

Possible contribution of GNSS to the definition of the ITRF2020 scale based on the Galileo satellite PCOs

Part 1

Arturo Villiger

2. October 2019, Paris

Relation PCO and scale determination Why do we need calibrated antennas?

 PCO to Scale: [Zhu et al. 2002] 1m = -7.8 ppb 1 ppb = -0.13 m
 NIVERSITÄT

- PCO's: -4 m Δ PCO
- Stations: 20 cm offset

Antenna calibrations Situation IGS14.atx

GNSS	Frq	Sat.	Rob.		GNSS
GPS	L1 L2 L5				BDS
GLO	G1 G2 G3				QZSS
GAL	E1 E5a E5b E5 E6		L1 L2		unknown Rob. : rob

GNSS	Frq	Sat.	Rob.		
BDS	B1 B2 B3		L1 L2		
QZSS	L1 L2 L5				
unknow	/n <mark>es</mark>	stimated	d cali	brated	approx

Rob. : roboter receiver antenna calibrations

Satellite calibrations Galileo antenna pattern

- Disclosed by GSA for all Galileo satellites (IOV and FOC)
- Last eight satellites were disclosed in time for the repro 03
- Disclosed for QZSS (regional, not part of the repro)

Satellite	Estimated	Calibrations.	Differences
E101 (IOV)	95	83.7	11.3
E102 (IOV)	95	92.4	2.6
E103 (IOV)	95	82.4	12.6
E201 (FOC)	105	90.7	14.3
E202 (FOC)	105	86.4	18.6
E203 (FOC)	110	92.6	17.4
E204 (FOC)	110	75.3	34.7
Average	-	-	15.9

- Before release of the pattern Galileo relied as GPS and GLO on estimations
 [Steigenberger et al., 2016]
- Chamber calibrated PCOs differ by 15 cm from the estimates
- Scale issue between GAL and GPS/GLO!

Antenna calibrations ANTEX for reprocessing 03?

GNSS Sat. Rob. Frq Cha. L1GPS L_2 L5 G1 GLO G2 G3 E1 | 1 E5a 12 GAL E5b E5 E6

	GNSS	Frq	Sat.	Rob.	Cha.	
	BDS	B1 B2 B3		L1 L2		
	QZSS	L1 L2 L5				
	unknow	/n <mark>es</mark>	stimate	d cali	brated	approx.
Rob. : roboter receiver antenna calibrations						prations

UNIVERSITÄT BERN

Cha. : chamber receiver antenna calibrations

Receiver antenna calibrations

In 2018 an IGS call was made asking for chamber calibrations

- Calibrations from 8 institution (chamber calibrations from Bonn)
- University of Bonn participated contributing more than 250 individual calibrations
- First test campaign could be made showing the potential of using Galileo for the scale determination
- IGS AC Analysis Workshop 2019:
- Test using robot calibrations were presented
- Geo++ presented first multi-GNSS calibrations (robot) and delivered shorty after a set of > 35 antenna / radom calibrations

Receiver antenna calibrations

	Geo++ (robot)	BONN (chamber)
Individual	-	~250
Type-mean	37	35

- Which one shall be used?
 - IGS chose to use robot calibrations and extend it by chamber calibrations (>5 individual calibrations) at the IGS AC Workshop in Potsdam, 2019

Consistency of the multi-GNSS calibrations Average of station specific biases (2017-18)

 \boldsymbol{u}^{\flat}

ISTP: Inter-system translation bias: vector between GPS and another

GTRP: troposphere bias between GPS and another GNSS

		IGS14	Galileo Scale			
GNSS	Sol.	ISTP	ISTP	ISTP	$GTRP \leftarrow$	_
GLONASS	ROB	-1.22	-0.88	0.80	-0.4	
	CHA	-3.58	-0.73	1.29	-0.5	
GALILEO	ROB	6.31	0.58	0.43	0.11	
	CHA	7.40	1.08	0.21	0.44	

nadir dependent consistency

 \rightarrow Robot calibration consistent to ITRF 2014

8

→ When adjusting scale to either robot or chamber calibrations the consistency is bellow 1.5mm for GLONASS and Galileo → good

Coverage

Used stations in CODE's contribution

Number of stations (Robot calibrations) REF, GAL REF, GPS GPS GLONASS Galileo **Robot** calibrations 2017 2018 Number of stations (chamber calibratoins) 400 REF, GAL REF, GPS GPS 350 GLONASS Galileo 300 250 200 Chamber calibrations 150 100 50

0

2017

400

350

300 250 200

UNIVERSITÄT BERN

2018

Coverage

Used stations in CODE's contribution

Number of stations (Robot calibrations) 400 REF, GAL REF, GPS GPS 350 GLONASS Galileo 300 250 200 **Robot** calibrations 150 100 50 0 2017 2018

UNIVERSITÄT BERN

UNIVERSITÄT BERN

Scale determination Code solution: ITRF 2014 scale fixed

Scale determination Code solution: Galileo PCO fixed

UNIVERSITÄT BERN

12

Scale determination CODE solutions only!

U

	Solution	\mathbf{scale}	$\operatorname{amplitude}$	phase	e RMS					
		[ppb]	[ppb]	[degree	[ppb]					
8	CHA, GAL fixed	1.03	0.28	329	0.12	_	-			
01	CHA, GPS fixed	-0.62	0.29	338	0.11					
-2	CHA, GLO fixed	-1.02	0.30	323	0.11					
11	ROB, GAL fixed	1.51	0.32	323	0.12		Repro03			
20	ROB, GPS fixed	0.26	0.29	328	0.08		•			
	ROB, GLO fixed	0.23	0.33	31'	0.10					
0	IVS	0.68	0.28	24	5	[Altamimi et al. 2016]				
01	ILRS	-0.68	0.11	258	3			6]		
5	IDS		0.06	0.06 204		J				
					ROB			CHA		
		Fixed	GPS	GLO	GAL	GPS	GLO	GAL		
Corresponding system-wise			GPS	-	-3.5	22.5	-	-6.1	25.8	
Z-PCO correction		GLO	5.4	-	23.1	4.0	-	31.6		
		GAL	-16.2	-15.3	-	-22.1	-25.8	-		

Final ANTEX file for Repro 03

^b UNIVERSITÄT BERN

Changes w.r.t. IGS14.atx:

- time-dependant GLONASS PCOs (in x and y)
- Time-dependant z-PCOs (jumps > 10cm)
- Update of the most recent GLONASS satellites (z-PCO)
- GPS and GLONASS z-component changed to fit chamber calibrated Galileo antenna pattern (~ -16cm)
- GPS Block III also (manufacturer PCOs, no PV)
- multi-GNSS receiver calibrations (mainly from Geo++)
 - update of several receiver antennas

Satellite availability

Used ANTEX for test repro (2017-2018)

Changes w.r.t. IGS14.atx:

- time-dependent GLONASS PCOs (in x and y)
- multi-GNSS receiver calibrations (mainly from Geo++)

 \rightarrow IGS AC Workshop: two year test campaign (2017-2018) to evaluate the potential of a GNSS scale and estimate Galileo-scale PCO's for GPS and GLO

