CODE's multi-GNSS orbit solution

L. Prange, E. Orliac, R. Dach, D. Arnold, G. Beutler, S. Schaer, A. Jäggi

Astronomical Institute, University of Bern, Switzerland

5th Int. Galileo Science Colloquium, 27-29 October 2015, Braunschweig, Germany

Contents

- Data base and network
- **CODE MGEX orbit solution**
- **CODE MGEX clock solution**
- Impact of CODE's new radiation pressure model
- Summary and outlook

MGEX data monitoring

Number of stations providing daily RINEX3 files included in CODE's raw data monitoring (data sources IGS-MGEX and EPN)

-29 October 2015 .: Results from CODE's multi-GNSS orbit solution Science Colloquium, Braunschweig, Germany, 27 Galileo ه et Prange th

Tracking network

CODE MGEX orbit solution

GNSS considered: GPS + GLONASS + Galileo + BeiDou (MEO+IGSO) + QZSS (70 SV) Processing mode: post-processing / 2 weeks delay (since 2015) Timespan covered: GPS-weeks 1689 - today 130 (GPS), 110 (GLONASS), Number of stations: 85 (Galileo); 55 (BeiDou); 20 (QZSS) double-difference network processing Processing scheme: (observable: phase double differences) Signal frequencies: L1+L2 (GPS + GLO+ QZSS); E1 (L1) + E5a (L5) GAL; B1 (L1) + B2 (L7) BeiDou 3-day long arcs; RPR: ECOM / ECOM2 (since 2015) Orbit characteristic: IGS08 (until week 1708); IGb08 (since week 1709) Reference frame: IERS2003 (until 1705); IERS2010 (since 1706) IERS conventions: Product list: daily orbits (SP3) and ERPs ftp://cddis.gsfc.nasa.gov/gnss/products/mgex/ Distribution: comwwwd.???.Z Designator:

Involved satellite systems

>70 GNSS and RNSS satellites with different orbit characteristics (orbit height, excentricity, inclination), signals, tracking modes

CODE MGEX clock solution

er 2015	GNSS considered: Processing mode:	GPS + GLONASS + Galileo + BeiDou + QZSS (70 SV) post-processing / 2 weeks delay (since 2015)
Octob(Timespan covered:	GPS-weeks 1710 - today
-29 (Number of stations:	130 (GPS), 35 (GLO), 45 (Galileo); 50 (BeiDou); 20 (QZSS)
olution any, 27	Processing scheme:	zero-difference network processing
t s		(observable: code+phase undifferenced)
orbit J, Gen	Signal frequencies:	L1+ L2 (GPS + GLO+ QZSS);
GNSS hweig		E1 (L1) + E5a (L5) GAL; B1 (L1) + B2 (L7) BeiDou
multi- raunscl	A priori information:	orbits, ERPs, coordinates, and troposphere from
E's'		CODE MGEX orbit solution introduced as known
CODI	Reference frame:	IGb08
from	IERS conventions:	IERS2010
sults ince C	Product list:	epoch-wise (300s) satellite and station clock corrections
.: Res Sciel		in daily clock RINEX files; daily inter-system biases for mixed
et al alileo		stations in Bernese DCB and BIAS-SINEX (BIA) format
Prange 5 th Int. G	Distribution:	ftp://cddis.gsfc.nasa.gov/gnss/products/mgex/
L. Pl 5 th L	Designator:	comwwwd.???.Z

MGEX products availability

Orbit description and Yaw attitude

Solar radiation pressure

New Empirical CODE radiation pressure Model

- MGEX-reprocessing for 2014 using ECOM (5 RPR par.; Springer et al., 1999) vs. ECOM2 (9 RPR par., Arnold et al., 2015)
- Validation with SLR residuals and satellite clock corrections
- The new ECOM takes into account the periodically changing cross section of the satellite body wrt. the Sun
- => Improvements expected for Galileo, GLONASS, QZSS

ECOM1 (old):	ECOM2 (new):
$D(u) = D_0$	$D(u) = D_0 + D_{2C} \cos(2\Delta u) + D_{2S} \sin(2\Delta u)$
	+ $D_{4C} \cos(4\Delta u)$ + $D_{4S} \sin(4\Delta u)$
$Y(u) = Y_0$	$Y(u) = Y_0$
$B(u) = B_0 + B_C \cos(u) + B_S \sin(u)$	$B(u) = B_0 + B_C \cos(\Delta u) + B_S \sin(\Delta u)$

Impact of new ECOM on Galileo orbits

=> Significant reduction of size and dependency of SLR residuals on the Beta-angle (elevation of the Sun above the orbital plane)

-29 October 2015 multi-GNSS orbit solution 's multi-GNSS סרטיט sulti-GNS, sulti-GNS, sulti-GNS, sulti-GNS, sulti-Germany, 2 from CODE Colloquium, Results Science Galileo ש et L. Prange (5th Int. Gal

Impact of new ECOM on Galileo orbits

Impact of new ECOM on Galileo orbits

Orbits of Galileo FOC1 satellites

Impact of new ECOM on Galileo clock corrections

- => Significant reduction of Beta angle dependency
- => Pronounced signal remains during eclipse season or
 - close-by (=> impact of mis-modelled attitude?)

-29 October 2015 's multi-GNss טוטוט Suraunschweig, Germany, 27 Braunschweig, Germany, 27 from CODE Colloquium, Results cienc Galileo Ъ et Prange Г. Р

Impact of new ECOM on Galileo clock corrections

L. Prange et á 5th Int. Galile

=> Improvement (dependency on Beta angle is reduced)
=> Unconsidered normal attitude mode dominates orbit errors at low Beta angles (< 20 degress)

Impact of new ECOM on QZSS orbits

argument of latitude

L. Prange et al.: Results 5th Int. Galileo Science C

Impact of new ECOM on QZSS orbits

Impact of new ECOM on BeiDou clock corrections

L. Prange et al 5th Int. Galileo

- => No significant impact of new ECOM on BeiDou satellite clock corrections, but
- Increased RMS of clock fit for very small Beta angles (confirming changed attitude mode at abs(Beta) < 4 degrees)</p>

=> Moderate reduction of SLR residuals at low Beta angles for majority of satellites

Impact of new ECOM on GLONASS orbits

Impact of new ECOM on GLONASS orbits

=> ECOM2 does not work well for all GLONASS satellites

Orbit modeling: Summary

- Galileo: clear benefit from ECOM2
- QZSS: significant benefit from ECOM2 when in yaw attitude mode
- GLONASS: moderate benefit from ECOM2 for the majority of satellites; degradation for some satellites
- ECOM2 seems to be more sensitive to attitude mismodellings
- Normal attitude steering mode at low beta-angles causes very large orbit errors if not correctly considered
- Stable satellite clocks (GPS IIF, Galileo, QZSS) are suited for orbit validation

Thank you

for

your interest!

