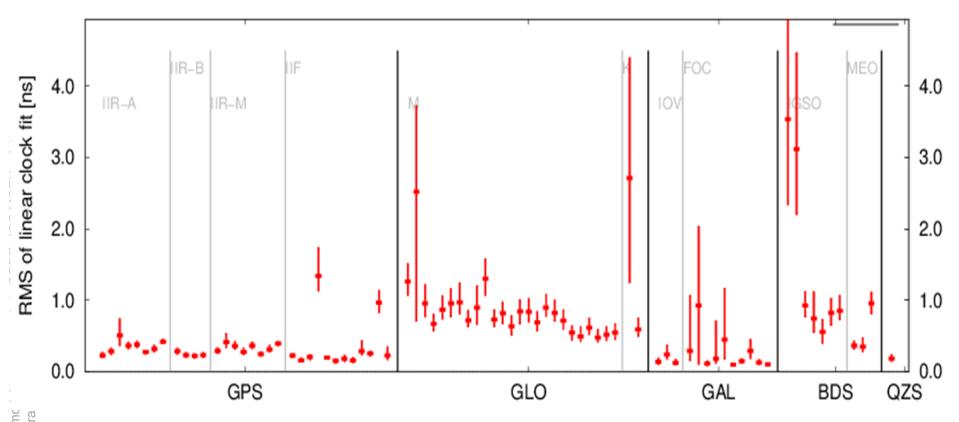
Latest improvements in CODE's IGS MGEX solution

L. Prange, R. Dach, G. Beutler, D. Sidorov, A. Villiger, S. Schaer, A. Jäggi

Astronomical Institute, University of Bern, Switzerland

IGS Workshop, 3-7 July 2017, Paris, France

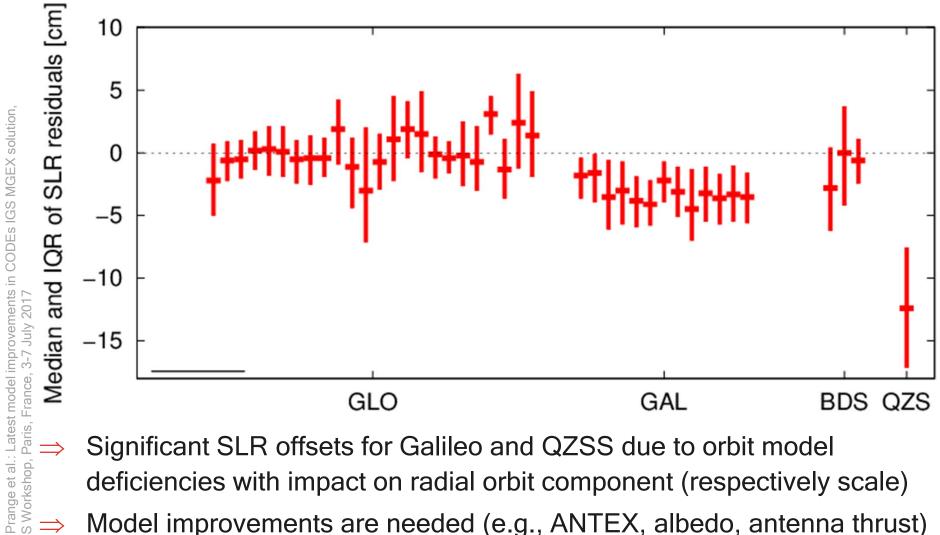
- Current status of the CODE MGEX solution
- Planned model changes
- Importance of satellite meta data
- Empirical SRP model for ON
- Summary and outlook


Focus of MGEX-related activity since last IGS WS

- Survey of preliminary state:
 - Publication in JoG (doi 10.1007/s00190-016-0968-8)
- Operations and related tasks:
 - Adaptation to long RINEX3 file names
 - Switch to default antenna model (Steigenberger et al., 2016)
 - Switch to IGS14

- Upgrade of operational status:
 - Full integration into CODE IGS routine (software, configuration, merge of data bases)
 - Reaction to MGEX status change at IGS WS 2016
 - Better coordination of parallel developments

COM clock validation 2016: daily linear fit (Median and IQR; satellites in eclipse or normal mode are not considered)


L. Prange et al.: Latest mc IGS Workshop, Paris, Fra Galileo PHM, QZS-1, most GPS IIR and IIF: excellent clocks (even suited for orbit validation)

Some GPS IIF, GLONASS, Galileo RAFS: worse (RMS: 0.5 ns or bigger)

BeiDou: mixed performance

COM orbit validation 2016: SLR residuals

(Median and IQR; satellites in eclipse or normal mode are not considered)

Significant SLR offsets for Galileo and QZSS due to orbit model deficiencies with impact on radial orbit component (respectively scale)

Model improvements are needed (e.g., ANTEX, albedo, antenna thrust)

Planned model changes

Improvements of orbit model planned in the near future:

Galileo: - Activation of albedo and antenna thrust

Activation of IOV attitude model for all Galileo SC

Activation of pulses (every 12h in R,S,W)

IOV Antenna model (=> impact analysis: Villiger @plenary #6)

QZSS: — Activation of albedo and antenna thrust ('guessed' box-wing model (own or external, e.g., Montenbruck et al. (2017))

Later: Activation of ON attitude and suited SRP model

BDS: - Later: Activation of ON attitude and suited SRP model

 Missing satellite meta data is a limiting factor for accuracy of estimated orbits and clocks

- → Publication of Galileo IOV satellite meta data by the GSA in Dec. 2016 is a step towards the right direction
 - Missing/unsure information: we can try to make a 'good guess' (like previously done, e.g., for GLONASS antenna thrust; is this tolerable?)

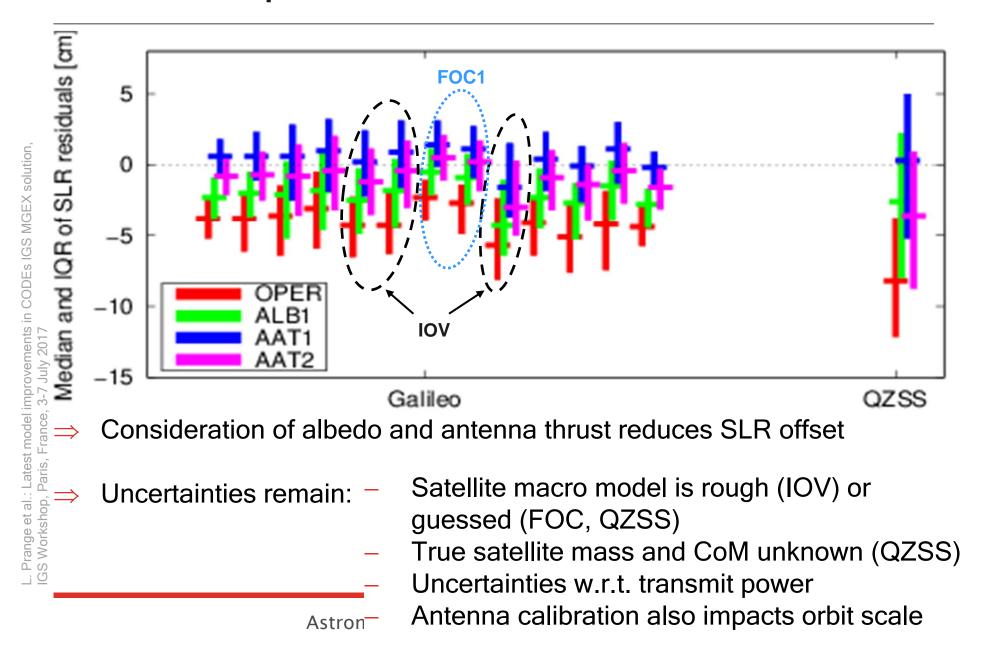
Available/assumed information:

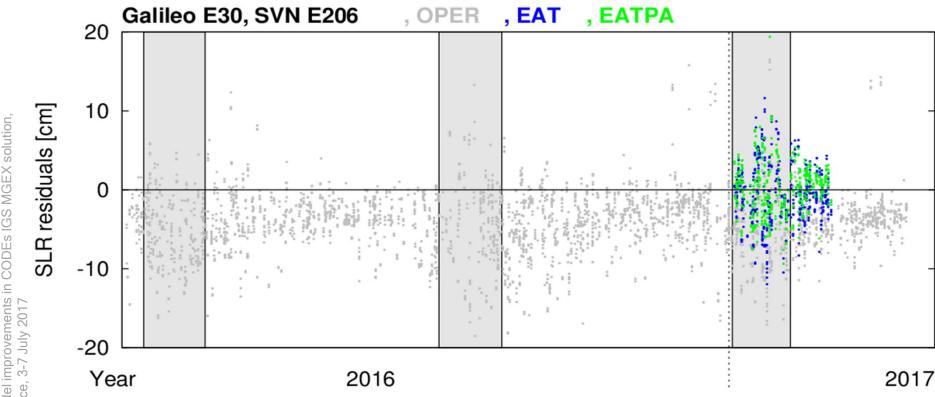
Galileo:

- Disclosed IOV meta data (satellite mass, size, and surface properties) => sufficient for simple box-wing model
- Disclosed IOV attitude model
- Assuming same models for FOC might not be correct, but better than nothing
- Measured antenna transmit power for IOV and FOC presented by Steigenberger et al. at EGU 2017

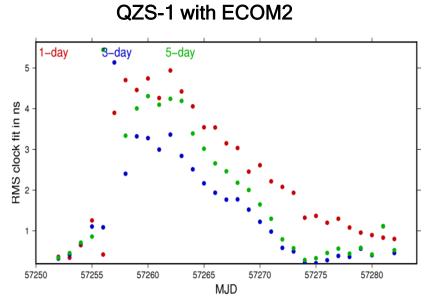
QZSS:

- Very coarse info about satellite size provided (e.g., on MGEX website); assumption on surface properties (e.g., similar to IOV) => rough guess on simple box-wing model
- Wide range of possible SC masses is provided on the IGS-MGEX website (1800 - 4100 kg)
- Transmission power provided by Kogure et al. in: Springer Handbook of Global Navigation Satellite Systems (2017)

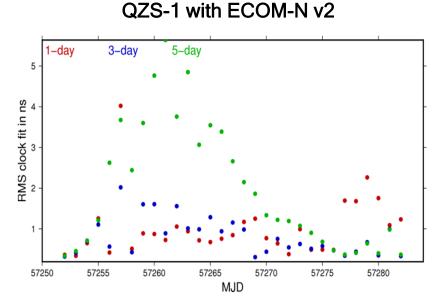



Test			Ga	lileo	QZSS			
Name	Al- bedo	Ant. Thr.	Atti- tude	Pulses	Median SLR [cm]	Albedo	Ant. Thr. (244 W)	Median SLR [cm]
OPER	-	-	-	_	-3.8	-	_	-7.8
ALB1	X	-	_	-	-2.0	m= 1800 kg	-	-2.6
AAT1	X	260 W	_	_	+0.6	m= 1800 kg	m= 1800 kg	+0.3
AAT2	X	130 W	_	_	-0.7	m= 3600 kg	m= 3600 kg	-3.7
EAT	X	200 W	X	_	0.0	m= 1950 kg	m= 1950 kg	-0.3
EATPA	X	200 W	X	R, S, W; 12h	+0.6	m= 1950 kg	m= 1950 kg	-0.3

Test			Ga	lileo	QZSS			
Name	Al- bedo	Ant. Thr.	Atti- tude	Pulses	Median SLR [cm]	Albedo	Ant. Thr. (244 W)	Median SLR [cm]
OPER	-	-	- act albe	- edo: +1.8 cm	-3.8	-	_	-7.8
ALB1	X	-	act arb	CGO. 11.0 CIII	-2.0	m= 1800 kg	_	-2.6
AAT1	X	260 W	_ lmpact	antenna thrus	+0.6	•	m= SC mass:	+0.3
AAT2	X	130 W	1	cm/100 W	0.7	2.2 cm/ 3600 kg	1000 kg 3600 kg	-3.7
EAT	X	200 W	×	_	0.0	m= 1950 kg	m= 1950 kg	-0.3
EATPA	X	200 W	X	R, S, W; 12h	+0.6	m= 1950 kg	m= 1950 kg	-0.3


IOV attitude model (OPER vs. EAT): minimal impact

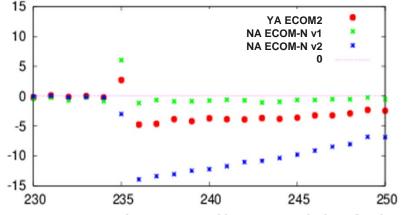
Pulses in R, S, W (EATPA): IQR drops $4.8 \rightarrow 3.8$ cm (expected future configuration)


Orbit errors remain increased during eclipses (why?)

Orbit normal mode (ON)

- Tests with QZS-1 and BDS POD
- Simulating and testing empirical SRP models using different decompositions and parameterizations (ECOM-N v...)

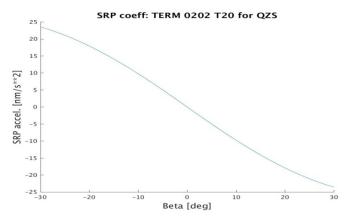
Classical ECOM SRP models are not suited for ON



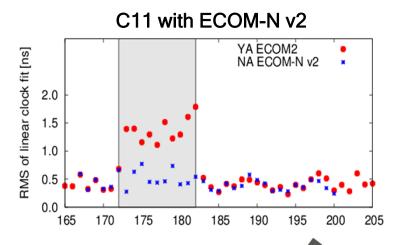
New SRP models: improvement for shorter arcs

Orbit normal mode (ON)

Size of some new SRP parameters is a function of the Beta angle



Estimated SRP coefficient of QZS-1


Prange et al.: Latest model improvements in CODEs IGS MGEX solution, S Workshop, Paris, France, 3-7 July 2017

QZS-1: consideration of Beta: improvement also for long arcs

Simulated SRP coefficient of QZS-1

BDS: simple (no Beta-dependency) SRP model sufficient

COM to-do list

- ✓ Implementation of Galileo, QZSS, BeiDou (except GEOs)
- Use of RINEX3 files from IGS and EPN now also with long file names; selection of observation types
- Improved SRP model for yaw-steering attitude (ECOM2, Arnold et al., 2015)
- Proper handling of observation biases; BIAS-SINEX
- ... Attitude laws for GPS, GLONASS, Galileo eclipses
- Tuning of ambiguity resolution for Galileo, BeiDou, QZSS
- Albedo radiation modelling for Galileo, QZSS, BeiDou
- ... Antenna thrust for (GLONASS), Galileo, QZSS, BeiDou
- Normal attitude and related SRP models for QZSS and BeiDou
- ANTEX (PCO+PCV) for Galileo, QZSS, BeiDou

COM to-do list

- ✓ Implementation of Galileo, QZSS, BeiDou (except GEOs)
- Use of RINEX3 files from IGS and EPN now also with long file names; selection of observation types
- Improved SRP model for yaw-steering attitude (ECOM2, Arnold et al., 2015)
- See clock- and bias-related presentations by Schaer (plenary #3) and Villiger (plenary #6)
- ... Attitude laws for GPS, GLONASS, Galileo eclipses
- Tesee bias-related presentation by Schaer (plenary #3)
- Albedo radiation modelling for Galileo, QZSS, BeiDou
- ... Antenna thrust for (GLONASS), Galileo, QZSS, BeiDou
 - ... Normal attitude and related SRP models for QZSS and BeiDou
- ... A See ANTEX-related presentation by Villiger (plenary #3)

Thank you for your attention!