CODE IGS reference products including Galileo

L. Prange¹, A. Villiger¹, S. Schaer^{1,2}, R. Dach¹, D. Sidorov¹, G. Beutler¹, A. Jäggi ¹

- 1 Astronomical Institute, University of Bern, Switzerland
- 2 Bundesamt für Landestopografie swisstopo, Wabern, Switzerland

EGU General Assembly 2020, 04-08 May 2020, Sharing Geoscience Online

- Evolution of CODE's MGEX (COM) solution
- Dedicated model changes
- Galileo orbit and clock performance in the COM solution
- IGS perspective
- First experience with Galileo in (Ultra-)Rapid products
- Summary

General Assembly, Sharing Geoscience Online, 04-08 May 2020

Evolution of the COM solution

Orbit modelling:

- Eclipse attitude laws for GPS, GLONASS, Galileo (Summer 2017)
- Earth albedo and transmit antenna thrust applied for GPS, GLONASS, Galileo, QZSS (since Summer 2017)
 - ⇒ Prange et al. (presentation at 6th Galileo/GNSS Colloquium 2017), Dach et al. (CODE: IGS Technical Report 2017, doi 10.7892/boris.116377)
- Correct consideration of orbit normal (ON) attitude mode for QZS-1 and BDS2 (since Summer 2018)
- Use of ECOM-TB SRP model for satellites with ON attitude (since Summer 2018)
 - ⇒ Prange et al. (doi 10.1016/j.asr.2019.07.031)
- Empirical thermal radiation model for Galileo satellites (since Summer 2019)
 - ⇒ Sidorov et al. (poster at 7th Galileo/GNSS Colloquium 2019; paper doi 10.1016/j.asr.2020.05.028)

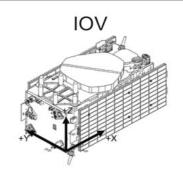
Online, 04-08 May 2020 Prange et al.: CODE IGS reference products including Galileo, General Assembly, Sharing Geoscience

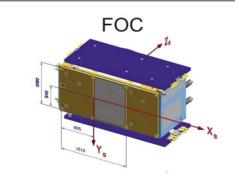
Evolution of the COM solution

Observation biases:

- Observable-specific code biases (OCB) (Summer 2017)
 - ⇒ Villiger et. al. (2019, doi 10.1007/s00190-019-01262-w)
- Observable-specific phase biases (OPB) (Summer 2018)
 - ⇒ Schaer et. al. (presentation at IGS Workshop 2018; paper in preparation)

Phase ambiguity resolution:

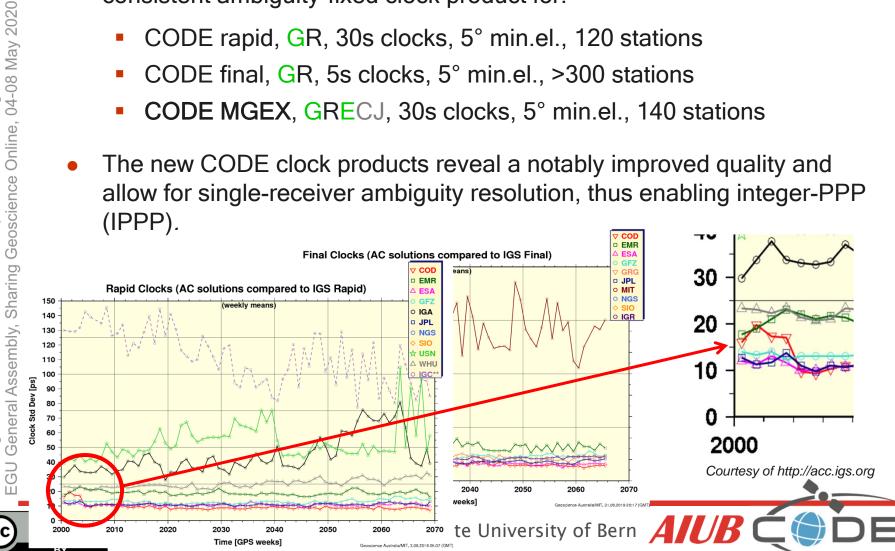

- DD orbit solution: GPS, Galileo, QZSS, BDS2 (Summer 2017)
- Ambiguity-fixed clocks: GPS, Galileo (WL+NL), QZSS, BDS2 (WL only)
 (Summer 2018)
 - ⇒ Dach et al. (CODE: IGS Technical Report 2018; doi 10.7892/boris.130408); paper by Schaer et. al. under preparation


Antenna calibrations:

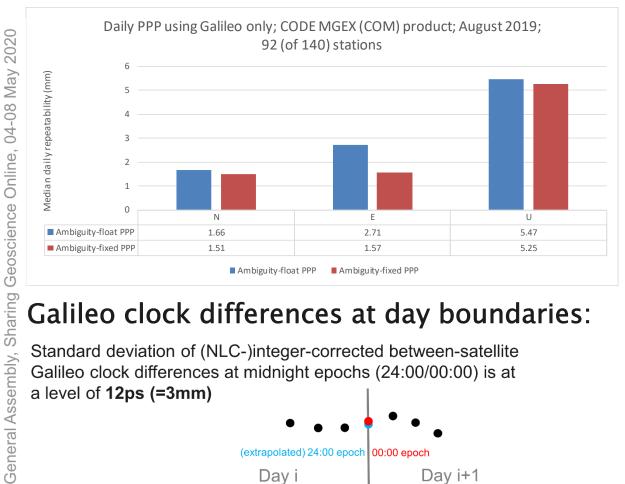
- Satellite antenna phase center offsets (PCO) of Galileo and QZSS published by system provider (values are included in IGS-MGEX-ANTEX)
- Ground antenna calibrations considering all GNSS available since 2019
- Switch to new antenna calibrations to be coordinated with IGS REPRO3
- ⇒ see diverse presentations and poster by Villiger et. al. (2019), paper under review

AMR and are equipped with thermal radiators (known from the publicly available Galileo satellite metadata - thanks to GSA)

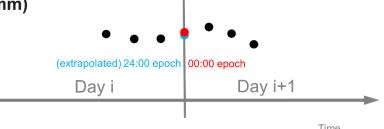
- Thermal radiators produce non-negligible forces (particularly important during eclipse seasons)
- Neglecting thermal effects may produce modelling artifacts
 (visible in MGEX products; magnitude depends on the employed orbital arc length)
- The ECOM2 SRP model was modified to account for these effects leading to improvements in satellite orbits and clock corrections during eclipse seasons.
 - Sidorov et al. (2020): Adopting the Empirical CODE Orbit Model to Galileo satellites. doi 10.1016/j.asr.2020.05.028


General Assembly, Sharing Geoscience Online, 04-08 May 2020

Ambiguity-fixed clock and phase bias products


- June 2018: signal-specific phase bias (OPB) product (internal) and a fully consistent ambiguity-fixed clock product for:
 - CODE rapid, GR, 30s clocks, 5° min.el., 120 stations
 - CODE final, GR, 5s clocks, 5° min.el., >300 stations

- CODE MGEX, GRECJ, 30s clocks, 5° min.el., 140 stations
- The new CODE clock products reveal a notably improved quality and allow for single-receiver ambiguity resolution, thus enabling integer-PPP


Ambiguity-fixed clock and phase bias products

Daily PPP vs. daily IPPP using Galileo only:

Galileo clock differences at day boundaries:

Standard deviation of (NLC-)integer-corrected between-satellite Galileo clock differences at midnight epochs (24:00/00:00) is at a level of 12ps (=3mm)

References:

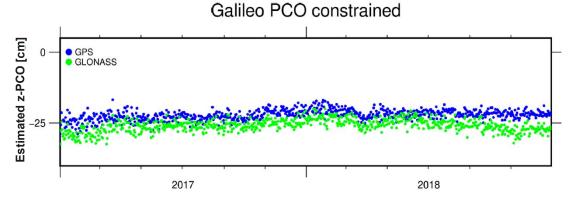
Schaer et al. (2018): Presentation at IGS-WS 2018

Schaer et al. (2020): The CODE ambiguity-fixed clock and phase bias analysis products and their properties and performance. Manuscript in preparation.

9

Online, 04-08 May 2020

Antenna calibrations


Available receiver and satellite antenna patterns:

System	Rece	Satellite	
	IGS 14	REPRO3	
GPS	L1 / L2	L1 / L2	Estimated
GLONASS	L1 / L2	L1 / L2	Estimated
Galileo	L1 / L2	L1 / L5	Calibrated
Beidou	L1 / L2	L1 / L7	Estimated
QZSS	L1 / L2	L1 / L2	Calibrated

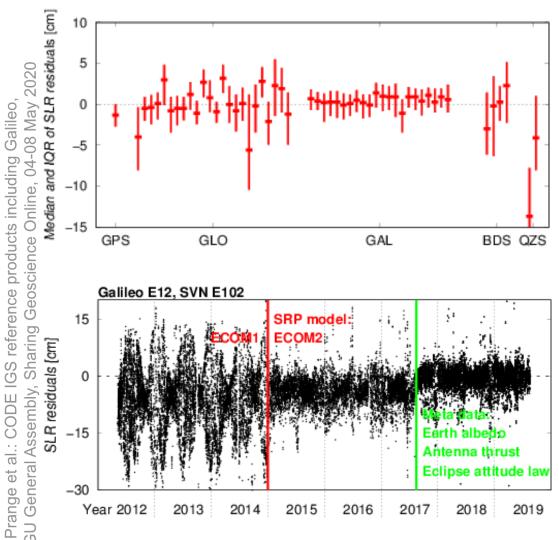
→ Calibrated receiver and satellite antenna patterns allow to estimate a GNSS scale

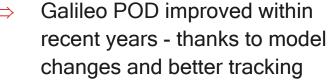
Estimated GPS and Galileo PCO (z-component) are not compatible.

- Possible solution: adaptation of GPS and GLONASS
 z-PCOs to Galileo by introducing a system-wise offset
- Study related to IGS REPRO3

⇒ Villiger et al. (2020): GNSS scale determination using calibrated receiver and Galileo satellite antenna patterns. Paper under review

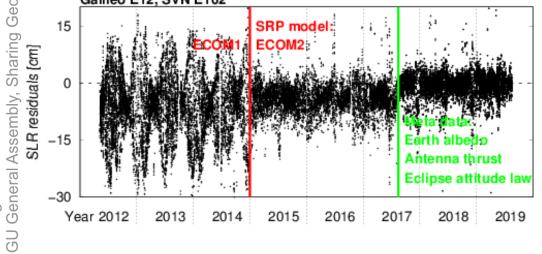
Geoscience Online, 04-08 May 2020


Prange et al.: CODE IGS reference products including Galileo,


General Assembly,

9

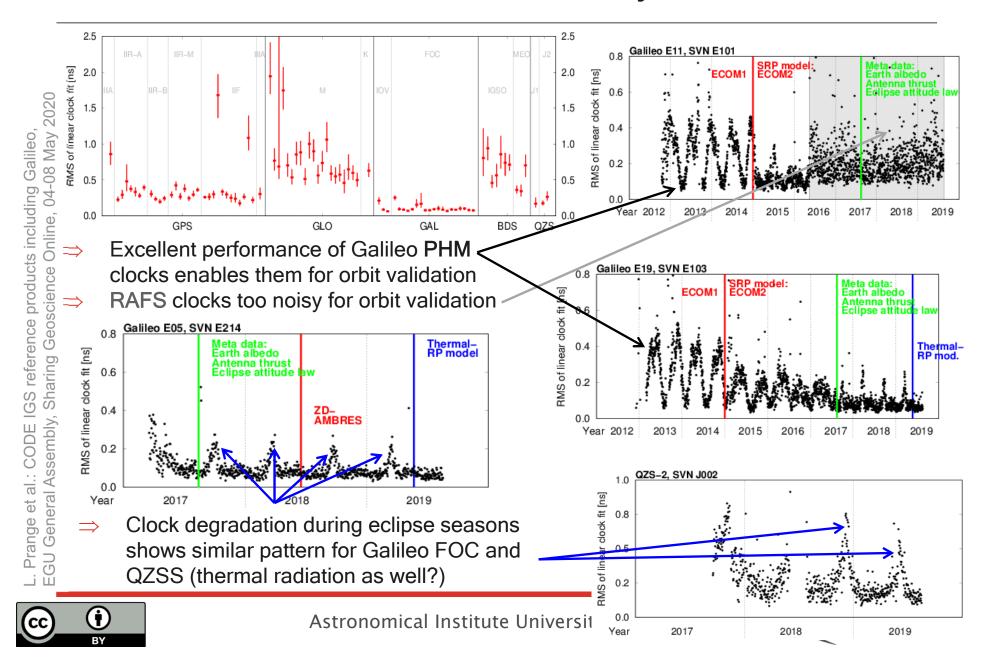
COM orbit validation: SLR residuals



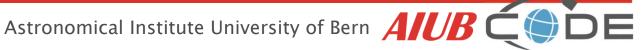
Disclosure of meta data contributes to orbit improvements (e.g., reduction of SLR offset)

COM orbit validation DOYs 1-320/2019:

SLR	Median [cm]	IQR [cm]			
GLONASS	-0.1	4.6			
Galileo	0.2	3.6			
3D orbit misclosures					
GPS	0.8	0.6			
GLONASS	1.2	1.0			
Galileo	1.4	1.0			


Nowadays: Galileo orbit quality is not worse than that of **GLONASS**

COM clock validation: daily linear fit



Operational IGS processing chains:

Demand for additional systems is higher for (near-)real time applications (# of satellites in view and observation geometry matters) → (Ultra-)Rapid

Product line	Applications	Latency Req.	Accuracy Req.	Systems	
Ultra -Rapid (including orbit predictions)	Real time (predictions), near real time	Very short (few hours)	Low	GR	
Rapid	Reference	Short (1 day)	Medium	GR	
Final	High accuracy reference (including scale); contribution to ITRF	Long (2 weeks)	High	GR	
		Color code: requi	rement or factor is	System:	
		Very important		GPS:	G
		Moderately impo	rtant	GLONASS:	R
		Less important		Galileo:	Ε
				BeiDou:	C
				QZSS:	J
				SBAS:	S
				IRNSS:	- 1

IGS processing chains (recent years):

 MGEX: testing of new systems (other than GPS and GLONASS) and RINEX3 raw observation data format; preparation of software, processing chains, modelling

Product line	Applications	Latency Req.	Accuracy Req.	Systems
MGEX	Experimental: new GNSS and RNSS; RINEX3 data	Diverse	Diverse	GRECJ
Ultra -Rapid (including orbit predictions)	Real time (predictions), near real time	Very short (few hours)	Low	GR
Rapid	Reference	Short (1 day)	Medium	GR
Final	High accuracy reference (including scale); contribution to ITRF	Long (2 weeks)	High	GR

 Demand for new GNSS is less urgent in Final products (scale consistency and avoiding contamination of EOP and TRF parameters by orbit modelling artifacts matter more)

- IGS processing chains (around 2020):
 - RINEX3 is gradually replacing RINEX2 data in all processing chains according to the IGS RINEX 3 Transition Plan

Product line	Applications	Latency Req.	Accuracy Req.	Systems
MGEX	Experimental: new GNSS and RNSS; RINEX3 data	Diverse	Diverse	GRECJ
Ultra -Rapid (including orbit predictions)	Real time (pred ctions), near real tinge	Very short (few hours)	Low	GRE
Rapid	Reference V	Short (1 day)	Medium	GRE
Final	High accuracy reference (including scale)	Long (2 weeks)	High	GR
REPRO3	Preparation of new ITR including definition of GNSS scale	On demand	Very high	GRE

 As first AC, CODE started to include Galileo in Ultra- and Rapid products in September 2019 (accepting scale inconsistencies between Galileo and GPS/GLONASS/ITRF2014) (see Dach (2019): IGSMAIL-7832)

IGS processing chains (near future, 2021?):

 REPRO3: possible definition of a GNSS scale based on Galileo satellite and new ground antenna calibrations, re-estimation of GPS and GLONASS PCO and ITRFcontribution; several ACs (incl. CODE) thus include Galileo in their contribution

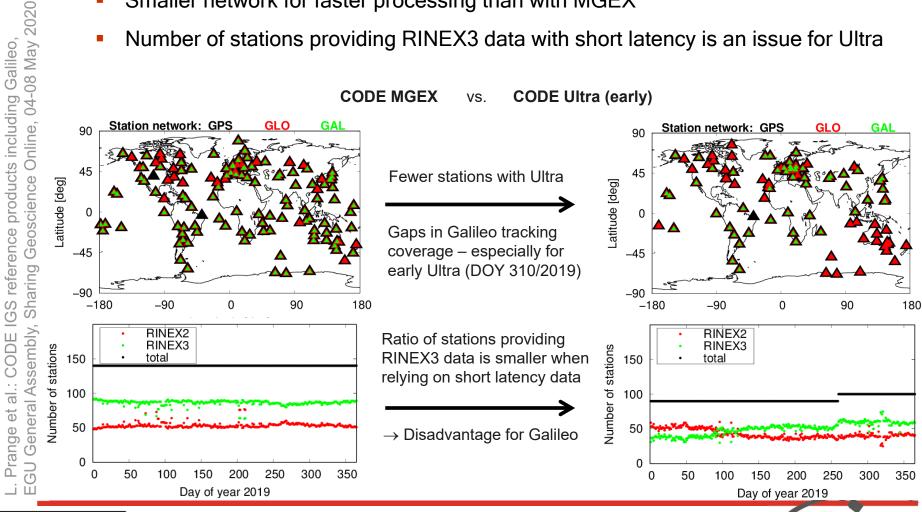
Product line	Applications	Latency Req.	Accuracy Req.	Systems
MGEX	Experimental: new GNSS and RNSS	Diverse	Diverse	GRECJSI
Ultra -Rapid (including orbit predictions)	Real time (predictions), near real time	Very short (few hours)	Low	GRE
Rapid	Reference	Short (1 day)	Medium	GRE
Final	High accuracy reference (including scale); contribution to new ITRF	Long (2 weeks)	High	GR
REPRO3	Preparation of new ITRF including definition of GNSS scale	On demand	Very high	GRE

New ITRF (with new scale) to be introduced in all IGS routines

IGS processing chains (future, 2021+):

 With the new ITRF Galileo can potentially contribute to Final products without causing a scale inconsistency

Product line	Applications	Latency Req.	Accuracy Req.	Systems
MGEX	Experimental: new GNSS and RNSS	Diverse	Diverse	GRE CJSI
Ultra -Rapid (including orbit predictions)	Real time (predictions), near real time	Very short (few hours)	Low	GRE
Rapid	Reference	Short (1 day)	Medium	GRE
Final	High accuracy reference (including new scale); contribution to next ITRF	Long (2 weeks)	High	GRE


 MGEX: could address open technical (e.g., GEO POD, improving orbit models) and scientific questions (e.g., how can GEO and IGSO satellites contribute to TRF parameters and other reference products?)

Galileo in CODE (Ultra-)Rapid - first experiences

- Galileo included in CODE (Ultra-)Rapid since September 2019:
 - Smaller network for faster processing than with MGEX
 - Number of stations providing RINEX3 data with short latency is an issue for Ultra

- IGS Rapid combination validates impact of Galileo on GPS orbits:
 - No issues concerning data processing or reliability
 - Jump in GPS scale (as expected from Villiger and Rebischung (2019))
 - No degradation of GPS orbits (Helmert transformation parameters and WRMS of comparison with combined IGS Rapid orbit do not change)

Rapid GPS orbits from selected ACs vs. IGS combination (cod == CODE Rapid): 0.6 0.4 SCL [ppb] esa 0.2 -0.2 -0.403Oct19 22Aug19 05Sep19 19Sep19 26Sep19 10Oct19 15Aug19 29Aug19 12Sep19 30 emr WRMS [mm] 25 esa 20 15 15Aug19 22Aug19 05Sep19 12Sep19 19Sep19 26Sep19 03Oct19 10Oct19 29Aug19

9

General Assembly, Sharing Geoscience Online, 04-08 May 2020

- Galileo data analysis has significantly improved in recent years (e.g., ambiguity-fixed clocks)
- Galileo nowadays is a fully established GNSS constellation, which is sufficiently supported by the IGS infrastructure, and is mature enough to contribute to legacy IGS products
- Availability of metadata lets Galileo appear even appropriate to determine a GNSS scale in the frame of the IGS REPRO3 campaign
- GNSS community expressed interest in Galileo short latency products
- CODE AC started to include Galileo in Ultra-Rapid, Rapid and in its REPRO3 effort
- Inclusion of Galileo in CODE's (Ultra-)Rapid analysis has so far not indicated negative side-effects - apart from a scale difference w.r.t. GPS and GLONASS, which was expected (and is likely to disappear when a new ITRF will be introduced)

GU General Assembly, Sharing Geoscience Online, 04-08 May 2020

Thank you for your attention!

Note: For more information on this topic we refer to Prange et al. (2020): Overview of CODE's MGEX solution with the focus on Galileo. ASR. doi: 10.1016/j.asr.2020.04.038

References

http://www.bernese.unibe.ch/publist

- Dach (2019). Announcement CODE IGS RAPID/ULTRA products including Galileo. IGSMAIL-7832, IGS Central Bureau Information System. URL: https://lists.igs.org/pipermail/igsmail/2019/007828.html.
- Dach et al. (2018). CODE AC: IGS Technical Report 2017. doi:10.7892/boris.116377.
- Dach et al. (2019). CODE AC: IGS Technical Report 2018. doi:10.7892/boris.130408.
- IGS Infrastructure Committee (2014). IGS RINEX 3 Transition Plan v3.0. URL: http://kb.igs.org/hc/en-us/article_attachments/202584007/Rinex_3_transition_plan_v3.0.pdf.
- Prange et al. (2017). Impact of new background models on GNSS orbit determination. Presentation at 6th International Colloquium - Scientific and Fundamental Aspects of GNSS/Galileo, Valencia, Spain.
- Prange et al. (2020). An empirical solar radiation pressure model for satellites moving in the orbit normal mode. Advances in Space Research 65, 235–250. doi:10.1016/j.asr.2019.07.031.
- Prange et al. (2020). Overview of CODE's MGEX solution with the focus on Galileo. ASR. doi:10.1016/j.asr.2020.04.038.
- Schaer et al. (2018). New ambiguity-fixed IGS clock analysis products at CODE. Presentation at IGS Workshop, Wuhan, China.
- Schaer et al. (2020). The CODE ambiguity-fixed clock and phase bias analysis products and their properties and performance. Paper in preparation.
- Sidorov et al. (2019). Enhanced orbit modelling of eclipsing Galileo satellites. Poster at 7th International Colloquium on Scientific and Fundamental Aspects of GNSS, Zürich, Switzerland.
- Sidorov et al. (2020). Adopting the Empirical Code Orbit Model to Galileo satellites. ASR. doi:10.1016/j.asr.2020.05.028.
- Villiger. et al. (2019). Determination of GNSS pseudo-absolute code biases and their longterm combination. Journal of Geodesy 93, 1487–1500. doi:10.1007/s00190-019-01262-w.
- Villiger and Rebischung (2019). Possible Contribution of GNSS to the Definition of the ITRF2020 Scale Based on the Galileo Satellite Phase Center Offsets. Presentation at Unified Analysis Workshop, Paris, France.
- Villiger et al. (2020). GNSS scale determination using calibrated receiver and Galileo satellite antenna patterns. Paper submitted to Journal of Geodesy.

Bonus: CODE MGEX (COM) orbit solution

GNSS considered: GPS + GLONASS + Galileo + BDS2 (MEO+IGSO) + QZSS

(>90 SV)

Processing mode: Post-processing (≈2 weeks latency)

Timespan covered: GPS-weeks 1689 - today

Number of stations: 140 (GPS), 130 (GLONASS),

100 (Galileo); 80 (BDS2); 40 - 50 (QZSS)

EProcessing scheme: Double-difference network processing

(observable: phase double differences; ambiguity-fixed)

Signal frequencies: L1+ L2 (GPS + GLO+ QZSS);

E1 (L1) + E5a (L5) Galileo; B1 (L2) + B2 (L7) BDS2

POrbit characteristic: 3-day long arcs; SRP: ECOM2, ECOM-TB (during ON)

Reference frame: IGS14

∃IERS conventions: IERS2010

©Product list: Daily orbits (SP3; 300s) and ERPs

ਰੋDistribution: ftp://cddis.gsfc.nasa.gov/gnss/products/mgex/ and

ftp://ftp.aiub.unibe.ch/CODE_MGEX/

RDesignation: COD0MGXFIN_YYYYDDD...gz

CODE IGS reference products including Galilec

Bonus: CODE MGEX (COM) clock solution

GNSS considered: GPS + GLONASS + Galileo + BDS2 + QZSS (>90 SV)

Processing mode: Post-processing (≈2 weeks latency)

GPS-weeks 1710 - today ₹Timespan covered:

140 (GPS), 130 (GLO), 100 (Galileo); 50 (BDS2); 40 (QZSS) Number of stations:

Processing scheme: **Zero-difference** processing

(code+phase undifferenced; ambiguity-fixed for G,E,C,J)

L1+L2 (GPS + GLO+ QZSS); 5Signal frequencies:

E1 (L1) + E5a (L5) Galileo; B1 (L2) + B2 (L7) BDS2

A priori information: Orbits, ERPs, coordinates, and troposphere from

CODE MGEX orbit solution introduced as known

Reference frame: IGS14

IERS2010 "IERS conventions:

General Assembly Epoch-wise (30s) clock corrections for satellites and stations

in daily CLK-RINEX files; daily observable-specific (OSB)

code biases for satellites and stations in BIAS-SINFX-format

ftp://cddis.gsfc.nasa.gov/gnss/products/mgex/ and

ថDistribution: ftp://ftp.aiub.unibe.ch/CODE_MGEX/

CODE IGS reference products including Galileo.

