Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Landestopografie swisstopo

• Laser down from November 2015 to 12. April 2016!

- Laser head had to be repaired by Thales (no replacement hardware available)
- April/May: energy ~4mJ (instead of 10mJ)
- May–Nov: energy ~0.4mJ
- Tracking of LEO up to LAGEOS o.k. high-altitude satellites difficult
- new laser head ordered in July
- Laser down since 21.10.2016
 - high voltage power supply failure
 - repair at manufacturer's premises

→new head expected in December 2016

SLR Operations

• New SLR projects

- New high-altitude satellite campaigns
- European Laser Time Transfer project (ELT)(ACES experiment on ISS)
 - definition of hardware requirements
 - analysis of software requirements
- Space Debris laser campaigns (new ILRS Space Debris Study Group)
- Definition/evaluation of new laser
 - 100Hz/kHz...?
 - discussions with and offers from several suppliers
 - possible "in-house" solution with Institute for Applied Physics (IAP)
- Main technical developments
 - EFOS-8 Maser is operational frequency standard for SLR since 9.8.2016
 - usability of sCMOS tracking camera improved
 - migration of telescope/electronics control software from DOS to Linux (in progress)

ILRS Station Performance 2014/2015

ILRS Station Performance 2015/2016

ILRS October 1, 2015 through September 30, 2016: Observed Normal Points

ZMD Station Performance 1997 - 2016

Zimmerwald: Number of Observed Passes per Month

Optical Sensors in Zimmerwald

First Light 2017 ...

- 0.8m telescope
- Space debris research (AIUB)
- Offload ZIMLAT
- Optical communication demonstration with LEO s/c

Space Debris Attitude Determination

New Domes (2016)

New Domes (2016)

New Domes 2.9.2016

New Domes 10.2016

New Domes 10.2016

New Domes 10.11.2016

Aktivitäten der Forschungsgruppe Satellitengeodäsie am AIUB

R. Dach F. Andritsch, D. Arnold, K. Bentel, S. Bertone, P. Fridez, Y. Jean, A. Maier, U. Meyer, E. Orliac, L. Prange, S. Scaramuzza, S. Schaer, D. Sidorov, P. Stebler, A. Sušnik, A. Villiger, P. Walser

Satellite Geodesy Research Group

Satellite Geodesy Research Group

Updates from the **CODE analysis center**

DOI for CODE products

Please acknowledge the usage of products from the CODE analysis center by the following references (see http://www.bernese.unibe.ch/publist/publist_code.php):

- Dach, Rolf; Schaer, Stefan; Arnold, Daniel; Orliac, Etienne; Prange, Lars; Sušnik, Andreja; Villiger, Arturo; Jäggi, Adrian (2016). CODE final product series for the IGS. Published by Astronomical Institute, University of Bern. URL: http://www.aiub.unibe.ch/download/CODE; DOI: 10.7892/boris.75876.
- Dach, Rolf; Schaer, Stefan; Arnold, Daniel; Orliac, Etienne; Prange, Lars; Sušnik, Andreja; Villiger, Arturo; Jäggi, Adrian (2016). CODE rapid product series for the IGS. Published by Astronomical Institute, University of Bern. URL: http://www.aiub.unibe.ch/download/CODE; DOI: 10.7892/boris.75854.
- Dach, Rolf; Schaer, Stefan; Arnold, Daniel; Orliac, Etienne; Prange, Lars; Sušnik, Andreja; Villiger, Arturo; Jäggi, Adrian (2016). CODE ultra-rapid product series for the IGS. Published by Astronomical Institute, University of Bern. URL: http://www.aiub.unibe.ch/download/CODE; DOI: 10.7892/boris.75676.
- Prange, Lars; Orliac, Etienne; Dach, Rolf; Schaer, Stefan; Arnold, Daniel; Jäggi, Adrian (2016). CODE product series for the IGS MGEX project. Published by Astronomical Institute, University of Bern. URL: http://www.aiub.unibe.ch/download/CODE_MGEX; DOI: 10.7892/boris.75882.
- Steigenberger, Peter; Lutz, Simon; Dach, Rolf; Schaer, Stefan; Jäggi, Adrian (2014). CODE repro2 product series for the IGS. Published by Astronomical Institute, University of Bern. URL: http://www.aiub.unibe.ch/download/REPRO_2013; DOI: 10.7892/boris.75680.

IGSRAPID RQ solution

Attitude models activated at CODE

- GLONASS SLR residuals without/with attitude modelling
 - Eclipse condition: $|\beta| < 14.1^{\circ}$ (greyed area on the plots)

 SLR residuals as a function of the Sun elevation above the orbital plane (β) and argument of latitude of the satellite

Advancing the bias handling in the **Bernese GNSS Software**

Pseudo-Absolute Code Biases: CLK+ION

Pseudo-Absolute Code Biases: CLK+ION

CODE's new Bias Estimation Workflow

AIUB

Multi-GNSS Bias Estimation

Input: - Orbits from CODE's MGEX solution

- RINEX 3 and RINEX 2 observation files
- Output: Code Biases from ionosphere analysis, clock analysis and their combination (*Full set* of observable-specific code biases (OSB))

- Multiplier estimation (Receiver tracking mode)

I/K

Comparison with MGEX Bias Solutions (DLR)

CODE: Observable-specific code biases transformed to DCB's (2016 176-186) MGEX: Differential Code Biases (2016 001-092) (DLR - Solution)

Verifying Receiver Tracking Modes

Reprocessing with the new Empirical CODE Orbit model (in the frame of EGSIEM)

Orbit validation using SLR

Orbit validation using SLR

The SLR residuals to the GLONASS satellites increase after a few years of lifetime. The reason in still unkonwn!

Improving the completeness of the clocks

Completeness of 30 s GPS clock corrections for year 2003.

Improving the completeness of the clocks

Completeness of 5 s GPS clock corrections for year 2003.

Improving the completeness of the clocks

Completeness of 5 s GPS clock corrections for year 2009.

Targeting the following products

- GNSS-orbits:
 - GPS: 1994–now
 - GLONASS: 2002-now
- GNSS-satellite clocks:
 - GPS, 30 sec 1994-now
 - GPS, 05 sec 2003-now
 - GLONASS, 30 sec 2008–now
 - GLONASS, 05 sec 2010-now

Limitations due to the global coverage with legacy and high-rate (IGS real-time) stations.

Introducing ITRF2014

ITRF2014 solutions

- TUM-DGFI
 - DTRF2014: based on a classical coordinate+linear velocity solution
 - DTRF2014L: ATM+Hydro.-loading applied
- IGN
 - ITRF2014: based on coordinate+linear velocities+ empirical post-seismic deformation corrections (+annual/semi-annual periodic functions)
 - ITRF2014P: periodic functions recovered
- JPL
 - JTRF2014: based on a filter approach

CODE contribution to IGS MGEX

CODE MGEX (COM) activities

- Allocation of COM products also via AIUB ftp server
- Adaptation to long RINEX file naming convention (consideration of additional download paths at data centers; file priorities)
- Downweighting of observations from satellites in orbit normal mode (QZS-1, all BDS)
- Change to standard multi-GNSS ANTEX provided by the IGS
- Improved data screening
- Experiments with orbit normal attitude mode and related SRP models
- Experiments with Galileo attitude
- Experiments with ground network geometry
- Long-term quality assessment and documentation (=> JoG paper)

MGEX products availability

Status: 01-July-2016

Satellite system IDs according to the content of the precise orbit files at ftp://cddis.gsfc.nasa.gov/pub/gps/products/mgex/

MGEX station distribution

Station distribution for orbit solution (DOY 232/2016)

Satellite systems being monitored (RINEX3 files):

Galileo orbit validation

⇒ Significant reduction of dependency on beta-angle, when changing to the ECOM2

Clock validation 2014: median RMS of daily linear fit (Median and IQR; satellites in eclipse or normal mode are not considered)

clocks (=> these clocks are suitable for orbit validation)

CODE MGEX solution (3d arc)

The ECOM2 decomposition is designed for the yaw-steering mode but not for the orbit normal mode.

SLR residuals

Slide 65

Astronomical Institute University of Bern

AIUB

CODE MGEX solution (3d arc)

Alternative coordinate systems are needed for the empirical orbit parameters.

SLR residuals

Slide 66

CODE MGEX solution (3d arc)

SLR residuals

Slide 67

Figure 4: For each AC, mean value and standard deviation [mm] of SLR residuals with respect to GLONASS, Galileo, BeiDou, and QZS-1 satellites is shown. Note that all residuals larger than 300 mm (GLONASS), 500 mm (Galileo), 300 mm (BeiDou), and 1500 mm (QZS-1) were regarded as outliers. In addition, SLR observations during eclipses for GLONASS and during intervals with solar beta angle smaller than 20° for QZS-1 were not taken into account. For the description of acronyms see caption of Table 1.

European vs. global network: orbit differences (Position differences of Galileo orbits with arclengths of 1 day)

Differences of 1-day Galileo orbits based on global and European station networks, respectively

 \Rightarrow In unobserved regions the orbit differences might exceed 10 m

AII/B

Compensating Deficiencies in the Receiver Antenna Calibration in an multi-GNSS environment

Receiver antenna biases

- A GNSS antenna should be individually calibrated for each GNSS.
- GEO++ (main source of IGS calibration) only provides receiver antenna calibrations for GPS and GLONASS (dual frequency).
- The coordinate/troposphere GLONASS-GPS translation bias has been implemented in order to compensate for a potential deficiency in the GNSSspecific calibration of the antenna phase center offset.

GPS-GLONASS antenna bias: Coordinates

GPS-GLONASS antenna bias: Troposphere

The troposphere GLONASS-GPS translation bias shall compensate for a potential deficiency in the GNSS-specific calibration of the antenna phase center variation.

- Troposphere estimates from GPS-only
- Troposphere estimates from GLONASS-only
- Difference between GPS- and GLONASStroposphere series
GPS-GLONASS antenna bias: Troposphere

Astronomical Institute University of Bern

II/K

Multi-GNSS receiver antenna bias

- The currently used IGS08.atx and IGS14.atx sets of corrections provide sufficient calibration for legacy GPS and GLONASS measurements.
- The missing receiver antenna calibration values are a significant problem in the current status of multi-GNSS processing.
- If this method is applied to multi-GNSS the influence of the deficiency on the results may be limited given that a sufficient amount of data are available.
 - Extending the parameters to all GNSS
 - Include also troposphere gradients

GNSS-specific characteristics in Earth rotation and geocenter parameter series

SNF project on GNSS orbit modelling

Method

GPS–only &	& GLC	NASS-only	Co	mbin	ed	GNSS specific GCC/ERP				
GPS		GLO	GPS		GLO	GPS		GLO		
recCLK		recCLK	recCLK	=	recCLK	recCLK	=	recCLK		
CRD		CRD	CRD	=	CRD	CRD	=	CRD		
TRP		TRP	TRP	=	TRP	TRP	=	TRP		
GCC		GCC	GCC	=	GCC	GCC		GCC		
ERP		ERP	ERP	=	ERP	ERP		ERP		
ORB		ORB	ORB		ORB	ORB		ORB		
satCLK		satCLK	satCLK		satCLK	satCLK		satCLK		

GNSS specific GCC/ERP of sub-systems

GPSo		GPSe		GLO
recCLK	=	recCLK	=	recCLK
CRD	=	CRD	=	CRD
TRP	=	TRP	=	TRP
GCC		GCC		GCC
ERP		ERP		ERP
ORB		ORB		ORB
satCLK		satCLK		satCLK

SNF project on GNSS orbit modelling

Results: Polar Motion

ESA project related to GNSS activities

Other projects:

- TGVF/OVF: «Ground truth» for Galileo GMS GSA-project with ESOC, BKG, GFZ, IGN
- ORBIT /SRP Modelling for Long Term Prediction ESA-project with Airbus (defense and space)
- Improved GNSS-Based Precise Orbit Determination by using highly accurate clocks ESA-project with ETH Zurich and TU Munich

 Combination of inhomogeneous multi-GNSS products ESA-NPI project with ESOC Darmstadt

Satellite Geodesy Research Group

				—	Sat	ellite Name		Satellite ID	SIC Code	NORAD Number	NP Indicator	Bin (Sec	Size onds)	Altitude (Km)	Inclination (deg)	First Tracked Date
				[Ajisai			8606101	1500	16908	5	3	0	1485	50	1986-Aug-13
					Apollo1 Tranquil	1 Sea of ity		0000100	N/A	N/A	2	vari	able	356,400	5	1969-Aug-20
					Apollo14	4 Fra Mauro		0000102	N/A	N/A	2	vari	able	356,400	5	1971-Feb-07
	GLON/	ASS-123		10(Apollo1	5 Hadley Rille	,	0000103	N/A	N/A	2	vari	able	356,400	5	1971-Sep-01
	GLONA	ASS-125		11(Beacon	-C		6503201	0317	1328	3	1	5	927	41	1976-Jan-02
	GLON/	ASS-128		11(COMPA	SS-G1		1000101	2002	36287	9	- 30	00	35,786	55.5	2012-Apr-28
	GLON/	ASS-129		11(COMPA	SS-13		1101301	2003	37384	9	30	00	35,786	55.5	2012-Apr-27
	GLONA	ASS-133		14(COMPA	SS-15		1107301	2005	37948	9	30	00	35,786	55.5	2012-Jul-06
	GLON/	ASS-134		14(COMPA	SS-IS1		1501901	2006	40549	9	30	00	35,786	55.5	2015-Sep-08
	GRACE	F-A		020	COMPA	SS-IS2		1505301	2010	40938	9	30	00	35,786	55.5	2015-Sep-29
	GRACE	EB		020	COMPA	SS-M3		1201801	2004	38250	9	30	00	21,528	55.0	2012-Jul-11
Luna 17 Cas of		L-D		440	COMPA	SS-MS1		1503702	2007	40749	9	30	00	21,528	55.0	2015-Jul-25
Luna17 Sea of	ITT-ZA			100	COMPA	SS-MS2		1503701	2008	40748	9	30	00	21,528	55.0	2015-Jul-25
Luna21 Sea of	IRNSS	-1A		130	Cryosat	-2		1001301	8006	36508	3	1	5	720	92	2010-Apr-20
PN-1A	IRNSS	-1B		14(Etalon-1			8900103	0525	19751	9	30	00	19,105	65	1989-Jan-26
070 /	IRNSS	-1C		14(Etalon-2	2		8903903	4146	20026	9	30	00	19,135	65	1989-Jul-13
QZS-1	IRNSS	-1D		150	Galileo-	101		1106001	7101	37846	9	30	00	23,220	56	2011-Nov-29
Radio	IRNSS	-1E		16(Galileo-	102	_	1106002	7102	37847	9	3(00	23,220	56	2011-Nov-29
CARAL		int.		6	Galilio-	i no i		12,05501	7103	188 7	9		° c	23 220	ntin	2012-Nov -07
SARAL		ICL.			G II 0-			12 05 02	714	88.58	9		12	23 20	auu	2)12-Nov -07
Sentinel-3A	Jason-	3		160	Galileo-	201		1405001	20 1	40128	9	30	00	17,000 - 26,210	~ 50	2014-Dec -05
Stanette	KOMP	SAT-5		13(Galileo-	202		1405002	7202	40129	9	30	00	17,000 -	~ 50	2015-Mar-17
Spinsat	LAGEO	DS-1		760										26,210		
Stella	OV	no ri			Galileo-	F C		D 1701	7203	40544	/in			++		2015-Mar-27
STPSat-2		Iall	U	J	G			1. 11702	2°C	4 545				ιαι	UHD	2015-Mar-27
STSAT-2C	Larata			02(Galileo-	205		1504501	7205	40889	9	30	00 00	23,220	56 +/- 2 deg	2015-Sep-11
Swarm-A	Larets			030	Galileo-	206		1504502	7206	40890	9	30	00	23,220	56 +/- 2 deg	2015-Sep-11
Swarm-B	Luna1/	Sea of Rain	IS	000	Galileo-	208		1507902	7208	41175	9	30	00	23,220	56 +/- 2 deg	2015-Dec-17
Swarm-C	Luna21	Sea of Sere	enity	00(Galileo-	209		1507901	7209	41174	9	30		23,220	56 +/- 2 deg	2015-Dec-17
TanDEM-X		1003001	6202	3	36605	1		5	51	4	97.44		2010)-Jun-21		
TerraSAR-X		0702601	6201	3	31698	1		5	51	4	97.44		2007	7-Jun-16		

Realistic SLR observation simulation:

- Considers differences between stations
- Operating times, day/night capabilities, strengths in high/low target tracking,...
- Noise resembles real bin RMS properties
- Possibility to factor in weather forecast/cloud coverage models
- Probabilistic availability of a given station at a given time

Resulting are synthetic observations upon which comparison and optimization can be done.

- Impact of number and distribution of observations on LAGEOS/ETALON
- SLR+GNSS combination

YYYY	HH	DD	STAT	TIME IN SECONDS	PRN	
****	××.	**	****	*******	***	×
2015	05	06	7810	32046,185902247878	108	1
2015	05	06	7810	32126,060302248032	108	1
2015	05	06	7810	34742,648702320352	107	1
2015	05	06	7810	34862.552302311269	107	1
2015	05	06	7810	35154.578702318162	107	1
2015	05	06	7810	36243,455102316861	108	1
2015	05	06	7810	36376,229502318871	108	1
2015	05	06	7810	40050,113102219737	111	1
2015	05	06	7810	50219.056302341145	111	1
2015	05	06	7810	51928, 352112342225	121	1
2015	05	06	7810	51932.583932335045	121	1
2015	05	ã 0	7810	51936 500912335854	121	-ÎĪ
2015	05	ãů	7810	51942 945872333563	121	1
2015	05	ãů	7810	51946 872112332734	121	ĩ
2015	05	06	7810	51951 641012342428	121	ĩ
2015	05	õõ.	7810	51958 623052340256	121	ī
2015	05	30	7810	51962 188152332608	121	1
2015	05	30	7810	51967 808972341074	121	1
2015	05	30	7810	51972 374152341465	121	1
2015	05	30	7810	51977 856072334798	121	1
2015	05	30	7910	51982 106/12339/30	121	1
2015	05	30	7910	51987 792052326998	121	1
2015	05	00	7010	51992 0/2292/2612	191	1
2015	05	30	7910	51997 5242322342013	121	1
2015	05	30	7910	52001 691712775461	121	1
2015	05	30	7810	52007 451032332443	121	1
2015	05	30	7810	52018 155592334660	121	1
2015	05	30	7910	52022 05405234000	121	1
2015	05	30	7810	52027 526712332408	121	1
2015	05	30	7810	52021 951052338896	121	1
2015	05	ã0	7810	52037 587572334320	121	1
2015	05	30	7910	52037 - 560972339986	121	1
2015	05	30	7810	52047 119922336395	121	1
2015	05	00	7010	52047 113522350335	191	1
2015	05	00	7010	52052 91002255555	191	1
2015	05	00	7010	52050-010052555075 52061 5612097770 <i>4</i> 1	191	1
2015	05	30	7910	54994 906709937193	197	1
2015	05	00	7010	61700 97709997059A	124	1
2015	05	00	7010	C20C0 2C25002270304	117	1
2015	05	00	7010	CZ54Q 4ZZ1099CQ177	117	1
2015	05	00	7910	67947 717909967941	117	1
2015	05	00	7010	67907 571902207241	117	1
2015	05	00	7010	70070 671002200132	107	1
2013	05	00	7010	70070.031302223701	103	1
2015	05	00	7910	79291 992502210502	103	1
2015	05	00	7010	79206 /0/2022020002	102	1
2013	0.0	00	1010	73200,404302322424	102	1

AIUB

Satellite Geodesy Research Group

Copernicus POD Service

Copernicus satellite fleet

At AIUB precise orbits of all Sentinel satellites are computed

Sentinel-1A

Sentinel-1B

Sentinel-2A

Sentinel-3A

Courtesy: ESA

RMS of GPS carrier phase residuals

3D-RMS of mutual orbit comparisons

	AI	UB	CO	СОМВ		CPOD		DLR		OC	TUDF		τu	М
СОМВ	0.91	0.12												
CPOD	2.44	0.28	1.84	0.33										
DLR	1.36	0.13	0.89	0.16	2.30	0.38								
ESOC	2.20	0.30	1.77	0.35	2.44	0.56	2.19	0.33						
TUDF	2.16	0.72	1.75	0.77	2.39	0.35	2.23	0.78	2.93	0.82				
TUM	1.48	0.13	1.10	0.10	2.16	0.24	1.62	0.18	2.25	0.27	1.45	0.11		
Avg.	1.51	0.24	1.18	0.26	1.94	0.31	1.51	0.28	1.97	0.38	1.84	0.51	1.44	0.15

	AI	UB	CO	СОМВ		OD	D	LR	ES	ос	TU	DF	τu	М
СОМВ	3.09	0.40												
CPOD	3.87	0.73	1.59	0.29										
DLR	2.87	0.29	0.81	0.16	2.21	0.34								
ESOC	3.97	0.43	1.76	0.37	2.35	0.38	2.40	0.37						
TUDF	4.63	1.13	1.64	0.59	2.36	0.29	2.09	0.88	2.55	0.54				
TUM	11.35	3.63	11.44	3.56	11.39	3.55	11.53	3.53	11.83	3.47	11.67	3.47		
Avg.	4.25	0.95	2.90	0.77	3.40	0.80	3.13	0.80	3.55	0.79	3.56	0.99	9.89	3.03

S1B

3D-RMS of mutual orbit comparisons

	AI	UB	CO	МВ	CP	CPOD		DLR		ESOC		TUDF		M	
СОМВ	0.90	0.14													
CPOD	2.21	0.34	1.80	0.36											
DLR	1.26	0.23	0.73	0.15	2.14	0.39									S24
ESOC	2.10	0.32	1.69	0.33	2.08	0.36	2.14	0.38							UZA
TUDF	1.22	0.24	0.66	0.17	2.06	0.38	1.03	0.16	1.99	0.36					
TUM	1.95	0.25	1.57	0.25	2.60	0.32	1.69	0.24	2.55	0.34	2.00	0.26			
Avg.	1.38	0.22	1.05	0.20	1.84	0.31	1.28	0.22	1.79	0.30	1.28	0.23	1.77	0.24	

	AIUB	CNES	СОМВ	CPOD	DLR	ESOC	TUDF	тим
CNES	2.01 0.20							
СОМВ	1.08 0.16	1.48 0.23						
CPOD	2.25 0.24	1.84 0.24	1.72 0.26					
DLR	1.36 0.16	2.03 0.22	0.83 0.11	2.25 0.24				
ESOC	2.33 0.65	2.20 0.67	1.69 0.68	2.20 0.66	2.17 0.60			
TUDF	1.29 0.19	1.91 0.23	0.70 0.10	2.07 0.25	1.01 0.13	2.06 0.63		
TUM	3.94 0.48	3.91 0.48	3.43 0.47	4.20 0.46	3.21 0.45	3.90 0.59	3.63 0.50	
Avg.	1.78 0.26	1.92 0.28	1.37 0.25	2.07 0.29	1.61 0.24	2.07 0.56	1.58 0.25	3.28 0.43

S3A

SLR validation of Sentinel-3

ILRS Stations allowed to track Sentinel-3

SLR validation of Sentinel-3

	AIUB	CNES	СОМВ	CPOD	DLR	ESOC	TUDF	тим
Mean	0.02	0.40	0.19	0.41	0.03	0.51	0.07	-0.22
RMS	1.79	1.87	1.70	1.87	1.86	1.83	1.70	2.95
STD	1.79	1.83	1.69	1.82	1.86	1.76	1.70	2.94

Slide 98

LEO non-gravitational force modeling

Force models considered

Comparison with other approaches

Aerodynamic acceleration acting on Swarm-C (satellite-fixed frame). Red: Bernese GNSS Software. Green: Acceleration computed by E. Doornbos from TU Delft. Black: Rescaled acceleration from TUD.

Reduction of empirical accelerations

Daily mean values (left) and standard deviations (right) of the piecewise-constant accelerations estimated for Swarm-C.

Comparison with accelerometer data

Computed and measured acceleration for GRACE-A

Precise orbit determination for the final stages of GOCE

Details of air-drag modeling

- Implementation of air drag modelling
 - Air drag models have been implemented into Bernese GNSS software.
 - Two types of macro models:
 - 6-plate box model of S. Bruinsma (2013) GOCE+ Theme
 3: Air density and wind retrieval using GOCE data,
 Validation report. Surfaces: 0.70m2 (x), 10.77m2 (y),
 5.90m2 (z).
 - 44-plate model of GO-TN-AI-0179 (GOCE Stand-alone Aerodynamic Model of ThalesAlenia) resp. the 36-plate variant without radiator (self-shadowing?)
 - Computation of drag and lift coefficients for each plate according to Sentman's theory.

$$\boldsymbol{a}_{D} = -\frac{\rho A_{ref}}{2m} C_{D} v^{2} \boldsymbol{e}_{D}, \qquad \boldsymbol{a}_{L} = -\frac{\rho A_{ref}}{2m} C_{L} v^{2} \boldsymbol{e}_{L}, \qquad \boldsymbol{e}_{D} = -\frac{\boldsymbol{v}}{\boldsymbol{v}}, \qquad \boldsymbol{e}_{L} = -\frac{(\boldsymbol{v} \times \boldsymbol{n}) \times \boldsymbol{v}}{|(\boldsymbol{v} \times \boldsymbol{n}) \times \boldsymbol{v}|}$$

GOCE macro model

Reduction of empirical accelerations

- -1: No air drag modelling
- •2: DTM2013, no HWM, 6-plate macro model
- •3: DTM2013, no HWM, 44-plate macro model

-4: DTM2013, no HWM, 36-plate macro model

•5: DTM2013, HWM14, 36-plate macro model

•6: DTM2013, HWM14, 36-plate macro model SESAM for energy accommodation coefficient

Constraining of empirical accelerations

- Differences to kinematic orbits and orbit overlaps show that a tightening of the constraints to ~ 5E-8 m/s² is possible without degrading the orbits (actually improving).
- Reached level: Roughly as without air drag modeling and very loose constraints (1E-6 m/s²), except for single days (296, 307, 309) and the very last days (better).

Application to Sentinel-3

Sentinel-3A orbits have been computed with more dynamical stiffness (important for altimetry) and compared to DLR orbits.

No radial offsets between the orbits from the two agencies.

SLR validation

Astronomical Institute University of Bern

AIUB

Swarm GPS receiver issues

Astronomical Institute University of Bern

Global ionosphere behavior

Equatorial regions are mainly governed by deterministic features Polar regions are mainly governed by scintillation-like features

AIUB

History of FOV and tracking loop changes

- Up to 20 Oct 2014: GPS antenna field-of-view (FOV) 80°, antenna correction applied in GPSx Level1b products
- 20 Oct 2014: Antenna FOV enlarged to 83°, antenna corrections switched off
- 01 Dec 2014: FOV enlarged to 86° for Swarm C
- 13 Jan 2015: FOV enlarged to 88° for Swarm C
- 06 May 2015: L1-carrier loop increased by 50% and L2-carrier and P(Y)-code loops increased by 100% for Swarm C. FOV enlarged to 88° for Swarm A and B.
- 08 Oct 2015: Swarm A: same tracking loop changes
- 10 Oct 2015: Swarm B: same tracking loop changes

RMS of kinematic POD

- Changed tracking loop settings lead to smaller carrier phase RMS (mainly due to reduction of large residuals over the polar regions)
- Differences between RMS of Swarm A and Swarm C only during period with different settings

Gravity field solutions: June 2015

Astronomical Institute University of Bern

Slide 117

Missing observations in RINEX files (June 2015)

- No obvious gaps for Swarm-C along geomagnetic equator.
- Reduction of artefacts in gravity field solutions is therefore not due to skipped data.

Summary

- RINEX screening is useful for gravity field recovery, but rejects a lot (too much) of GPS data
- Improved tracking loop settings are most promising to use the full amount of GPS data while significantly reducing the observed artefacts in the gravity field recovery.

Situation for Sentinel

Contribution of Sentinel

Leaving out near-zonal coefficients according to van Gelderen and Koop due to the polar gap of the Sentinel satellites.

Activities in the frame of EGSIEM

Astronomical Institute University of Bern

Slide 122

EGSIEM project

European Gravity Service for Improved Emergency Management

Services will be tailored to the needs of governments, scientists, decision makers, stakeholders and engineers. Special visualisation tools will be used to inform, update, and attract also the large public.

EGSIEM: Scientific Combination Service of monthly GRACE gravity fields

Scientific Combination Service

Individual contributions: AIUB

• AIUB: Celestial mechanics approach (dynamic approach relying on frequent pseudo-stochastic accelerations)

TU / / Leibniz Universität

- ~ 500'000 KRR observations and
- ~ 500'000 kinematic positions (30s) / month

Individual contributions: ITSG

- ITSG: originally short arc approach, empirical noise model
 - ~ 500'000 KRR observations and
 - ~ 50'000 kinematic positions (300s) / month

Individual contributions: GFZ

- GFZ: dynamic approach, dense accelerometer parametrization
 - ~ 500'000 KRR observations and
 - > 2'500'000 GPS observations / month

Individual contributions: GRGS

- GRGS: dynamic approach
 - approx. 500000 KRR observations and
 - 50000 kinematic positions (300s) / month

Monthly Combination

I _{max} = 80	AIUB	GFZ	ITSG	GRGS	COMB solution	COMB w * NEQ
weight	0.29	0.19	0.38	0.14		
wSTD	5.6 mm	6.6 mm	3.5 mm	6.4 mm		

uni.lu

UNIVERSITÄT

GFZ

Graz

AUB

Monthly Combination

I _{max} = 80	AIUB	GFZ	ITSG	GRGS	COMB solution	COMB w * NEQ
weight	0.29	0.19	0.38	0.14		
wSTD	5.6 mm	6.6 mm	3.5 mm	6.4 mm	3.9 mm	

TU // Leibniz Graz 1054 Hannover

Monthly Combination

I _{max} = 80	AIUB	GFZ	ITSG	GRGS	COMB solution	COMB w * NEQ
weight	0.29	0.19	0.38	0.14		
wSTD	5.6 mm	6.6 mm	3.5 mm	6.4 mm	3.9 mm	3.9 mm

uni lu

UNIVERSITÄT

GFZ

TU // Leibniz Graz 1054 Hannover $u^{\scriptscriptstyle b}$

EGSIEM: Extension to GPS only gravity fields from GRACE and SWARM

Swarm combinations

- Solutions based on AIUB orbits show a very good performance. This is probably mainly related to the quality of the underlying kinematic orbits.
- Combination of solutions from different groups (using different orbits and approaches for gravity field recovery) show further reduced noise.

Validation against GRACE K-band

 u^{b}

102

EGSIEM: Many other activities ...

e.g. daily solutions from TU Graz

Daily updated solution shall be generated in near real-time (max.
5 days delay) in the future

/// Leibniz 10/2 Universität

u

Hecnes AIUB

e.g. outreach activities from University of Hannover

News and updates will be regularly published on various media, e.g., by the quarterly EGSIEM Newsletter.

Issues can be accessed at

www.egsiem.eu

EGSIEM is also present on social media:

https://twitter.com/EGSIEM

www.facebook.com/egsiem

https://egsiem.wordpress.com

Planetary Geodesy

Astronomical Institute University of Bern AIUB

The GRAIL mission

Astronomical Institute University of Bern

Observation residuals

Doppler observations can be used for orbit and gravity field determination

Daily Doppler RMS values for GRAIL-A when using SGM150J and 2-way Doppler observations, as well as GRGM900C up to d/o 300 and 1-way and 2-way Doppler observations

Observation residuals

Doppler observations can be used for orbit and gravity field determination

Daily KBRR RMS values when using SGM150J and 2-way Doppler observations, as well as GRGM900C up to d/o 300 and 1-way and 2way Doppler observations

Gravity field solutions

Difference degree amplitudes (w.r.t. GRGM900C) of degree-200 AIUB solutions based on 2-way, 1-way, and combined 1- and 2-way Doppler and KBR observations, as well as a preliminary degree-300 solution based on 2-way Doppler and KBR observations. GRGM900C up to d/o 660 has been used as a priori field.

GRAIL orbits should be modeled more dynamically ...