Analysis of GPS data from an Antarctic Glacier

R. Dach, G. Beutler

rolf.dach@aiub.unibe.ch

Astronomical Institute, University of Bern,

Sidlerstrasse 5, CH-3012 Bern

H. Gudmundsson

British Antarctic Survey

Cambridge, U.K.

XXIV IUGG General Assembly

Perugia, Italy, July 02-13, 2007

Outline

Analysis of GPS data from an Antarctic Glacier:

- 1. Motivation
- 2. Description of the data
- 3. How to characterize the noise of the time series?
- 4. Comparison of the different analysis methods
- 5. Summary and Conclusion

Motivation

Description of the data

British

Antarctic Survey

AIUI

- C-20: Receivers on shelf ice
- C+00: Receiver on the grounding line
- C+10: Receiver 10 km inland
- C+20: Receiver 20 km inland
- C+40: Receiver 40 km inland
- FLET: Receiver on an ice cap
- IGS station O'Higgins is about 2000 km away.

Description of the data

CONTENT OF RINEX OBSERVATION FILES

Number of GPS satellites in phase observations with both frequencies

C - 20-665567767789888989788789****998877676756568876777878*998898889*9989887-C+00 66655677--789888989778789****998877676756558876777978*998898889*99898777 C+10 6665567767789888989778789****998876676756558876777--8*998898889*99898777 C + 206765567767789888989778889****998876676656558876777978*998898889*9989--77 C + 3066653676677888888999878578**9*9988766766555688757777789998898878**9898788 C + 40-765567767789888989778889****998876676756558876777978*998898889*9989877-FLET 67655677677888888989778789***9998877676756558876--7978*998898889*99798777 977667889**8899****98**999****7*999879886688998688*****999899***9998998 OHI2 8644453468646666666664444553675554467753244547554555675677643465677655456 OHI3 12 24 \cap Hours for day 2004-01-20 Legend: - missing epochs, incomplete observations * more than 9 satellites observed

velocity of FLET: \approx 1.5 m/year (4 mm/day)

Repeatibility of the 2000 km OHI2—FLET

Kinematic Solution for Stations on Ice Stream

Solutions shifted by 100 mm for plotting.

Dach et al.: GPS data analysis methods - p. 7/13

Dach et al.: GPS data analysis methods - p. 7/13

Standard deviation:

n	time series	series with bias
1	0.052	0.059

Standard deviation:

n	time series	series with bias
1	0.052	0.059
2	0.057	0.066

Standard deviation:

n	time series	series with bias
1	0.052	0.059
2	0.057	0.066
3	0.052	0.066
4	0.051	0.068
5	0.046	0.080

Standard deviation (normalized):

n	time series	series with bias
1	0.052	0.059
2	0.029	0.033
3	0.017	0.022
4	0.013	0.017
5	0.009	0.016

Dach et al.: GPS data analysis methods - p. 7/13

n	time series	series with bias
1	0.062	0.070

n	time series	series with bias
1	0.062	0.070
2	0.036	0.041

n	time series	series with bias
1	0.062	0.070
2	0.036	0.041
3	0.021	0.025
4	0.015	0.019
5	0.011	0.019

n	time series	series with bias
1	0.062	0.070
2	0.036	0.041
3	0.021	0.025
4	0.015	0.019
5	0.011	0.019

Allan Deviation for stations in the ice stream

Allan Deviation for stations in the ice stream

Description of the different analysis methods:

DD–FLOAT: Double–difference network solution with real-valued ambiguities

DD–FIXED: Double–difference network solution with resolved ambiguities

Description of the different analysis methods:

DD–FLOAT: Double–difference network solution with real-valued ambiguities DD–FIXED: Double–difference network solution with resolved ambiguities PPP(IGS): Precise Point Positioning using the satellite clocks from IGS

Description of the different analysis methods:

DD–FLOAT: Double–difference network solution with real-valued ambiguities

DD–FIXED: Double–difference network solution with resolved ambiguities

PPP(IGS): Precise Point Positioning using the satellite clocks from IGS

ZD–FLOAT: Zero–difference network solution

PPP(ZD): Precise Point Positioning using the satellite clocks from ZD–FLOAT

Dach et al.: GPS data analysis methods - p. 10/13

Dach et al.: GPS data analysis methods - p. 10/13

Dach et al.: GPS data analysis methods - p. 10/13

What about the vertical component?

Dach et al.: GPS data analysis methods - p. 11/13

What about the vertical component?

Station C+40

AIUB S British Antarctic Survey Natural Environment Research council

Dach et al.: GPS data analysis methods - p. 12/13

Solutions with resolved ambiguities are in general preferable!

- Solutions with resolved ambiguities are in general preferable!
- The Allan deviation is well suited to analyse the noise characteristics from kinematic GNSS solutions.

- Solutions with resolved ambiguities are in general preferable!
- The Allan deviation is well suited to analyse the noise characteristics from kinematic GNSS solutions.
- In the horizontal components of a kinematic solution with resolved ambiguties the white noise of the phase measurements was found.
- For the vertical component we see the same noise behaviour in the solutions with real-valued and resolved ambiguties.

- Solutions with resolved ambiguities are in general preferable!
- The Allan deviation is well suited to analyse the noise characteristics from kinematic GNSS solutions.
- In the horizontal components of a kinematic solution with resolved ambiguties the white noise of the phase measurements was found.
- For the vertical component we see the same noise behaviour in the solutions with real-valued and resolved ambiguties.
- Only for very short term characteristics of a kinematic solution (shorter than one hour for terrestrial sites) there is no benefit from the ambiguity resolution. The solution is here dominated by the phase noise.
- On the other hand, these results confirm that very short ambiguities do not contribute to a (static) solution.

