11,

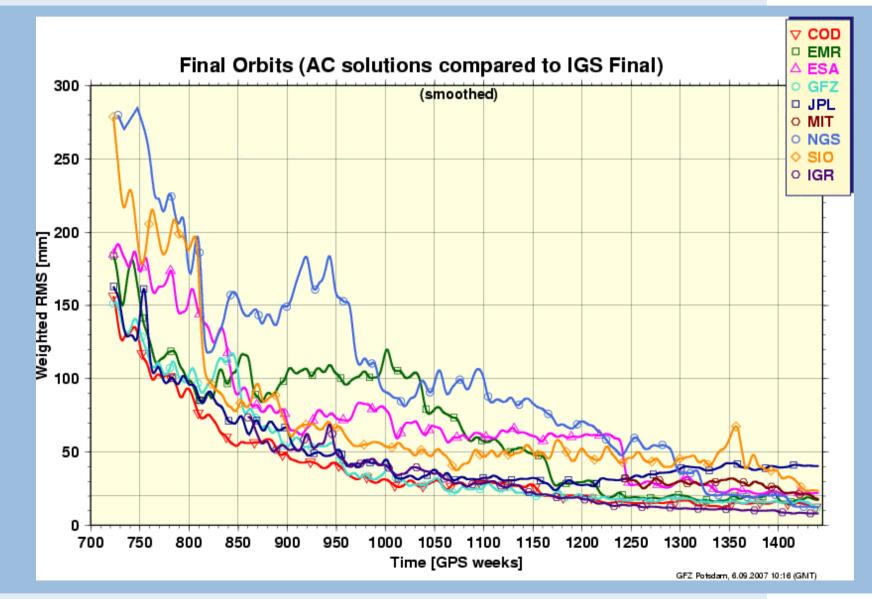
Near-real Time GPS Clock Generation at CODE

Heike Bock Astronomical Institute University of Bern Switzerland

Contents

D UNIVERSITÄT BERN

- > Background: IGS / CODE / AIUB
- Concept for the generation of NRT GPS clock corrections
- > Example
 - Validation
 - NRT LEO orbit determination
- > Summary


IGS / CODE / AIUB

^b UNIVERSITÄT BERN

- The Center for Orbit Determination in Europe (CODE) is one of the IGS analysis centers contributing to the IGS from the very beginning
- > CODE is a joint venture of
 - Astronomical Institute, University of Bern, Switzerland (host)
 - Bundesamt für Landestopografie swisstopo, Wabern, Switzerland, and
 - Bundesamt für Kartographie und Geodäsie, Franfurt, Germany
- > All CODE GNSS products are generated with a processing software developed at AIUB => Bernese GPS Software (BSW)

IGS / CODE / AIUB

U

19. September 2007

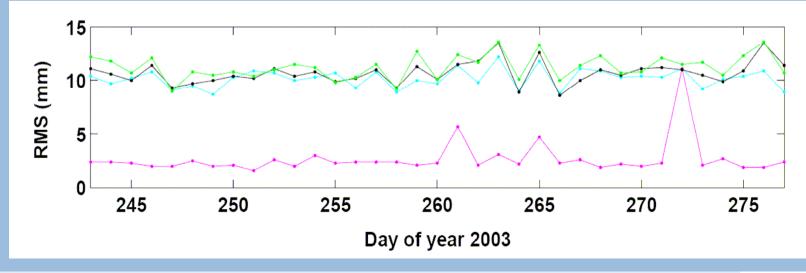
^b UNIVERSITÄT BERN

UNIVERSITÄT BERN

		Accuracy	Latency	Updates	Sample Interval
Broadcast	orbits	~ 160 cm	roal time	(every two hours)	
	sat. clocks	~ 7 ns	Teal time		
Ultra Rapid	orbits	~ 10 cm	real time	four times daily	15 min
(predicted half)	sat. clocks	~ 5 ns	real time		
Ultra Rapid	orbits	< 5 cm	3 hours	four times doily	15 min
(observed half)	sat. clocks	~ 0.2 ns	5 110015	four times daily	
Rapid	orbits	< 5 cm	17 hours	daily	15 min
	sat. clocks	0.1 ns	TT HOUIS		5 min *
Final	orbits	< 5 cm	12 dovo	wookly	15 min
	sat. clocks	< 0.1 ns	~ 13 days	weekly	5 min **

* CODE 30 seconds** CODE, JPL and EMR 30 seconds

The CODE Analysis Center contributes to all of these IGS products.


19. September 2007

IGS / CODE / AIUB

b UNIVERSITÄT BERN

- The BSW is capable to do precise orbit determination for Low Earth Orbiters (LEOs):
 - Longer POD time series for CHAMP and GRACE satellites exist
 - Tests with other LEOs, e.g. COSMIC, SAC-C, MetOp
 - AIUB is responsible for the Precise Science Orbit of the GOCE satellite (member of the GOCE High-level Processing Facility)

GRACE K-band range RMS errors (ZD, DD, DD comb, DD amb. fixed)

UNIVERSITÄT BERN

		Accuracy	Latency	Updates	Sample Interval
Broadcast	orbits	~ 160 cm	roal time	(every two hours)	
	sat. clocks	~ 7 ns			
Ultra Rapid	orbits	~ 10 cm	real time	four times daily	15 min
(predicted half)	sat. clocks	~ 5 ns	ieai liine	Tour times daily	
Ultra Rapid	orbits	< 5 cm	3 hours	four times daily	15 min
(observed half)	sat. clocks	~ 0.2 ns	5 110015	Tour times daily	
Rapid	orbits	< 5 cm	17 hours	doily	15 min
	sat. clocks	0.1 ns	TT HOUIS	daily	5 min *
Final	orbits	< 5 cm	12 dovo	wookhy	15 min
	sat. clocks	< 0.1 ns	~ 13 days	weekly	5 min **

* CODE 30 seconds** CODE, JPL and EMR 30 seconds

UNIVERSITÄT BERN

		Accuracy	Latency	Updates	Sample Interval
Broadcast	orbits	~ 160 cm	roal time	(every two hours)	
	sat. clocks	~ 7 ns			
Ultra Rapid	orbits	~ 10 cm	real time	four times daily	NRT + STC
(predicted half)	sat. clocks	~ 5 ns			
Ultra Rapid	orbits	< 5 cm	3 hours	four times daily	STC
(observed half)	sat. clocks	~ 0.2 ns	5 110015		510
Rapid	orbits	< 5 cm	17 hours	daily	
	sat. clocks	0.1 ns	TT HOUIS		(STC)
Final	orbits	< 5 cm	~ 13 days	wookly	
	sat. clocks	< 0.1 ns	~ 15 uays	weekly	NTC

* CODE 30 seconds** CODE, JPL and EMR 30 seconds

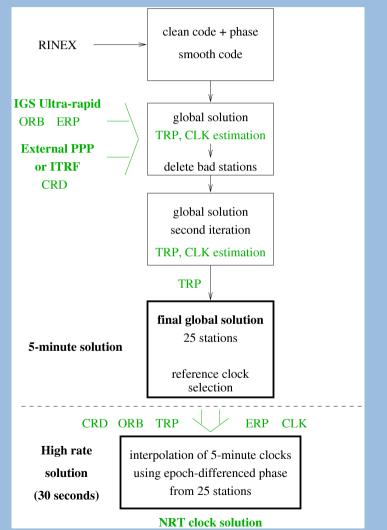
UNIVERSITÄT BERN

		Accuracy	Latency Updates		Sample Interval
Broadcast	orbits	~ 160 cm	roal time	(every two hours)	
	sat. clocks	~ 7 ns	Teal line		
Ultra Rapid	orbits	~ 10 cm	real time	four times daily	NRT + STC
(predicted half)	sat. clocks	~ 5 ns	ieal line	Tour times daily	
Ultra Rapid	orbits	< 5 cm	3 hours four times daily		STC
(observed half)	sat. clocks	~ 0.2 ns	5 110013	Tour times daily	510
Rapid	orbits	< 5 cm	17 hours	daily	
	sat. clocks	0.1 ns			(STC)
Final	orbits	< 5 cm	~ 13 days	weekly	
	sat. clocks	< 0.1 ns	~ 15 uays	WEEKIY	NTC

* CODE 30 seconds** CODE, JPL and EMR 30 seconds

NRT GPS clock generation

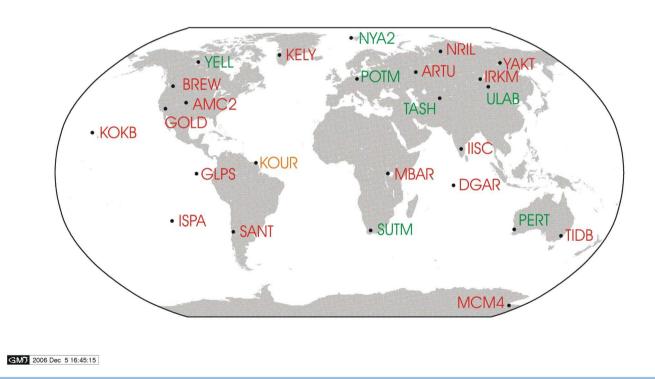
UNIVERSITÄT Bern


Available NRT GPS products:

- > IGS Ultra-rapid (predicted part) IGUp
 - ✓ free of charge
 - quality of clock corrections
- > JPL Real-Time Generated RT
 - × commercial
 - ✓ available within 1-2 minutes after observation
- Self generated NRT product IGUp+c
 - IGS Ultra-rapid orbits (predicted part) + generation of NRT GPS clock corrections based on a NRT station network
 - Consistency of orbits and clocks within the processing software which is also a big advantage for LEO POD

NRT GPS clock generation

^b UNIVERSITÄT BERN


- Zero-difference procedure is derived from the CODE rapid and final clock processing schemes
- > 25 globally distributed stations
- > Data cleaning and code smoothing
- > IGS Ultra-rapid orbits and pole information introduced
- > Two iterations for post-fit residual screening (troposphere delay estimation)
- Final global solution for clock estimation (5 minutes sampling, smoothed code, carrier phase)
- Interpolation to 30 seconds (epochdifferenced carrier phase)

Example (7-9 October, 2006): Subnet of IGS 1Hz network

b UNIVERSITÄT BERN

- IGS 1 Hz network:15 min data batches
- nominal latency < 5 min
- 25 stations (globally distributed)
- Latency of station data:
 70% > 60 min
 => Future alternative:
 real-time data stream

Example: NRT processing scheme

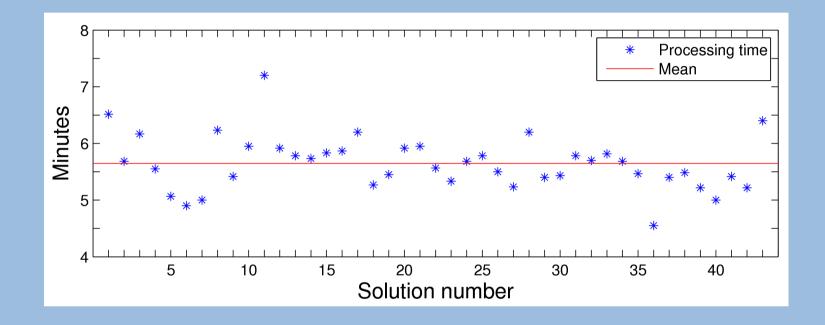
^b UNIVERSITÄT BERN

Solution	Date	start time	end time	IGS Ultra Orbits
01	7 Oct. 2006	00:20:00	03:20:00	igu13956_00.sp3
02		02:00:00	05:00:00	igu13956_00.sp3
03		03:40:00	06:40:00	igu13956_00.sp3
04		05:20:00	08:20:00	igu13956_00.sp3
05		07:00:00	10:00:00	igu13956_06.sp3
06		08:40:00	11:40:00	igu13956_06.sp3
07		10:20:00	13:20:00	igu13956_06.sp3
08		12:00:00	15:00:00	igu13956_12.sp3
09		13:40:00	16:40:00	igu13956_12.sp3

• 43 solutions à 3 hours, updates every 100 minutes

. . .

. . .

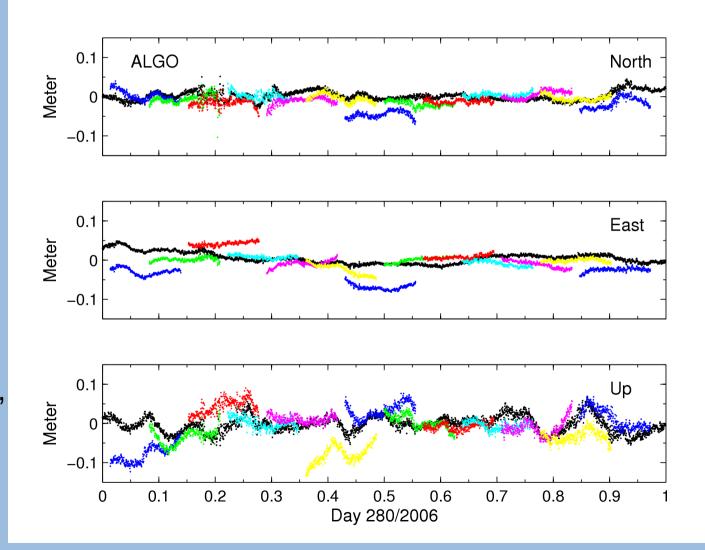

. . .

• Most recent IGS Ultra-rapid orbit is used

. . .

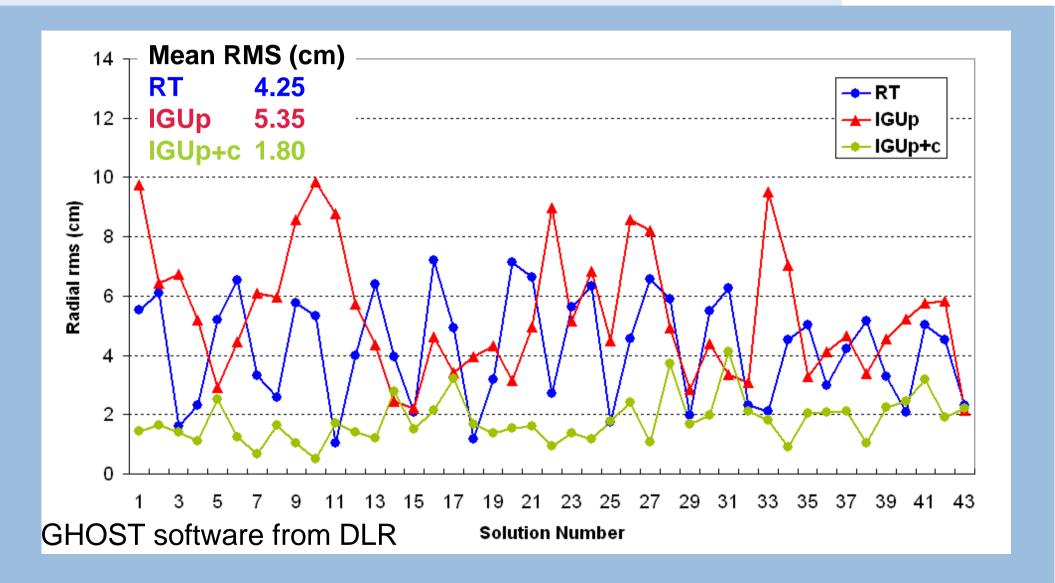
Example: NRT clock generation, processing time

^b UNIVERSITÄT BERN



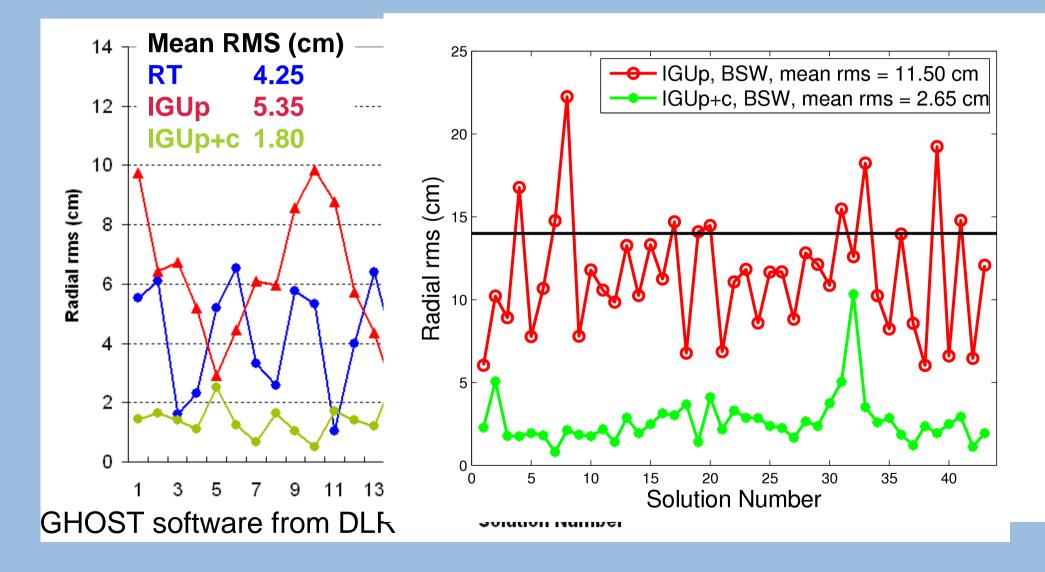
- Linux Cluster of the University (about 500 nodes)
- Parallel jobs if possible
- => Processing time is non-critical for NRT applications

Validation of the NRT clocks



Kinematic precise point positioning of ground station: • Black: reference solution, CODE final products used • Other colors: IGS Ultra-rapid orbits and newly generated NRT clocks used \succ agreement < 10 cm, even for the Up component ⇔ radial component of LEO

GRACE NRT POD (1)



GRACE NRT POD (1)

UNIVERSITÄT BERN

GRACE NRT POD (2)

- Different NRT GPS products are used for NRT POD of one GRACE satellite (GHOST software)
- The POD solutions using the new IGUp+c product show the best performance compared with the JPL Level 1 B orbit solution (mean radial rms: 1.8 cm)
- NRT POD solutions with the BSW (full consistency) show the same relative improvement when using IGUp+c instead of IGUp.
- Reduced-dynamic orbit solutions in BSW are less dynamic than in GHOST, i.e. they are closer to a kinematic solution.

Summary

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT RERN

- > The AIUB is host of CODE, one of the IGS analysis centers.
- From the processing scheme in the framework of IGS a NRT GPS clock generation procedure has been developed.
- This procedure could be set up to support NRT POD for LEO missions.
- Tests with GRACE data (using the in-house and an independent GPS processing software) have shown an enormous improvement of the NRT POD results compared to currently available NRT GPS products.
- Based on the experience in the field of GNSS POD the AIUB is capable to perform LEO POD in a reduced-dynamic and fully kinematic mode using the Bernese GPS Software.