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Introduction

Gravity field models may be derived from kinematic orbit positions
of Low Earth Orbiting (LEO) satellites equipped with onboard GPS
receivers. An accurate description of the stochastic behaviour of the
kinematic positions plays a key role to calculate high quality gravity
field solutions. In the Celestial Mechanics Approach (Beutler et al.,,
2010) kinematic positions are used as pseudo-observations to estimate
orbit parameters and gravity field coefficients simultaneously. So far, a
simplified stochastic model based on epoch-wise covariance information,
which may be efficiently derived in the kinematic point positioning
process, has been applied.

We extend this model by using the fully populated covariance ma-
trix (see Jaggi et al., 2011), covering correlations over 50 minutes. As this
purely mathematical error propagation cannot describe noise character-
istics introduced by the original observations, we sophisticate our model
by deriving empirical covariances from the residuals of an orbit fit of the
kinematic positions based on a priori force field. In this poster we use a
fixed a priori force field.

We process GRACE data from April 2007 to derive gravity field so-
lutions up to degree and order 70. Two different orbit parametrisations
are adopted, with EGM2008 (Pavlis et al., 2012) serving as a priori gravity
field up to degree and order 160: A purely dynamical orbit (six Keplerian
elements and additional accelerometer calibration parameters) and a
reduced-dynamic orbit with additional constrained piecewise constant
accelerations set up within intervals of 15 minutes. The resulting gravity
fields are solved on a monthly basis using daily orbital arcs.

type of covariance

mathematical (epoch-wise)
mathematical (full over 50 min)
empirical (full over 50 min)

The solutions based on the epoch-wise covariance information for
the reduced-dynamic and the dynamic orbit are shown in Fig. 1. The
gravity field solution based on the dynamic orbit parametrisation
is degraded because of a deficient force model. The gravity field
solution based on the reduced-dynamic parametrisation (red) is of
good quality and represents the classical parametrisation used so far
in the context of the Celestial Mechanics Approach. In both cases
the formal errors (dashed lines) of the solution do not reflect the
true accuracy assessed by the differences to the (superior) GOCOO05s
(Mayer-Gtirr et al., 2015) gravity field model (solid line). Hence, the
stochastic description of the pseudo-observations needs to be expanded.
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Figure 1: Monthly GRACE GPS-only gravity field solution based on a reduced-dynamic
orbit (red) with constrained piecewise constant accelerations set up every 15 minutes and a
dynamic orbit (blue). The solid lines depict the degree variance differences to GOCOO05s, the
dashed lines denote the formal errors from the least squares adjustment.
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Stochastic noise modelling of kinematic orbit
positions in the Celestial Mechanics Approach

Mathematical error propagation

We derive the covariance matrix Cy from the inverse normal equation
matrix, which is the result of a formal mathematical error propagation
from the phase observations to the unknown kinematic positions (Eq. 1).

Cr:. = RCyR ', R =(A"PA) 'A'P (1)
C;; denotes the covariance matrix of the original phase observations.
White noise is generally assumed for C;;. The propagation matrix R stems
from the kinematic point positioning with A being the first design-matrix
and P the weight matrix derived from Cy;.

The GPS carrier phase ambiguities are the only parameters in A con-
necting different epochs when using GPS phase data. Consequently,
deficiencies in the modelling of the GPS phase data may be propagated
through the ambiguities over several epochs, which is also reflected by
Cpri. Since Cyj only depends on the observation scenario but not on the
actual observations, any degradation of positions due to GPS data quality
issues (including GPS orbits and clocks) is not reflected in this type of
covariance information.

Covariance function for GRACE-A, 2007, day 116
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Figure 2: Covariance function over 50 minutes for kinematic positions (first 50 minutes of
day 116, 2007). Only the covariances between the same coordinate over time are shown. The
jumps occur due to the set up of new ambiguities (changes in the observed constellation).

Weighting the kinematic positions according to Cyg, from Eq. (1)
leads to more realistic formal errors in the gravity field recovery process
(Fig. 3). Orbit residuals become larger because long-period variations
of the pseudo-observations are no longer (erroneously) fitted by the
parameters of the orbit model but (correctly) interpreted as a consequence
of the ambiguity-induced correlations in time (Jdaggi et al., 2011). The
very low degrees still reveal deficiencies in the stochastic modelling.

Mathematical covariances
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Figure 3: Monthly GRACE GPS-only gravity field solution. Covariances considering correla-
tions over 50 minutes from the purely mathematical error propagation in the determination
of the kinematic positions are used to weight the kinematic positions.

Empirical covariances

The residuals of an orbit fit w.r.t. to the kinematic positions reflect all
model (functional and stochastic model) and data deficiencies. Conse-
quently, deriving the covariances from the residuals leads to a stochastic
description of the entire physical system. The covariance function for a
certain time interval At¢; is defined as the auto-correlation between the
respective residuals e (Eq. 2).

cov(Aty,) = % > e(ti)e(t; + Aty) (2)
1=0

As we do not want to model short term variations within an arc, we use
the residuals of a whole month to derive a mean covariance function.
For a better comparison with the mathematical error propagation, 50
minutes of correlations are taken into account, however, depending on the
parametrisation it may take much longer until the correlation vanishes.
Fig. 4 depicts the empirical covariance function for the reduced-dynamic
parametrisation. When plotting the covariance function in the local
orbital frame (not shown), the largest correlations occur in the radial
direction, while the other directions play a minor role.

Covariance function for GRACE-A, 2007-04
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Figure 4: Empirical covariance function derived from reduced-dynamic orbit residuals over
one month in for a period of 50 minutes.

Using the empirical covariances to weight the kinematic positions
in the gravity field recovery process, one can find formal errors
much closer to the degree variance differences. As the use of em-
pirical covariances takes only correlations in the residuals into
account, their shape is highly dependent on the orbit parametri-
sation. Using mathematical covariances in addition to empiri-
cal ones does not significantly influence the results (not shown).

Empirical covariances
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Figure 5: Monthly GRACE GPS-only gravity field solution. Empirical covariances based
on the observation residuals are introduced in the gravity field determination process. These
covariances are determined as a mean function over one month and include correlations over
50 minutes.
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Undifferenced ambiguity fixed positions

Introducing unditferenced ambiguity fixed kinematic positions (Arnold
et al., 2019) potentially helps the improve to gravity field determination
process as indicated by the performance of the K-band validation (Fig. 6).
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Figure 6: K-band validation for one month of reduced-dynamic orbit fits of GRACE kine-

matic positions using epoch-wise covariances.

Due to the ambiguity fixing the number of ambiguity parameters is
significantly reduced, only the unresolved ambiguities are remaining
in the system. This implies that the kinematic positions are almost
uncorrelated in time (compare Fig. 7 below to Fig. 2).
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Figure 7: Covariance function over 50 minutes for undifferenced ambiguity fixed kinematic
positions (first 50 minutes of day 116, 2007).

When using this kind of covariance information for gravity field re-
covery, the solution is at the level of the gravity field solutions shown in
Fig. 1. The ambiguity fixed positions do not outperform a float solution
when calculating a gravity field solution.

Conclusions

Kinematic positions, which may be used as pseudo-observations for grav-
ity field recovery, are correlated in time due to the ambiguities in the orig-
inal GPS phase observations. Not considering these correlations degrades
a gravity field solution. Taking these correlations into account can be
achieved either by the covariance information of the kinematic positions
over longer time spans or by empirical covariances derived from residuals
of an orbit fit w.r.t. to the kinematic positions.
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