2 ****** ** 1.0 -1.0 0.0 0.0 0.0	n3 ****** *** 0.0 0.0 1.0 -1.0 0.0	(****** 0.0 0.0 0.0 0.0 1.0	IRKspec ******** 0.200 0.200 0.200 0.200 0.200 0.200	IRKdif ******** 0.040 0.050 0.040 0.050 0.040	VIKspec ******** 0.200 0.250 0.200 0.250 0.250 0.200	VIKdif ******** 0.050 0.050 0.050 0.050 0.050	Comment ************************************
Nr *** 1 2 3 4 5 6	A [m^2] n1 ******* *** 0.90 0.90 0.90 0.90 0.90 0.64 0.64	n2 ****** ** 1.0 -1.0 0.0 0.0 0.0 0.0 0.0	n3 ****** *** 0.0 0.0 1.0 -1.0 0.0 0.0	3 ****** 0.0 0.0 0.0 0.0 1.0 -1.0	IRKspec ******* 0.200 0.200 0.200 0.200 0.200 0.200 0.200	IRKdif ******* 0.040 0.050 0.040 0.050 0.040 0.050	VIKspec ******** 0.200 0.250 0.200 0.250 0.200 0.250	VIKdif ******** 0.050 0.050 0.050 0.050 0.050 0.050	Comment ************************************
Nr *** 1 2 3 4 5 6 7	A [m ²] n1 ******** *** 0.90 0.90 0.90 0.90 0.64 0.64 3.40	n2 ****** ** 1.0 -1.0 0.0 0.0 0.0 0.0 0.0 1.0	n3 ****** *** 0.0 0.0 1.0 -1.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 1.0 -1.0 0.0	IRKspec ********* 0.200 0.200 0.200 0.200 0.200 0.200 0.410	IRKdif ******** 0.040 0.050 0.040 0.050 0.040 0.050 0.100	VIKspec ******** 0.200 0.250 0.200 0.250 0.200 0.250 0.250 0.280	VIKdif ******** 0.050 0.050 0.050 0.050 0.050 0.050 0.100	Comment **************** +X -X +Y -Y +Z -Z Solar panel front

14 July 17, 2024

u^{\flat} Impact on Genesis orbit (1)

Genesis orbit differences from a POD-only solution, when estimating a scaling factor for solar radiation pressure (SRP):

Only very small impact on POD-only solution

15 July 17, 2024

u^{\flat} Impact on Genesis orbit (2)

Genesis orbit differences from a POD-only solution, when estimating no SRP scaling:

Significant degradation of Genesis orbit for macro model error 2 (solar panel front)

u^b Impact on GNSS orbits

Differences of estimated GPS orbits compared to "true" orbits:

- Macro model error 1: Only small impact
- Macro model error 2: Large, β-dependent impact (no SRP scaling estimated)

u^b Impact on geocenter coordinates

Estimated geocenter coordinates (nadir+zenith antenna):

Median + MAD. $+2.2 \pm 2.0 \, \text{mm}$ $+1.8 \pm 1.6 \,\mathrm{mm}$ $+1.8 \pm 1.6 \,\mathrm{mm}$ $+2.4 \pm 2.7 \,\mathrm{mm}$ $+2.1 \pm 2.3 \, \text{mm}$ $+1.2 \pm 0.7\,{\rm mm}$ $+1.3 \pm 0.8 \,\mathrm{mm}$ $+1.6 \pm 2.1 \, \text{mm}$ $-1.3 \pm 3.1 \,\mathrm{mm}$ $-0.1 \pm 2.8 \,\mathrm{mm}$ $+0.1 \pm 3.2 \,\mathrm{mm}$

 $+9.1\pm61.1\,\mathrm{mm}$

u^b Impact on geocenter coordinates

Estimated geocenter coordinates (nadir+zenith antenna):

Median + MAD: $+2.2 \pm 2.0 \, \text{mm}$ $+1.8 \pm 1.6 \, {\rm mm}$ $+1.8 \pm 1.6 \, {\rm mm}$ $+2.4 \pm 2.7 \,\mathrm{mm}$ $+2.1 \pm 2.3 \, \text{mm}$ $+1.2 \pm 0.7 \, {\rm mm}$ $+1.3 \pm 0.8 \, {\rm mm}$ $+1.6 \pm 2.1 \, \text{mm}$ $-1.3 \pm 3.1 \,\mathrm{mm}$ $-0.1 \pm 2.8 \,\mathrm{mm}$ $-0.1 \pm 3.2\,{
m mm}$ $+9.1 \pm 61.1 \, \text{mm}$

Macro model error 1: Slight degradation

18 July 17, 2024

u^b Impact on geocenter coordinates

Estimated geocenter coordinates (nadir+zenith antenna):

Median + MAD. $+2.2 \pm 2.0 \, \text{mm}$ $+1.8 \pm 1.6 \,\mathrm{mm}$ $+1.8\pm1.6\,\mathrm{mm}$ $+2.4\pm2.7\,\mathrm{mm}$ $+2.1 \pm 2.3 \, \text{mm}$ $+1.2 \pm 0.7\,{\rm mm}$ $+1.3\pm0.8\,\mathrm{mm}$ $+1.6\pm2.1\,\mathrm{mm}$ $-1.3 \pm 3.1 \,\mathrm{mm}$ $-0.1 \pm 2.8 \,\mathrm{mm}$ $+0.1 \pm 3.2 \, \text{mm}$ $9.1 \pm 61.1\,{
m mm}$

Macro model error 2: Huge degradation

u^{\flat} Conclusions

- The GNSS tracking of Genesis is less straightforward than for LEOs (especially zenith antenna).
- Established a simulation framework to study impact of systematic non-gravitational force modeling errors on orbit and global solutions.
- Without the estimation of an SRP scaling factor, an error of 0.1 in solar panel optical properties has a large, β-dependent impact on Genesis and GNSS orbits and geocenter coordinates.
- To fully exploit Genesis for TRF contributions, satellite geometry and optical properties should be known/made available!

Thank you!

Contact: daniel.arnold@unibe.ch