

COST-G models of time-variable gravity for precise orbit determination

Ulrich Meyer¹, Heike Peter², Linda Geisser¹, Emilio Calero¹, Christoph Förste³, Rolf Dach¹, and Adrian Jäggi¹

> ¹University of Bern, Astronomical Institute, Switzerland ²Positim, Germany ³GFZ German Research Centre for Geosciences

EGU 2023

G2.1 Precise Orbit Determinatin for Geodesy and Earth Science

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

Time-variable gravity field models

EIGEN-GRGS-RL04: High-resolution static gravity field model with additional timevariations at low- to medium resolution (bias, trends, and periodic annual/semiannual variations, fitted to monthly GRGS GRACE gravity fields).

FSM GFO 2212: Fitted signal model (bias, trends, and periodic annual/semi-annual variations) based on the COST-G combined monthly gravity fields of GRACE-FO (until June, 2021); one set of coefficients for the whole period.

Time-variable gravity field models

new FSM G/GFO 2212: Fitted signal model (bias, trends, and periodic annual/semiannual variations) based on the COST-G combined monthly gravity fields of GRACE and GRACE-FO (until June, 2021).

GRACE: several sets of time-variable coefficients fitted to approx. annual sub-periods. GRACE-FO: one set of time-variable coefficients fitted to whole GRACE-FO period. Continuity conditions at boundaries.

Time-variable gravity field models

new FSM G/GFO 2212: Fitted signal model (bias, trends, and periodic annual/semiannual variations) based on the COST-G combined monthly gravity fields of GRACE and GRACE-FO (until June, 2021).

The monthly GRACE gravity fields were screened prior to the fit of the extended COST-G FSM => outliers indicate monthly solutions of inferior quality.

GRACE-FO C₂₀ (IfG ACT only) is still not usable

EGU 2023 G2.1 Precise Orbit Determinatin for Geodesy and Earth Science

GOCE orbit fit

3D-RMS values [cm] of the orbit fit residuals (mean values from all involved arcs) Parametrization: 6 orbital elements, accelerometer biases 1/arc (3 directions)

	March		April		June		December					
Model/Month	2019	2020	2021	2019	2020	2021	2019	2020	2021	2019	2020	2021
COST-G FSM	5,53	5,77	6,30	5,37	5,72	6,39	5,39	5,86	6,63	5,48	6,05	7,78
COST-G monthly	6,42	7,10	7,27	6,36	7,06	7,84	6, <mark>4</mark> 0	7,36	7,62	6,94	7,51	7,57

- COST-G fitted signal models (FSM), augmented by high-degree coefficients from a static field (GOCO06S), show significant improvement w.r.t. the monthly models of COST-G in almost all cases!
- The cause is most probably a reduction of noise in the high-d/o gravity field coefficients by the model fit (model error < noise reduction).

Setup of SLR validation

- weekly LAGEOS-only solutions: 01.01.2015 31.12.2015
- Parametrization:
 - seven-day arcs
 - 5 empirical parameters per arc: one bias along-track, 1/rev sin/cos in along- (and cross-) track
 - Station coordinates (NNR/NNT datum definition based on ILRS reference stations)
 - Range biases for selected stations (ILRS recommendations)
 - ERPs: piecewise linear, pole X and Y loosely constrained (1m); dUT fixed to CO4 at midnight epochs
 - Geo-center-motion (one set of offsets in x/y/z per 7 days), loosely constrained (1m)
- Background model:
 - GGM05S (max. d/o 90); C₂₁/S₂₁ according to linear mean pole model
 - ILRS: apriori model as provided for ITRF2020-Repro
 - COSTG FSM: fitted signal model
 - Ocean tides: FES2014 (max. d/o 30) incl. shallow tides (admittances)
 - Atmosphere tides: S1, S2
 - Non-tidal atmosphere- and ocean-dealiasing (AOD, max. d/o 30)
 - Earth tides: IERS2010
 - Subdaily Pole: Desai

ERP-differences with respect to C04

No 1/rev. cross-track par.	X-pole: bias [µas]	RMS [µas]	Y-pole: bias [µas]	RMS [µas]
GGM05S (static)	66.3	261.1	86.5	245.8
ILRS (time-var.)	54.3	219.4	88.0	201.1
COST-G FSM (time-var.)	51.0	215.6	80.6	196.7

+ periodic cross-track	X-pole: bias [µas]	RMS [µas]	Y-pole: bias [µas]	RMS [µas]
GGM05S (static)	91.4	148.1	68.4	119.8
ILRS (time-var.)	73.7	142.3	75.9	126.2
COST-G FSM (time-var.)	68.8	132.8	66.0	117.8

+ C20	X-pole: bias [µas]	RMS [µas]	Y-pole: bias [µas]	RMS [µas]
GGM05S (static)	68.8	175.9	72.2	156.1
ILRS (time-var.)				
COST-G FSM (time-var.)	49.3	164.5	65.5	157.2

EGU 2023 G2.1 Precise Orbit Determinatin for Geodesy and Earth Science

- solutions containing GPS, GLONASS and Galileo
- 4 years: 01.07.2018 30.06.2022
- background models and parameterization in agreement with the ITRF20 and CODE processing standards:
 - three-day arcs
 - ECOM2 (empirical force model) + orbit midnight pulses
 - DESAI2016 subdaily pole
- REF solution: EGM2008 + C_{20} , C_{30} , C_{40} bias and drift; C_{21} , S_{21} according to linear mean pole model
- COSTG: fitted signal model (FSM)

Orbit overlaps (midnight misclosures): REF

From subsequent 3 day arcs the middle days are extracted which overlap at exactly one epoch : end of first orbit at midnight = start of second orbit The averaged midnight misclosures per satellite system are provided in the legend.

FGU 2023

Orbit overlaps (midnight misclosures): COSTG

From subsequent 3 day arcs the middle days are extracted which overlap at exactly one epoch : end of first orbit at midnight = start of second orbit The averaged midnight misclosures per satellite system are provided in the legend.

SLR-validation:

	GLONASS	Galileo
REF	0.70+-3.44 cm	0.39+-2.11 cm
COSTG	0.70+-3.44 cm	0.34+-2.11 cm

Length Of Day (LOD) estimates

EGU 2023 G2.1 Precise Orbit Determinatin for Geodesy and Earth Science

- LEO-POD clearly profits from a time-variable gravity model; the lower, the more ... in case of GOCE (250 km) the FSM even outperforms the monthly gravity fields.
- In case of SLR (LAGEOS, 5900 km) small improvements over a static or the ILRS apriori time-variable gravity model are visible, attenuated by empirical periodic 1/rev-parameters.
- In case of GNSS the main impact is on LOD, where artifact with annual period are drastically reduced.

Spoiler

EIGEN-GRGS-RL05: High-resolution static gravity field model with additional timevariations at low- to medium resolution (bias, trends, and periodic annual/semiannual variations, fitted to monthly GRGS GRACE/GRACE-FO gravity fields).

Several sets of time-variable coefficients fitted to approx. annual sub-periods. Extrapolation based on whole GRACE/GRACE-FO period.

