Single-receiver ambiguity fixing for
GPS-based precise orbit determination

of low Earth orbiters
Using CODE’s new clock and phase bias products

Daniel Arnold !  Stefan Schaer 2 Arturo Villiger !
Rolf Dach !  Adrian Jaggi !

1 Astronomical Institute, University of Bern, Switzerland
2Swiss Federal Office of Topography, Wabern, Switzerland

EGU General Assembly 2019, Session G2.4
Vienna, Austria
April 8, 2019

Slide 1 of 18 Astronomical Institute, University of Bern AIlUB



Motivation (1)

of low Earth orbiters

e GNSS-based Precise Orbit Determination (POD) of Low Earth
Orbiters (LEOs) has become a standard application for
high-quality GNSS products

e Processing of dual-frequency GNSS carrier phase data enables
the abolute positioning of LEOs with (sub-)cm accuracy in post
processing

— crucial, e.g., for altimetry satellites
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Credits: NASA
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nation of low Earth orbiters

g
3
5
8
8
L
&
|4
3
v
[:N
o
B
)
X

Motivation (2)

Code and phase observation eqs. for satellite s, receiver r, freq. i
Py = pi+ 5 + 8ty — 5%) + c(dri — )
L7 = pr — I, + c(6ty — 0t°) + c(bryi — ¢5) + Aiwy + NNy,

PZ, code observation

L*.  phase observation dyi, ¢rii  receiver code/phase bias

ds, g3 satellite code/phase bias

K .
P geometric distance i
T . . Ai carrier wavelength
I}, ionospheric correction s :
; wy phase windup

0t  receiver clock correction N

)4 integer phase ambiguit
0t°  satellite clock correction i gere suity

e Fixing ambigities to their integer values stabilizes solution

* When not modeling phase biases, their effect will be absorbed by
ambiguity parameters — not integers anymore

e Classical ambiguity resolution approach: Form double differences
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Motivation (3)

¢ Double-difference processing of space baselines has been proven
successful and beneficial for relative POD of LEO constellations,
e.g., GRACE

ion of low

precise orbit deter)

Credits: NASA
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Motivation (3)

= ¢ Double-difference processing of space baselines has been proven

successful and beneficial for relative POD of LEO constellations,
e.g., GRACE

¢ Double-difference processing of space-ground baselines is very
costly in computational terms if all correlations shall be modeled
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Motivation (3)

¢ Double-difference processing of space baselines has been proven
successful and beneficial for relative POD of LEO constellations,
e.g., GRACE

¢ Double-difference processing of space-ground baselines is very
costly in computational terms if all correlations shall be modeled

e Usual LEO POD is based on Precise Point Positioning (PPP),
where GNSS satellite orbits and clock corrections from an
external global solution are introduced

Code and phase observation eqgs. for satellite s, receiver r, freq. @
P, = pp + 17 + (0t — 6t°) + c(dry; — d)
Ll = pr = Ll + (0t — 01%) 4 c(drsi — ¢7) + Aiw] + AN
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Motivation (3)

¢ Double-difference processing of space baselines has been proven
successful and beneficial for relative POD of LEO constellations,
e.g., GRACE

Double-difference processing of space-ground baselines is very
costly in computational terms if all correlations shall be modeled
e Usual LEO POD is based on Precise Point Positioning (PPP),
where GNSS satellite orbits and clock corrections from an
external global solution are introduced

e Undifferenced ambiguity resolution in PPP mode requires
satellite phase biases as well

fixing for GPS-based precise orbit determination of low Earth orbiters
[ ]

Code and phase observation eqgs. for satellite s, receiver r, freq. @
P, = pp + 17 + (0t — 6t°) + c(dry; — d)
L2y = pf = Iy + 8ty — 5%) + e — 67) + Al + M3,
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New CODE clock and phase bias product

* Since GPS week 2009 (July 2018) CODE (Center for Orbit
Determination in Europe) produces a high-quality signal-specific
phase bias product

based precise ork

Bias SVN PRN Station name Obs yyyy mm dd hh mm ss yyyy mm dd hh mm ss Value (ns) RMS (ns)
wkk RRkK Rk wokk
0SB G032 GO1 C1C 2007 04 01 00 00 00 2007 04 02 00 00 00 0.52254 0.00610
o= 0SB G032 GO1 CiW 2007 04 01 00 00 00 2007 04 02 00 00 00 -0.00000 0.00025
é;‘ 0SB G032 GO1 C2W 2007 04 01 00 00 00 2007 04 02 00 00 00 -0.00000 0.00025
8
e 0SB G032 GO1 L1C 2007 04 01 00 00 00 2007 04 02 00 00 00 0.16431 0.00000
] 0SB G032 GO1 LiW 2007 04 01 00 00 00 2007 04 02 00 00 00 0.16431 0.00000
if 0SB G032 GO1 L2C 2007 04 01 00 00 00 2007 04 02 00 00 00 0.24524 0.00000
§ 0SB G032 GO1 L2W 2007 04 01 00 00 00 2007 04 02 00 00 00 0.24524 0.00000
5 0SB G032 GO1 L2X 2007 04 01 00 00 00 2007 04 02 00 00 00 0.24524 0.00000
50 e
ow
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hased precise orbit detel

EGU General Asse

New CODE clock and phase bias product

Since GPS week 2009 (July 2018) CODE (Center for Orbit
Determination in Europe) produces a high-quality signal-specific
phase bias product

The Bernese GNSS Software has been extended to introduce
these biases, and the new CODE rapid, final, and MGEX clock
corrections are based on a fully consistent ambiguity-fixed
processing (ambiguity-float clocks — extract phase biases — fix
ambiguities and re-estimate clocks)

Bias SVN PRN Station name Obs yyyy mm dd hh mm ss yyyy mm dd hh mm ss Value (ns) RMS (ns)
wkk RRkK Rk wokk
0SB G032 GO1 C1C 2007 04 01 00 00 00 2007 04 02 00 00 00 0.52254 0.00610
0SB G032 GO1 CiW 2007 04 01 00 00 00 2007 04 02 00 00 00 -0.00000 0.00025
0SB G032 GO1 C2W 2007 04 01 00 00 00 2007 04 02 00 00 00 -0.00000 0.00025
0SB G032 GO1 L1C 2007 04 01 00 00 00 2007 04 02 00 00 00 0.16431 0.00000
0SB G032 GO1 LiW 2007 04 01 00 00 00 2007 04 02 00 00 00 0.16431 0.00000
0SB G032 GO1 L2C 2007 04 01 00 00 00 2007 04 02 00 00 00 0.24524 0.00000
0SB G032 GO1 L2W 2007 04 01 00 00 00 2007 04 02 00 00 00 0.24524 0.00000
G032 GO1 L2X 2007 04 01 00 00 00 2007 04 02 00 00 00 0.24524 0.00000
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New CODE clock and phase bias product
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Test scenario

Using the new CODE products, we
e test undifferenced ambiguity resolution (AR) for POD of
* GRACE-A/B, April 2007
* Sentinel-3A/B, September 2018
e compare its performance to double-difference processing,

including AR

nation of low Earth orbiters

ng for GPS-based precise orbit determi

Credits: NASA
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Test scenario

arth orbiters

Using the new CODE products, we
e test undifferenced ambiguity resolution (AR) for POD of
* GRACE-A/B, April 2007
* Sentinel-3A/B, September 2018
e compare its performance to double-difference processing,

including AR

GRACE-A/B

GPS-based precise orbit deter
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Test scenario

of low Earth orbiters

Using the new CODE products, we
e test undifferenced ambiguity resolution (AR) for POD of
* GRACE-A/B, April 2007
* Sentinel-3A/B, September 2018
e compare its performance to double-difference processing,
including AR
e demonstrate benefit of undifferenced AR for Swarm POD for
June 2018 to March 2019

orbit determinatior

ed precise

or GPS-bas
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Methods (1)

orbiters

h ¢

rt

Ea

Computation of reduced-dynamic and kinematic orbits using Bernese
GNSS Software v5.3

nation of low

¢ Reduced-dynamic orbit:
* 6 initial conditions
° constant accelerations in radial (R), along-track (T) and
cross-track (N) direction
° 6-min piecewise constant accelerations (constrained) in R,T,N
* no explicit non-gravitational force modeling

ecise orbit determi

@
E

 Kinematic orbit: epoch-wise 3-dimensional position (+ clocks)

¢ Double-difference processing:
* reduced-dynamic orbit of GRACE-A / Sentinel-3A is reference
* relative orbit parameters for GRACE-B / Sentinel-3B estimated
* relative empirical accelerations are only rather loosely constrained
(1-1078 m/s?)
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Methods (2)

Melbourne-Wubbena linear combination of code and
phase observations, fix wide-lane ambiguities

nation of low Earth orbiters

Reduced-dynamic POD: ionosphere-free linear
combination of phase observations, introduce fixed
wide-lane ambiguities, fix narrow-lane ambiguities
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Kinematic POD: introduce fixed ambiguities J
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Daniel Arnold: Single-receiver ambiguity fixing for GPS-based precise orbit determination of low Earth orbiters

EGU General Assembly, April 8, 2019

AR success rate

Percentage of fixed narrow-lane ambiguities for zero-difference (ZD)
and double-difference (DD) processing:

GRACE
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Daniel Arnold: Single-receiver ambiguity fixing for GPS-based precise orbit determination of low Earth orbiters

EGU General Assembly, April 8, 2019

AR success rate

Percentage of fixed narrow-lane ambiguities for zero-difference (ZD)
and double-difference (DD) processing:

NL AR success rate [%]
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Daniel Arnold: Single-receiver ambiguity fixing for GPS-based precise orbit determination of low Earth orbiters

EGU General Assembly, April 8, 2019

Internal orbit consistency

Differences between reduced-dynamic and kinematic orbits:
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Internal orbit consistency

Differences between reduced-dynamic and kinematic orbits:

GRACE-A

Float
Fixed
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Daniel Arnold: Single-receiver ambiguity fixing for GPS-based precise orbit determination of low Earth orbiters
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Daniel Arnold: Single-receiver ambiguity fixing for GPS-based precise orbit determination of low Earth orbiters

EGU General Assembly, April 8, 2019

Internal orbit consistency

GRACE RD-KN (float vs fixed), 3D
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Daniel Arnold: Single-receiver ambiguity fixing for GPS-based precise orbit determination of low Earth orbiters

EGU General Assembly, April 8, 2019

Internal orbit consistency

Sentinel-3 RD-KN (float vs fixed), 3D
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K-band validation

K-band residual = difference between computed range and range de-

rived from ultra-precise inter-satellite K-band measurement.
External orbit validation!

S
EGU General Assembly, April 8, 201

Daniel Arn
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K-band validation

K-band residual = difference between computed range and range de-
rived from ultra-precise inter-satellite K-band measurement.
External orbit validation!

ion of low Eart

GRACE-A/B red.-dyn. KBR residuals

precise orbit dete
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SLR validation

Earth orbiters

SLR residual = difference between computed range and range derived
from Satellite Laser Ranging (SLR) measurement.
External orbit validation!

nation of low

ecise orbit determi
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of low Earth orbiters

e orbit determi

d [

or GPS-base

SLR validation

SLR residual = difference between computed range and range derived

External orbit validation!

from Satellite Laser Ranging (SLR) measurement.

Float ZD AR
Orbits red.-dyn. kin. red.-dyn. kin.
GRACE-A | +0.5/155 | +1.5/16.6 | +2.5/12.4 | +2.6/12.0
GRACE-B | +0.9/12.1 | -0.5/16.9 | +3.8/85 | +3.7/9.6
Sentinel-3A | -6.0/11.5 | -6.5/14.7 | -5.7/10.7 | -5.4/11.9
Sentinel-3B | -2.9/12.4 | -4.3/15.2 | -3.5/10.4 | -3.3/11.1

Mean values and standard deviations in mm of SLR residuals over
April 2007 (GRACE) and September 2018 (Sentinel-3), respectively.
No parameters estimated, station coordinates according to SLRF2008
(GRACE) and SLRF2014 (Sentinel-3) introduced. SLR data of 12
stations used. 20 cm outlier threshold, 10° elevation cutoff.
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Swarm POD (1)

e Initially, Swarm GPS data were affected by half-cycle
ambiguities, hindering successfull AR

e Fixed for the reprocessed level-1 Swarm GPS data (Montenbruck
et al., 2017)

nation of low Earth orbiters
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Swarm POD (1)

e Initially, Swarm GPS data were affected by half-cycle
ambiguities, hindering successfull AR
¢ Fixed for the reprocessed level-1 Swarm GPS data (Montenbruck
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Daniel Arnold: Single-receiver ambiguity fixing for GPS-based precise orbit determination of low Earth orbiters
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Swarm POD (1)

ion of low Earth

e Initially, Swarm GPS data were affected by half-cycle
ambiguities, hindering successfull AR

e Fixed for the reprocessed level-1 Swarm GPS data (Montenbruck
et al., 2017)
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Swarm POD (2)

Internal orbit consistency:
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orbit determination of low Earth orbiters

ed precise

or GPS-bas

Swarm POD (3)

SLR residuals (mean and standard deviation) in mm (statistics

computed as for GRACE and Sentinel-3):

Float

ZD AR

Orbits

red.-dyn.

kin.

red.-dyn.

kin.

Swarm-A
Swarm-B
Swarm-C

16.4/122
+4.6/12.8
+4.9/12.2

15.2/16.2
+3.8/16.9
+4.1/15.8

14.6/10.1
4+2.3/9.6
+3.0/9.8

3.4/10.3
+1.3/10.1
42.1/10.6
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Summary and conclusion

of low Earth orbiters

e CODE operationally produces an observation-specific phase bias
product

e The new CODE rapid, final, and MGEX clock corrections are
based on ambiguity-fixed processing

e Tested undifferenced ambiguity fixing for LEO POD of GRACE,

Sentinel-3 and Swarm. Beneficial for internal orbit consistency,

as well as for absolute orbit quality (K-band and SLR residuals)

A test data set including phase biases for GPS week 2026 (4-10

November 2018) will be provided to interested users. Please

write an email to

orbit dete

or GPS-based precise

f
[ ]

code@aiub.unibe.ch J
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Summary and conclusion

of low Earth orbiters

e CODE operationally produces an observation-specific phase bias
product

e The new CODE rapid, final, and MGEX clock corrections are
based on ambiguity-fixed processing

e Tested undifferenced ambiguity fixing for LEO POD of GRACE,

Sentinel-3 and Swarm. Beneficial for internal orbit consistency,

as well as for absolute orbit quality (K-band and SLR residuals)

A test data set including phase biases for GPS week 2026 (4-10

November 2018) will be provided to interested users. Please

write an email to

orbit dete

or GPS-based precise

f
[ ]

code@aiub.unibe.ch J

Thank you very much!
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Ambiguity resolution strategy (1)

of low Earth orbiters

1. Form Melbourne-Wubbena linear combination of pseudo-range
3 P?. and carrier phase L}, observations:

orbit dete

MW(LS ps ) . flLf«ﬂ - fZLf‘;Q _ flPrS;l + f2PT8;2
i Loy fl — f2 fl + f2
= )\W|N7iw| + CMW(¢T;i7 dr;i) - CMW(¢§7 df) )

ed precise

or GPS-bas

E where Ay = ¢/(f1 — f2) 86 cm and N, = N7y — N7y
2. Form satellite differences
At (N = N2y — ¢ [MW(g5!, d3') — MW(652, d5?)]

introduce satellite code and phase biases and resolve wide-lane
ambiguity differences, no fixing for reference satellite
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Ambiguity resolution strategy (2)

Earth orbiters

nation of low

3. Process ionosphere-free linear combination of phase observations,

:g s - f12 ;S“;l - f22 f“;2

5 i =

é r;i f12 _ f22

:% = p,‘f + C((Str - 5ts) + C((ﬁr;if - ¢|sf)
A

i + )\nl ( 'f;l + TWI 'f;wl) + )‘n|w7§ ’
S 2

where A\ = ¢/(f1 + f2) = 11 cm.

4. Form satellite differences, introduce satellite phase biases,
wide-lane ambiguities IV, , and resolve narrow-lane ambiguities

s
r;l

b5}
[
i

Dani
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CODE observation-specific biases

Earth orbiters

nation of low

* CODE follows a so-called CC-OSB (common clocks and
observable-specific signal biases) approach

e OSB values are provided in Bias-SINEX V1.00

e Easy to use and applicable for all applications

xing for GPS-based precise orbit determi
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GRACE & Sentinel-3: Internal orbit
consistency
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GRACE & Sentinel-3: Internal orbit
consistency
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GRACE & Sentinel-3: Internal orbit
consistency
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GRACE RD-KN (float vs fixed), cross—track
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GRACE & Sentinel-3: Internal orbit
consistency
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GRACE & Sentinel-3: Internal orbit
consistency
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GRACE & Sentinel-3: Internal orbit
consistency
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GRACE: K-band validation
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Swarm: Internal orbit consistency
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Swarm: Internal orbit consistency
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