Overview of CODE's MGEX solution (with the focus on Galileo)

L. Prange¹, A. Villiger¹, D. Sidorov¹, S. Schaer^{1,2}, G. Beutler¹, R. Dach¹, A. Jäggi¹

1 Astronomical Institute, University of Bern, Switzerland

2 Bundesamt für Landestopografie swisstopo, Wabern, Switzerland

7th International Colloquium - Scientific and Fundamental Aspects of GNSS / Galileo, 04-06 September 2019, Zürich, Switzerland

Astronomical Institute University of Bern AIUB 🤇

Contents

- Overview of CODE's MGEX solution
- Recent changes of the COM solution
- Ambiguity-fixed clock and phase bias products
- Antenna calibrations
- Orbit modelling
- Summary and outlook

CODE MGEX (COM) orbit solution

GNSS considered:	GPS + GLONASS + Galileo + BDS2 (MEO+IGSO) + QZSS (>90 SV)			
Processing mode:	Post-processing (≈2 weeks latency)			
Timespan covered:	GPS-weeks 1689 - today			
Number of stations:	140 (GPS), 130 (GLONASS),			
× 90	100 (Galileo); 80 (BDS2); 40 - 50 (QZSS)			
Processing scheme:	Double-difference network processing			
riand	(observable: phase double differences; ambiguity-fixed)			
Signal frequencies:	encies: L1+ L2 (GPS + GLO+ QZSS);			
, v	E1 (L1) + E5a (L5) Galileo; B1 (L2) + B2 (L7) BDS2			
Orbit characteristic:	3-day long arcs; SRP: ECOM2, ECOM-TB (during ON)			
E Reference frame:	IGS14			
IERS conventions:	IERS2010			
္ခ်ိဳ Product list:	Daily orbits (SP3; 300s) and ERPs			
Distribution:	ftp://cddis.gsfc.nasa.gov/gnss/products/mgex/ and			
	ftp://ftp.aiub.unibe.ch/CODE_MGEX/			
Designation:	COD0MGXFIN_YYYDDDgz			
T _				

Prange et al.: Overview of CODE's MGEX solution (with the focus on Galileo), _i i

CODE MGEX (COM) clock solution

eo), 9	GNSS considered: Processing mode:	GPS + GLONASS + Galileo + BDS2 + QZSS (>90 SV) Post-processing (≈2 weeks latency)
Galilo	Timespan covered:	GPS-weeks 1710 - today
us on embe	Number of stations:	140 (GPS), 130 (GLO), 100 (Galileo); 50 (BDS2); 40 (QZSS)
le foc	Processing scheme:	Zero-difference processing
ith th 4-06		(code+phase undifferenced; ambiguity-fixed for G,E,C,J)
nd, 0	Signal frequencies:	L1+ L2 (GPS + GLO+ QZSS);
olutic zerla		E1 (L1) + E5a (L5) Galileo; B1 (L2) + B2 (L7) BDS2
Swit	A priori information:	Orbits, ERPs, coordinates, and troposphere from
's MC		CODE MGEX orbit solution introduced as known
CODE m, Zi	Reference frame:	IGS14
v of C	IERS conventions:	IERS2010
Collo	Product list:	Epoch-wise (30s) clock corrections for satellites and stations
.: Ove ence		in daily CLK-RINEX files; daily observable-specific (OSB)
et al. o Sci		code biases for satellites and stations in BIAS-SINEX-format
ange Jalile		ftp://cddis.gsfc.nasa.gov/gnss/products/mgex/ and
L. Pro 7th (Distribution:	ftp://ftp.aiub.unibe.ch/CODE_MGEX/
		Astronomical Institute University of Bern AIUB CODE

COM orbit validation: SLR residuals

- Galileo POD improved within recent years thanks to model changes and better tracking
 Disclosure of meta data contributes to orbit
 - improvements (e.g., reduction of SLR offset)
- ⇒ Galileo meanwhile (2019) best performing «new» GNSS in the COM solution

Astronomical Institute University of Bern **AIUB**

COM clock validation: daily linear fit

Recent changes in the COM solution

- Observation biases:
 - Observable-specific biases (OSB) \Rightarrow see Villiger et. al. (2019, doi 10.1007/s00190-019-01262-w)
- Phase ambiguity resolution:
 - DD orbit solution: GPS, Galileo, QZSS, BDS2 (Summer 2017)
 - \Rightarrow see Schaer et al. (IGS Technical Report 2017)
 - Ambiguity-fixed clocks: GPS, Galileo (2018)
- (Antenna calibrations:
 - Satellite antenna phase center offsets (PCO) of Galileo and QZSS are known \Rightarrow values are included in IGS14-ANTEX file
 - Ground antenna calibrations available since 2019
 - Switch to new antenna calibrations under investigation)

solution (with the focus on Galileo), -06 September 2019 40 ürich, Switzerland Overview of CODE's MGEX L. Prange בע מוון ערביים 7th Galileo Science Colloquium, Z Prange et

Recent changes in the COM solution

- Orbit modelling:
 - Eclipse attitude laws for GPS, GLONASS, Galileo (Summer 2017)
 - Earth albedo and transmit antenna thrust applied for GPS, GLONASS, Galileo, QZSS (Summer 2017)
 ⇒ see Prange et al. (IGS Technical Report 2017)
 - Correct consideration of orbit normal (ON) attitude mode for QZS-1 and BDS2 (Summer 2018)
 - Use of ECOM-TB SRP model for satellites with ON attitude (Summer 2018)
 - Empirical thermal radiation model for Galileo satellites (Summer 2019)

Ambiguity-fixed clock and phase bias products

- June 2018: *signal-specific phase bias (OSB)* product (internal) and a fully consistent *ambiguity-fixed clock* product for:
 - CODE rapid, GR, 30s clocks, 5° min.el., 120 stations
 - CODE final, GR, 5s clocks, 5° min.el., >300 stations
 - CODE MGEX, GRECJ, 30s clocks, 5° min.el., 140 stations
- The new CODE clock products reveal a notably improved quality and allow for *single-receiver ambiguity resolution*, thus enabling *integer-PPP* (IPPP).

Ambiguity-fixed clock and phase bias products

Daily PPP vs. daily IPPP using Galileo only:

References:

Schaer et al. (2018): Presentation at IGS-WS 2018.

Schaer et al. (2019): The CODE ambiguity-fixed clock and phase bias analysis products and their properties and performance. Manuscript in preparation.

Galileo clock differences at day boundaries:

Standard deviation of (NLC-)integer-corrected between-satellite Galileo clock differences at midnight epochs (24:00/00:00) is at a level of 12ps (=3mm)

Prange et al.: Overview of CODE's MGEX solution (with the focus on Galileo),

Antenna calibrations

Available receiver and satellite antenna pattern:

6	System	Receiver		Satellite	
04-06 September 201		IGS 14	REPRO3		→ Calibrated registered registered and the satellite antennation allow to estimate GNSS scale
	GPS	L1 / L2	L1 / L2	Estimated	
	GLONASS	L1 / L2	L1 / L2	Estimated	
	Galileo	L1 / L2	L1 / L5	Calibrated	
land,	Beidou	L1 / L2	L1 / L7	Estimated	
/itzer	QZSS	L1 / L2	L1 / L2	Calibrated	

ceiver and a pattern e a

Estimated GPS and Galileo PCO (z-component) are not compatible.

- Possible solution: adaptation of GPS and GLONASS z-PCOs to Galileo by introducing a system-wise offset
- Study related to IGS REPRO3

Astronomical Institute University of Bern **AUB**

Orbit modelling - thermal radiation

 Galileo spacecraft have a large AMR and are equipped with thermal radiators (known from the publicly available Galileo satellite metadata - thanks to GSA)

- Thermal radiators produce non-negligible forces (particularly important during eclipse seasons)
- Neglecting thermal effects may produce modelling artifacts (visible in MGEX products; magnitude depends on the employed orbital arc length)
- The ECOM2 SRP model was modified to account for these effects leading to improvements in satellite orbits and clock corrections during eclipse seasons.
 - see poster by Sidorov et al. in poster session PS01 for details

Astronomical Institute University of Bern

Orbit modelling - orbit normal (ON) attitude

Orbit modelling - orbit normal (ON) attitude

• CODE's point of view:

Galileo is ready for IGS legacy products

IGS decision is expected soon:

Galileo to be potentially included in IGS REPRO3

Astronomical Institute University of Bern AIUB

Overview of CODE's MGEX solution (with the focus on Galileo), nce Colloquium, Zürich, Switzerland, 04–06 September 2019 Switzerland, 04 L. Prange et al.: Overview of CODE's MG 7th Galileo Science Colloquium, Zürich,

Outlook for COM

- Further improvement of radiation pressure modelling ((semi-) analytical SRP models, thermal radiation models, ...)
- Attitude (models for Asian systems, ORBEX format, quaternions?)
- MGEX SINEX files
- MGEX ionosphere and bias product (containing phase biases and considering all signals)
- New systems and satellites (BDS3, IRNSS, GEOs)?
- Further improvements of clock products (sampling, midnight epoch, ...)

Overview of CODE's MGEX solution (with the focus on Galileo), nce Colloquium, Zürich, Switzerland, 04–06 September 2019 L. Prange et al.: Overview of CODE's MGEX solution (v 7th Galileo Science Colloquium, Zürich, Switzerland,

Thank you for your attention!

