An inter-agency comparison of non-gravitational force modeling for Sentinel-3A

D. Arnold ¹ V. Girardin ¹ A. Couhert ² F. Mercier ² H. Peter ³ S. Hackel ⁴ O. Montenbruck ⁴ A. Jäggi ¹ J. Fernández Sánchez 5

> ¹Astronomical Institute, University of Bern, Switzerland ²Centre National d'Etudes Spatiales, Toulouse, France ³ PosiTim UG, Seeheim-Jugenheim, Germany ⁴ German Space Operations Center, Wessling, Germany ⁵GMV AD, Tres Cantos, Spain

> > COSPAR Scientific Assembly 2018 Pasadena, USA July 16, 2018

Introduction - Sentinel-3

Sentinel-3

• is an ESA Earth observation mission, part of the Copernicus **Program**

Introduction – Sentinel-3

- is an ESA Earth observation mission, part of the Copernicus **Program**
- currently consists of two satellites, Sentinel-3A (launched on February 16, 2016) and Sentinel-3B (launched on April 25, 2018)

Introduction – Sentinel-3

- is an ESA Earth observation mission, part of the Copernicus **Program**
- currently consists of two satellites, Sentinel-3A (launched on February 16, 2016) and Sentinel-3B (launched on April 25, 2018)
- satellites are equipped with SAR altimeters as main topographic instruments for accurate measurements of sea surface topography

Introduction - Sentinel-3

- is an ESA Earth observation mission, part of the Copernicus **Program**
- currently consists of two satellites, Sentinel-3A (launched on February 16, 2016) and Sentinel-3B (launched on April 25, 2018)
- satellites are equipped with SAR altimeters as main topographic instruments for accurate measurements of sea surface topography
- requires precise and accurate orbit information (requirement: 2-3 cm RMS in radial direction)

Introduction – Sentinel-3

- is an ESA Earth observation mission, part of the Copernicus **Program**
- currently consists of two satellites, Sentinel-3A (launched on February 16, 2016) and Sentinel-3B (launched on April 25, 2018)
- satellites are equipped with SAR altimeters as main topographic instruments for accurate measurements of sea surface topography
- requires precise and accurate orbit information (requirement: 2-3 cm RMS in radial direction)
- satellites are equipped with GPS and DORIS receivers and a Laser retro-reflector for Precise Orbit Determination (POD)

Introduction - POD QWG

The Copernicus POD Quality Working Group (QWG)

monitors performance and accuracy of orbital products

Introduction - POD QWG

The Copernicus POD Quality Working Group (QWG)

- monitors performance and accuracy of orbital products
- consists of ∼10 different agencies

Introduction - POD QWG

The Copernicus POD Quality Working Group (QWG)

- monitors performance and accuracy of orbital products
- consists of ~10 different agencies
- provides orbit solutions obtained with different POD software packages for regular intercomparison

 Sophisticated modelling of non-gravitational forces desired for Sentinel-3 to avoid degradation of orbit solutions due to (too many or too loosely constrained) empirical parameters.

- Sophisticated modelling of non-gravitational forces desired for Sentinel-3 to avoid degradation of orbit solutions due to (too many or too loosely constrained) empirical parameters.
- At Sentinel-3 altitude (\sim 800 km) a change of 10 nm/s² in radial acceleration corresponds to a radial orbit shift of 3 mm.

- Sophisticated modelling of non-gravitational forces desired for Sentinel-3 to avoid degradation of orbit solutions due to (too many or too loosely constrained) empirical parameters.
- At Sentinel-3 altitude (\sim 800 km) a change of 10 nm/s² in radial acceleration corresponds to a radial orbit shift of 3 mm.
- This is mitigated depending on the degree of empirical orbit parametrization

- Sophisticated modelling of non-gravitational forces desired for Sentinel-3 to avoid degradation of orbit solutions due to (too many or too loosely constrained) empirical parameters.
- At Sentinel-3 altitude (\sim 800 km) a change of 10 nm/s² in radial acceleration corresponds to a radial orbit shift of 3 mm.
- This is mitigated depending on the degree of empirical orbit parametrization

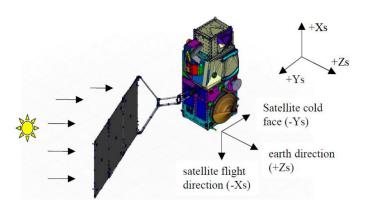
Goal of study: Compare modeled non-gravitational accelerations for Sentinel-3A (S3A) from different members of the POD QWG. The following groups have participated so far:

Agency	No	POD Software
Astronomical Institute, Univ. of Bern	AIUB	Bernese GNSS S/W
Centre National d'Etudes Spatiales	CNES	Zoom
Copernicus POD Service	CPOD	NAPEOS
German Space Operations Center	DLR	GHOST
EUMETSAT	EUM	NAPEOS
Technical University of Munich	TUM	Bernese GNSS S/W

- Each member used their POD software to compute the following non-gravitational accelerations (w/o estimating scaling factors) along a fixed S3A orbit for the three days 085, 170, and 250 of 2016 in the inertial and satellite-fixed coordinate frames:
 - Direct Solar Radiation Pressure (SRP)
 - Emitted and reflected Planetary Radiation Pressure (PRP)
 - Aerodynamic acceleration

- Each member used their POD software to compute the following non-gravitational accelerations (w/o estimating scaling factors) along a fixed S3A orbit for the three days 085, 170, and 250 of 2016 in the inertial and satellite-fixed coordinate frames:
 - Direct Solar Radiation Pressure (SRP)
 - Emitted and reflected Planetary Radiation Pressure (PRP)
 - Aerodynamic acceleration
- Transform delivered accelerations into the radial (R), tangential (T), normal (N) orbit frame realized by one reduced-dynamic orbit

- Each member used their POD software to compute the following non-gravitational accelerations (w/o estimating scaling factors) along a fixed S3A orbit for the three days 085, 170, and 250 of 2016 in the inertial and satellite-fixed coordinate frames:
 - Direct Solar Radiation Pressure (SRP)
 - Emitted and reflected Planetary Radiation Pressure (PRP)
 - Aerodynamic acceleration
- Transform delivered accelerations into the radial (R), tangential (T), normal (N) orbit frame realized by one reduced-dynamic orbit
- Fit accelerations with linear splines to overcome different and non-uniform sampling of accelerations


- Each member used their POD software to compute the following non-gravitational accelerations (w/o estimating scaling factors) along a fixed S3A orbit for the three days 085, 170, and 250 of 2016 in the inertial and satellite-fixed coordinate frames:
 - Direct Solar Radiation Pressure (SRP)
 - Emitted and reflected Planetary Radiation Pressure (PRP)
 - Aerodynamic acceleration
- Transform delivered accelerations into the radial (R), tangential (T), normal (N) orbit frame realized by one reduced-dynamic orbit
- Fit accelerations with linear splines to overcome different and non-uniform sampling of accelerations
- Compare interpolated accelerations at a sampling of 10 s

 8-plate macro model, two plates (front and back of solar panel) are movable

8-plate macro model, two plates (front and back of solar panel) are movable

- 8-plate macro model, two plates (front and back of solar panel) are movable
- Geometry and optical properties: s3a_macro_model_v2

- 8-plate macro model, two plates (front and back of solar panel) are movable
- Geometry and optical properties: s3a_macro_model_v2
- CNES and DLR (and TUM) model instantaneous thermal re-emission of absorbed radiation for Mylar-coated surfaces (satellite bus)

- 8-plate macro model, two plates (front and back of solar panel) are movable
- Geometry and optical properties: s3a_macro_model_v2
- CNES and DLR (and TUM) model instantaneous thermal re-emission of absorbed radiation for Mylar-coated surfaces (satellite bus)
- Solar panel motion:
 - → DLR assumes front panel normal vector into satellite-Sun direction at all times
 - \rightarrow Other groups assume +y unit vector (rotation axis), panel normal vector and satellite-Sun vector in one plane (optimal orientation)

- 8-plate macro model, two plates (front and back of solar panel) are movable
- Geometry and optical properties: s3a_macro_model_v2
- CNES and DLR (and TUM) model instantaneous thermal re-emission of absorbed radiation for Mylar-coated surfaces (satellite bus)
- Solar panel motion:
 - → DLR assumes front panel normal vector into satellite-Sun direction at all times
 - \rightarrow Other groups assume +y unit vector (rotation axis), panel normal vector and satellite-Sun vector in one plane (optimal orientation)
- No self-shadowing

- 8-plate macro model, two plates (front and back of solar panel) are movable
- Geometry and optical properties: s3a_macro_model_v2
- CNES and DLR (and TUM) model instantaneous thermal re-emission of absorbed radiation for Mylar-coated surfaces (satellite bus)
- Solar panel motion:
 - → DLR assumes front panel normal vector into satellite-Sun direction at all times
 - \rightarrow Other groups assume +y unit vector (rotation axis), panel normal vector and satellite-Sun vector in one plane (optimal orientation)
- No self-shadowing
- Satellite mass according to mass history information

- 8-plate macro model, two plates (front and back of solar panel) are movable
- Geometry and optical properties: s3a_macro_model_v2
- CNES and DLR (and TUM) model instantaneous thermal re-emission of absorbed radiation for Mylar-coated surfaces (satellite bus)
- Solar panel motion:
 - → DLR assumes front panel normal vector into satellite-Sun direction at all times
 - \rightarrow Other groups assume +y unit vector (rotation axis), panel normal vector and satellite-Sun vector in one plane (optimal orientation)
- No self-shadowing
- Satellite mass according to mass history information
- Attitude: CNES used theoretical attitude law, other groups quaternions

Compare non-gravitational accelerations among different agencies in the order of size (3D amplitudes for S3A):

Compare non-gravitational accelerations among different agencies in the order of size (3D amplitudes for S3A):

Direct solar radiation pressure

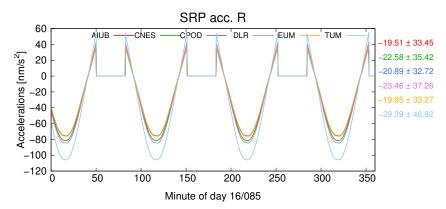
 $\sim 100 \text{ nm/s}^2$

Compare non-gravitational accelerations among different agencies in the order of size (3D amplitudes for S3A):

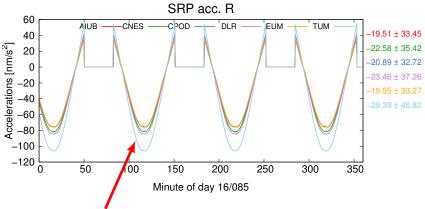
> Direct solar radiation pressure $\sim 100 \text{ nm/s}^2$ Planetary radiation pressure (visual + IR) $\sim 30 \text{ nm/s}^2$

Compare non-gravitational accelerations among different agencies in the order of size (3D amplitudes for S3A):

> Direct solar radiation pressure $\sim 100 \text{ nm/s}^2$ Planetary radiation pressure (visual + IR) $\sim 30 \text{ nm/s}^2$ Aerodynamic accelerations $\sim 5~{\rm nm/s^2}$



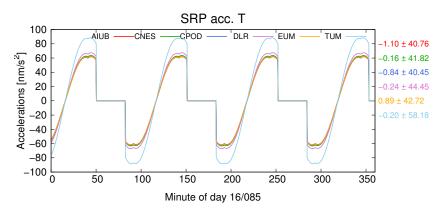
Solar radiation pressure modeling


	Earth model	Shadow model	Atm. refr.	Atm. abs.
AIUB	Oblated	Conical	No	No
CNES	Oblated	Conical	Yes	No
CPOD	Spherical	Conical	No	Yes
DLR	Spherical	Conical	No	No
EUM	Spherical	Conical	No	No
TUM	Spherical	Cylindrical	No	No

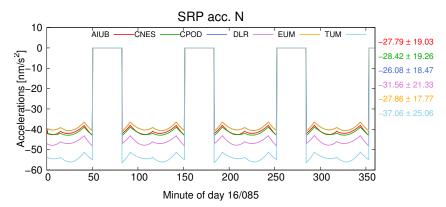
Day 16/085, radial direction (status before May 2018):


Day 16/085, radial direction (status before May 2018):

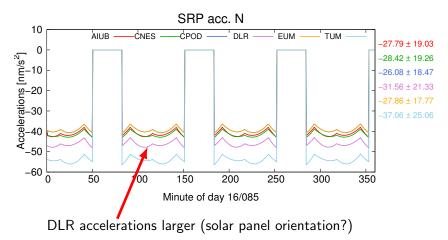
TUM accelerations show significantly larger amplitudes

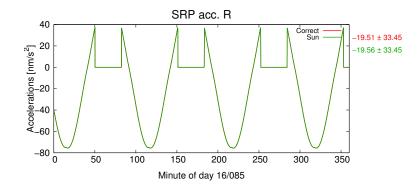

Day 16/085, radial direction (status before May 2018):

CNES and DLR show larger amplitudes (inst. re-emiss.?)



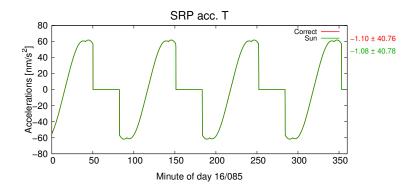
Day 16/085, along-track direction:


Day 16/085, cross-track direction:

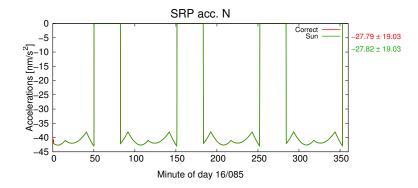


Solar radiation pressure

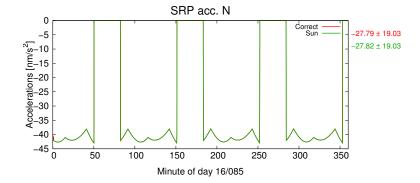
Day 16/085, cross-track direction:



Impact of solar panel oriantation. "Correct": Optimal possible solar panel orientation. "Sun": Solar panel perfectly perpendicular to the Sun direction.



Impact of solar panel oriantation. "Correct": Optimal possible solar panel orientation. "Sun": Solar panel perfectly perpendicular to the Sun direction.



Impact of solar panel oriantation. "Correct": Optimal possible solar panel orientation. "Sun": Solar panel perfectly perpendicular to the Sun direction.

Impact of solar panel oriantation. "Correct": Optimal possible solar panel orientation. "Sun": Solar panel perfectly perpendicular to the Sun direction.

→ cannot explain the differences of the DLR SRP accelerations

Acceleration of a flat area element A due to absorbed (α) , diffusely reflected (δ) and specularly reflected (ρ) radiation:

$$\vec{a}_{\mathsf{RP}} = -\frac{\Phi}{c \cdot m} A \cos \theta \cdot \left[(\alpha + \delta) \vec{e}_{\mathsf{Sun}} + \frac{2}{3} \delta \vec{n} + 2\rho \cos \theta \vec{n} \right] , \quad (1)$$

where

Solar flux Φ

Speed of light

Satellite mass m

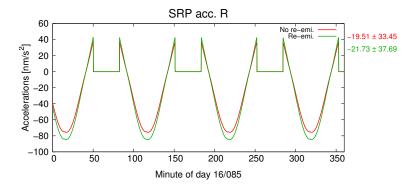
 $ec{e}_{\mathsf{Sun}}$ Unit vector satellite-Sun

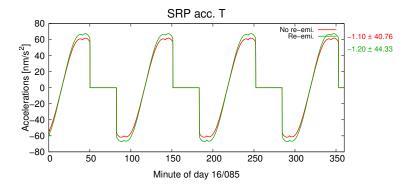
 \vec{n} Area normal vector

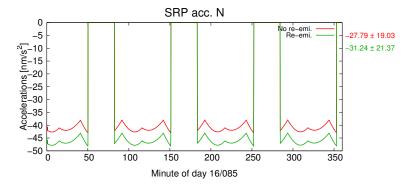
Angle between \vec{e}_{Sun} and \vec{n} ,

and $\alpha + \delta + \rho = 1$.

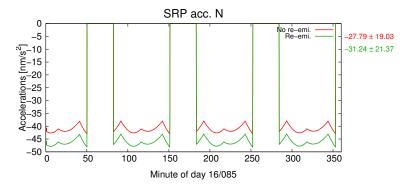
If the absorbed radiation is instantaneously re-radiated according to Lambert's law, the following contribution needs to be added:


$$\vec{a}_{\mathsf{RE}} = -\frac{\Phi}{c \cdot m} A \cos \theta \cdot \frac{2}{3} \alpha \vec{n} \,, \tag{2}$$

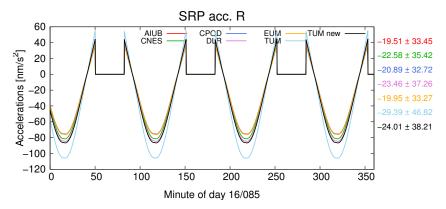

and the total radiation pressure acceleration amounts to


$$\vec{a}_{\mathsf{RP}} = -\frac{\Phi}{c \cdot m} A \cos \theta \cdot \left[(\alpha + \delta) \left(\vec{e}_{\mathsf{Sun}} + \frac{2}{3} \delta \vec{n} \right) + 2\rho \cos \theta \vec{n} \right] \,. \tag{3}$$

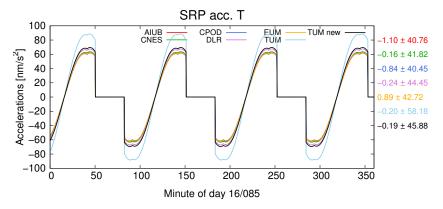
$$[(\alpha, \delta, \rho) \to (0, \alpha + \delta, \rho)]$$



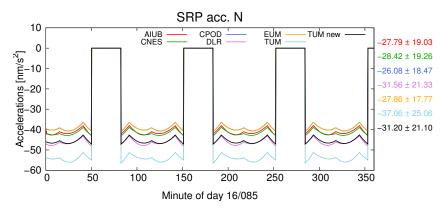
Impact of instantaneous re-emission:



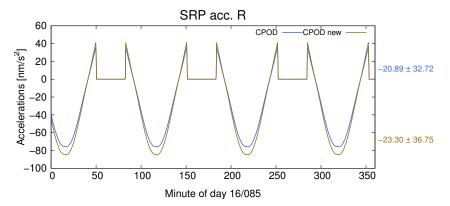
→ Modeling of instantaneous re-emission is very likely one of the main reasons for the larger DLR accelerations in normal direction. Surprisingly, CNES (which also models inst. re-emission) does not show larger cross-track accelerations.



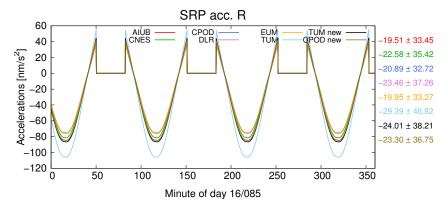
 Based on these comparisons, TUM found out that they had modeled instantaneous re-emission also for the solar panels.


- Based on these comparisons, TUM found out that they had modeled instantaneous re-emission also for the solar panels.
- Newly provided accelerations now show smaller amplitudes:

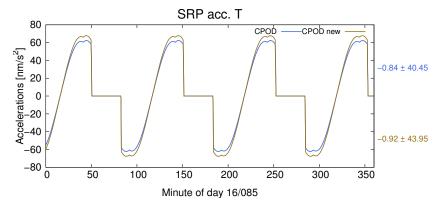
- Based on these comparisons, TUM found out that they had modeled instantaneous re-emission also for the solar panels.
- Newly provided accelerations now show smaller amplitudes:

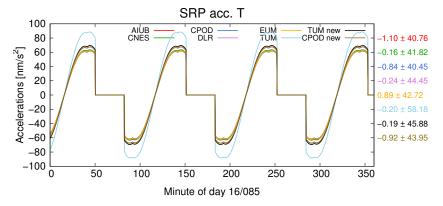


- Based on these comparisons, TUM found out that they had modeled instantaneous re-emission also for the solar panels.
- Newly provided accelerations now show smaller amplitudes:

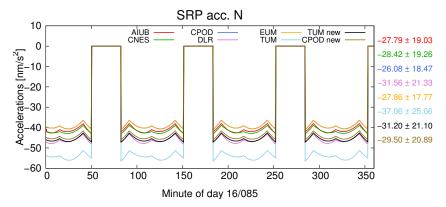


 CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission


- CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission
- Newly provided SRP accelerations:

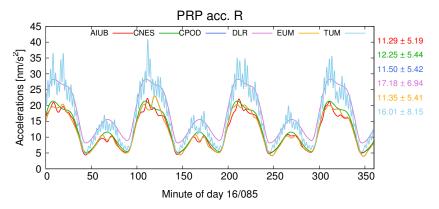

- CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission
- Newly provided SRP accelerations:

- CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission
- Newly provided SRP accelerations:


- CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission
- Newly provided SRP accelerations:

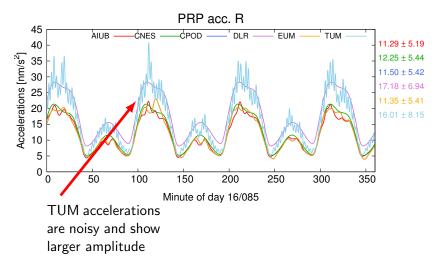
- CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission
- Newly provided SRP accelerations:

- CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission
- Newly provided SRP accelerations:

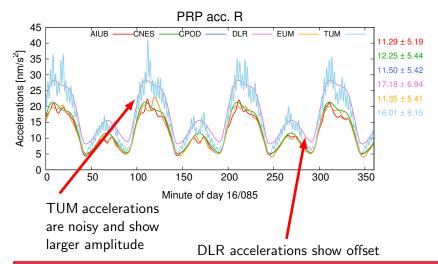

Planetary radiation pressure modeling

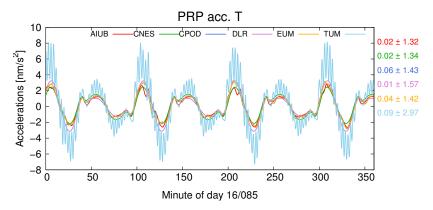
	Earth model	Radiation model
AIUB	Grid $2.5^{\circ} \times 2.5^{\circ}$	CERES
CNES	Ring segments	Knocke et al., 1988
CPOD	Grid $5^{\circ} \times 5^{\circ}$	CERES
DLR	Ring segments	CERES, approx.
EUM	Grid $5^{\circ} \times 5^{\circ}$	CERES
TUM	Grid $10^{\circ} \times 10^{\circ}$	CERES

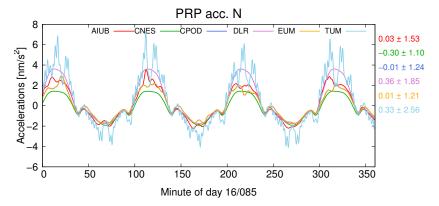
- "Ring segments": concentric rings with sectors around satellite foot point (3 rings with 4, 8, and 12 sectors for DLR and 15 rings with 15 sectors for CNES).
- "CERES, approx.": a 2nd order polynomial in latitude and a periodic function in time is used to approximate the CERES grid values.

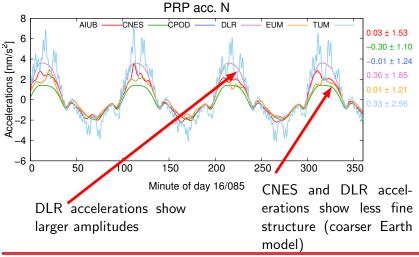


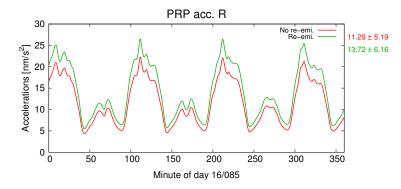
Day 16/085, radial direction (status before May 2018):

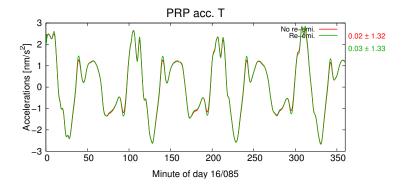


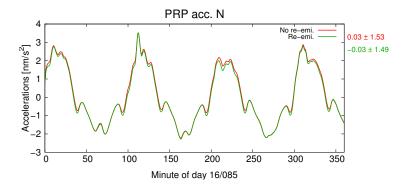

Day 16/085, radial direction (status before May 2018):


Day 16/085, radial direction (status before May 2018):

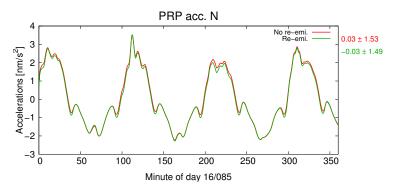

Day 16/085, along-track direction:




Day 16/085, cross-track direction:

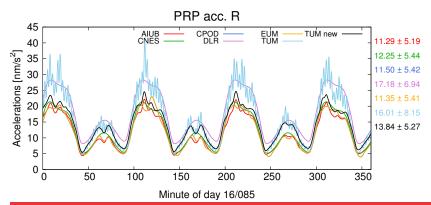


Day 16/085, cross-track direction:



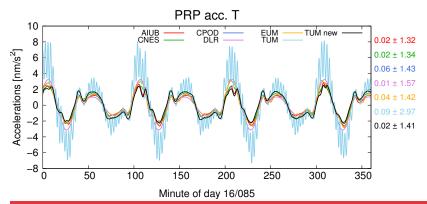
Impact of instantaneous re-emission:

→ Modeling of instantaneous re-emission is very likely one of the main reasons for the offset in DLR accelerations in radial direction. Surprisingly, CNES (which also models inst. re-emission) does not show the same acceleration offset in radial direction.

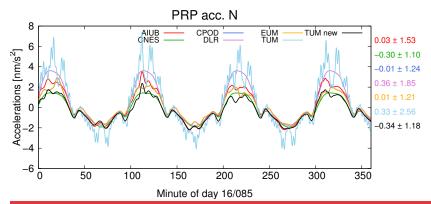


PRP: Updates

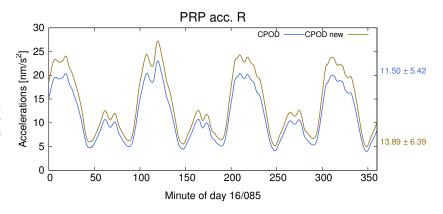
 TUM is using a grid to model Earth surface, but only one mean direction for PRP. Employed grid resolution of 10 deg seems insufficient.

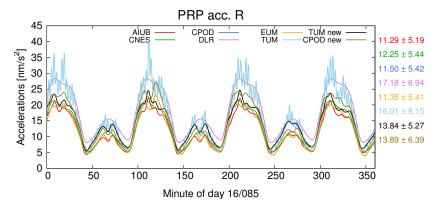

PRP: Updates

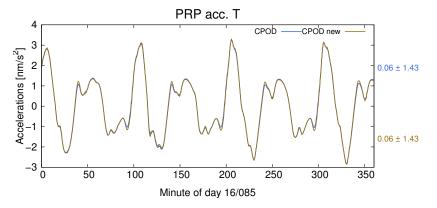
- TUM is using a grid to model Earth surface, but only one mean direction for PRP. Employed grid resolution of 10 deg seems insufficient.
- Newly provided accelerations with 2.5 deg grid are not noisy anymore (+ smaller R amplitude due to corr. inst. re-emission):

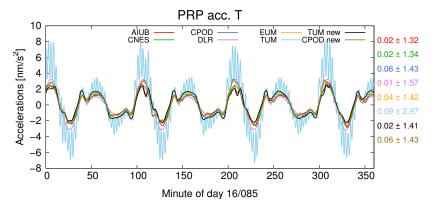


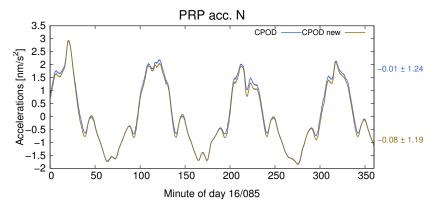
PRP: Updates

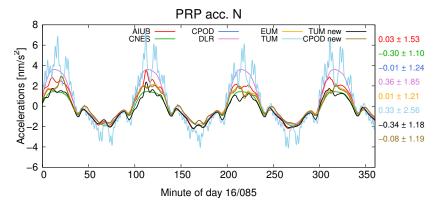

- TUM is using a grid to model Earth surface, but only one mean direction for PRP. Employed grid resolution of 10 deg seems insufficient.
- Newly provided accelerations with 2.5 deg grid are not noisy anymore (+ smaller R amplitude due to corr. inst. re-emission):


- TUM is using a grid to model Earth surface, but only one mean direction for PRP. Employed grid resolution of 10 deg seems insufficient.
- Newly provided accelerations with 2.5 deg grid are not noisy anymore (+ smaller R amplitude due to corr. inst. re-emission):


 CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission


- CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission
- Newly provided PRP accelerations:


- CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission
- Newly provided PRP accelerations:


- CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission
- Newly provided PRP accelerations:

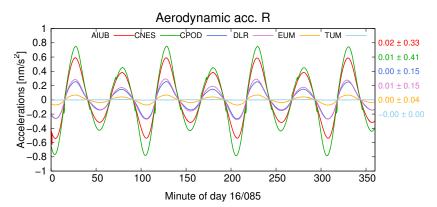
- CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission
- Newly provided PRP accelerations:

- CPOD recently updated their radiation pressure modeling to account for instantaneous re-emission
- Newly provided PRP accelerations:

	Density model	Horizontal wind model
AIUB	DTM2013	HWM14
CNES	MSIS-86	None
CPOD	MSISE-90	HWM93
DLR	NRLMSISE-00	None
EUM	MSISE-90	HWM93
TUM	MSISE-90	None

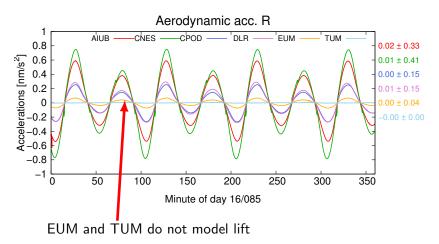
	Density model	Horizontal wind model
AIUB	DTM2013	HWM14
CNES	MSIS-86	None
CPOD	MSISE-90	HWM93
DLR	NRLMSISE-00	None
EUM	MSISE-90	HWM93
TUM	MSISE-90	None

 All groups except EUM and TUM model aerodynamic lift accelerations



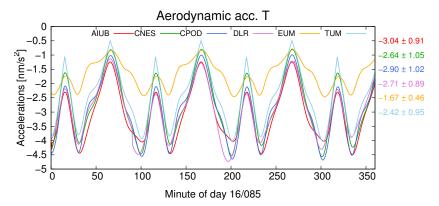
	Density model	Horizontal wind model
AIUB	DTM2013	HWM14
CNES	MSIS-86	None
CPOD	MSISE-90	HWM93
DLR	NRLMSISE-00	None
EUM	MSISE-90	HWM93
TUM	MSISE-90	None

- All groups except EUM and TUM model aerodynamic lift accelerations
- Aerodynamic accelerations offer largest potential for differences: many different atmospheric models, different proxies, many differences in modeling of gas-surface interaction, ...

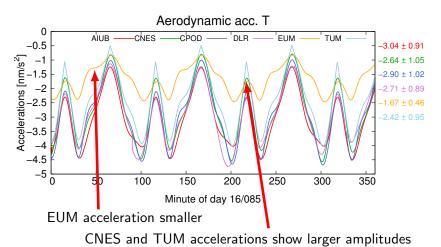


Day 16/085, radial direction:

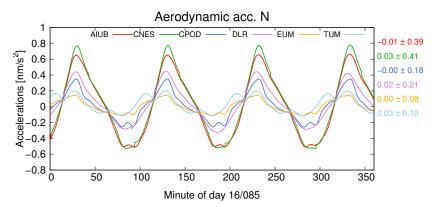



Day 16/085, radial direction:

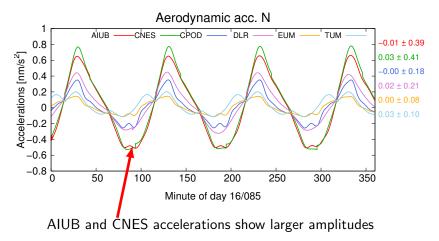
Day 16/085, radial direction:



Day 16/085, along-track direction (largest):



Day 16/085, along-track direction (largest):



Day 16/085, cross-track direction:

Day 16/085, cross-track direction:

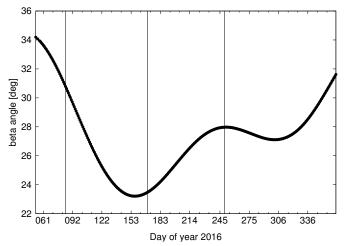
- Further tests needed to better disentangle impact of different density models/wind models
- Even if different groups use the same models, different results are likely (e.g., due to different usage of proxies)
 - → Option: Compare densities along an orbit
- For Sentinel-3 the aerodynamic accelerations are rather small.
 - → Option: Compare, e.g., for Swarm
- For comparison of different atmospheric models in LEO POD see presentation PSD.1-0008-18 Non-gravitational forces acting on spacecraft: impact of different atmospheric models on LEO orbits by V. Girardin, Monday, 16th July 2018, 12:40, R101

Conclusions

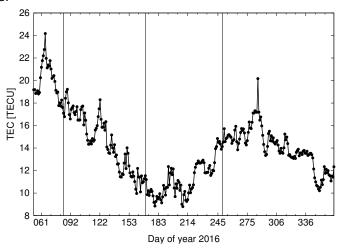
- Overall, the different agencies of the Copernicus POD QWG agree rather well on the modeled non-gravitational accelerations for Sentinel-3A
- SRP accelerations rather identical (at least up to scaling factor)
- Aerodynamic accelerations rather diverse, but so are the employed models
- Difference between the two employed solar panel orientations not critical
- Instantaneous re-emission explains part of the SRP and PRP differences
- TUM could revise and change their settings to better agree with the other groups

Outlook

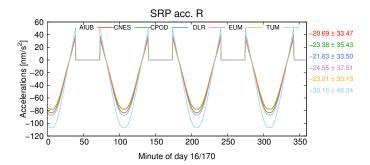
- Check impact of different radiation data and Earth modelings
- Check impact of different atmospheric models
- For further comparisons of aerodynamic accelerations:
 - Use as unified models as possible (density models, HWM)
 - Compare densities along an orbit
 - Maybe use another LEO with higher aerodynamic accelerations (e.g., Swarm)
- Thermal radiation?


Environment

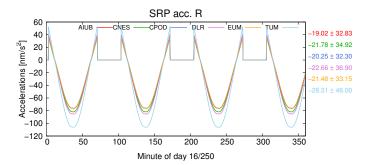
In 2016 the orbital altitude of S3A was around 800 km

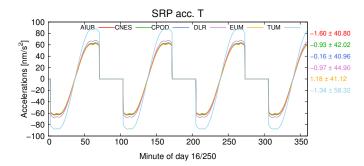

Environment

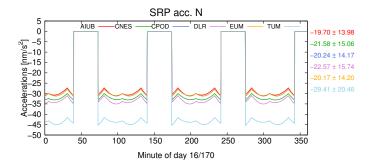
- In 2016 the orbital altitude of S3A was around 800 km
- Beta angle:

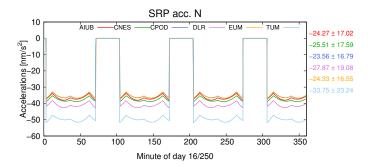


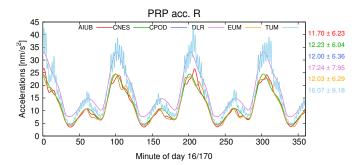
Environment

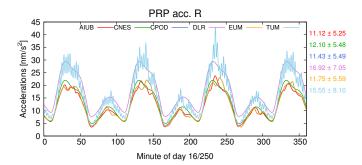

- In 2016 the orbital altitude of S3A was around 800 km
- TEC:

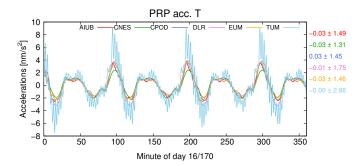




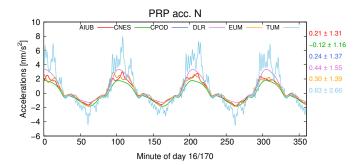




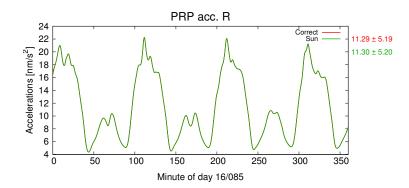


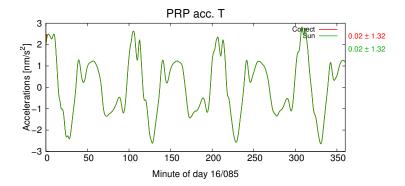




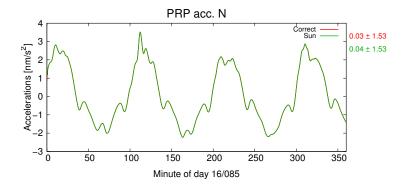




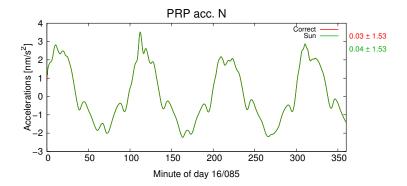




Impact of solar panel orientation. "Correct": Optimal possible solar panel orientation. "Sun": Solar panel perfectly perpendicular to the Sun direction.

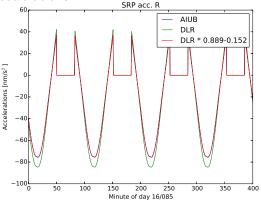


Impact of solar panel orientation. "Correct": Optimal possible solar panel orientation. "Sun": Solar panel perfectly perpendicular to the Sun direction.

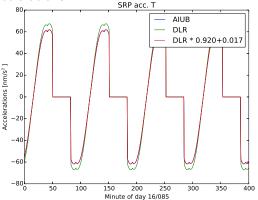


Impact of solar panel orientation. "Correct": Optimal possible solar panel orientation. "Sun": Solar panel perfectly perpendicular to the Sun direction.

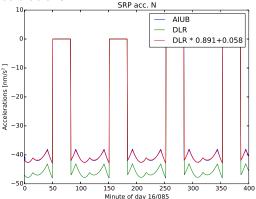
Impact of solar panel orientation. "Correct": Optimal possible solar panel orientation. "Sun": Solar panel perfectly perpendicular to the Sun direction.



Impact negligible (as for SRP)


Scaling factors

- If SRP accelerations differ only by a scaling factor (same for all components), they will not impact the POD if scaling factor is estimated
- E.g., estimate scaling factors and biases to fit accelerations to AIUB accelerations:


Scaling factors

- If SRP accelerations differ only by a scaling factor (same for all components), they will not impact the POD if scaling factor is estimated
- E.g., estimate scaling factors and biases to fit accelerations to AIUB accelerations:

Scaling factors

- If SRP accelerations differ only by a scaling factor (same for all components), they will not impact the POD if scaling factor is estimated
- E.g., estimate scaling factors and biases to fit accelerations to AIUB accelerations:

