Time-variable gravity field determination from GRACE-FO data at AIUB

Martin Lasser¹, Ulrich Meyer¹, Daniel Arnold¹, Adrian Jäggi¹

¹Astronomical Institute, University of Bern, Switzerland

GRACE & GRACE-FO Science Team Meeting Oct. 8-10, 2019 Pasadena, California

Content

Kinematic orbits of GRACE-FO satellites

Stochastic behaviour of kinematic positions

Empirical modelling

Inter-satellite link

Impact on gravity field determination

Observations

G	Ρ	S
		-

Inter-satellite link

absolute 3-dim lower precision relative 1-dim very high precision

M. Lasser, U. Meyer, D. Arnold, A. Jäggi: Status of GFO data processing at AIUB GRACE & GRACE-FO Science Team Meeting, Oct. 8-10, 2019, Pasadena, California

Kinematic orbits of GRACE-FO satellites

LEO precise orbit determination from GPS data

- 10 s sampling (full sampling used in processing)
- undifferenced PPP solution
- fixing zero-difference ambiguities to integers
- $\rightarrow\,$ CODE (Center of Orbit Determination in Europe) phase biases
- \rightarrow CODE ambiguity-fixed clocks

Integer-fixing of carrier phase ambiguities

SLR residuals for 2018-11 (in comparison with float)					
	SV	type	mean [mm]	std. dev [mm]	
	GRACE-C	float	3.1	18.6	
	GRACE-D	float	-4.5	16.8	
	GRACE-C	fixed	4.3	10.6	
	GRACE-D	fixed	1.0	12.0	

Slide 5 of 16

Integer-fixing of carrier phase ambiguities

SLR residuals for 2018-11 (in comparison with float)					
	SV	type	mean [mm]	std. dev [mm]	
	GRACE-C	float	3.1	18.6	
	GRACE-D	float	-4.5	16.8	
	GRACE-C	fixed	4.3	10.6	
	GRACE-D	fixed	1.0	12.0	

Individual arcs feature less scattering

Stochastic behaviour of kinematic positions

- SST-hl tracking geometry varies between poles and the equator
- Epoch-wise covariance information from kinematic PPP: mainly 2/rev; important information on observation quality

Stochastic behaviour of kinematic positions

- SST-hl tracking geometry varies between poles and the equator
- Epoch-wise covariance information from kinematic PPP: mainly 2/rev; important information on observation quality

Stochastic behaviour of kinematic positions

- SST-hl tracking geometry varies between poles and the equator
- Epoch-wise covariance information from kinematic PPP: mainly 2/rev; important information on observation quality

- Ambiguities feature the correlation between epochs
- \rightarrow Full covariance matrix from PPP (at least in principle)
 - Integer-fixed: almost no correlations

Non linear least squares: $\mathbf{x} = \mathbf{x_0} + (\mathbf{A}^T \mathbf{P} \mathbf{A})^{-1} \mathbf{A}^T \mathbf{P} \delta \mathbf{l}$

 \rightarrow The observations enter via $\delta \mathbf{l} = o - c$

Non linear least squares: $\mathbf{x} = \mathbf{x_0} + (\mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{P} \delta \mathbf{l}$

ightarrow The observations enter via $\delta \mathbf{l} = o - c$

Non linear least squares: $\mathbf{x} = \mathbf{x_0} + (\mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{P} \delta \mathbf{l}$

ightarrow The observations enter via $\delta \mathbf{l} = o - c$

- Residuals feature observation noise (o)
- And mismodelings from the computed component (c)
- $\rightarrow c$ contains the full a priori force model (gravity field, tides, AOD, accelerometer, ...)

Non linear least squares: $\mathbf{x} = \mathbf{x_0} + (\mathbf{A}^T \mathbf{P} \mathbf{A})^{-1} \mathbf{A}^T \mathbf{P} \delta \mathbf{l}$

ightarrow The observations enter via $\delta \mathbf{l} = o - c$

Empirical covariance estimation

• Set up (constrained) piecewise constant accelerations (strategy used at AIUB)

In case of a stationary process

 $\bullet\,$ Estimate a mean covariance function from the residuals e.

$$cov(\Delta t_k) = \frac{1}{n} \sum_{i=0}^{n} \mathbf{e}(t_i) \mathbf{e}(t_i + \Delta t_k)$$

- Variance/covariance matrix has a symmetric Toeplitz-structure and the individual elements only depend on the distance in time.
- $\rightarrow\,$ Mean covariance function for each month
- \rightarrow Length of correlation 100 min

The inter-satellite link is much more precise

- ightarrow dominates the resulting gravity field signal
- $\rightarrow\,$ 5 s sampling for K-band, 2 s sampling for LRI
 - Assign one factor to weight K-band
- ightarrow extended to weight based on its arc-wise residual RMS
 - Set up constrained PCA to model stochastic behaviour (mainly a 2/rev signal)

The inter-satellite link is much more precise

- ightarrow dominates the resulting gravity field signal
- $\rightarrow\,$ 5 s sampling for K-band, 2 s sampling for LRI
 - Assign one factor to weight K-band
- ightarrow extended to weight based on its arc-wise residual RMS
 - Set up constrained PCA to model stochastic behaviour (mainly a 2/rev signal)

Inter-satellite link

Inter-satellite link

Large distance in time between reference epoch of background field and observations

 Formal errors are too optimistic

Slide 12 of 16

- Slight improvement due to better characterisation of range-rate data
- Noise in background force field modelled through PCA only

Noise in background force field mainly characterised due to GPS contribution

Slide 14 of 16

- Formal errors in higher degrees realistic
- Low degrees require further inspection

Slide 15 of 16

Summary

- Integer-fixing of carrier phase ambiguities closer to K-band
- Empirical noise modelling via GPS improves formal errors
- \rightarrow Extend the procedure to K-band/Laser link
 - Processing strategy tested on GRACE-FO
- \rightarrow (At some point) reprocess GRACE time series

Thank you for your attention.