Impact of a Priori Gravity Field Models

on SLR Data Processing

Linda Geisser, Ulrich Meyer, Daniel Arnold, Adrian Jäggi Astronomical Institute, University of Bern, Switzerland

IUGG Berlin 2023, 28th GENERAL ASSEMBLY, 17 July 2023

Slide 1

- Parametrization and background models used in the SLR processing
- A priori gravity field models
- Results of multi-satellite SLR combinations using LAGEOS-1/2, LARES and Starlette SLR observations
- Summary & Outlook

Slide 2

UNIVERSITÄT RERN

UNIVERSITÄT BERN

LAGEOS-1/2 + LARES: Parametrization + Models

Outline:

- Parametrization
 - + Models
- A priori Gravity fields
- Results
- Summary & Outlook

Parametrizat	tion		•	Ba
	1.0	0.45		
Satellites Parametrization	LAGEOS-1/2	LARES		Мо
Osculating elements	a, e, i, Ω	., ω, u ₀		Ref
	1 set pe	r 7 days	4	FRD
Constant and	$S_0, S_S, S_C,$, W _S , W _C	4	
once-per-revolution	1 set pe		Nut	
accelerations	· · ·		Sub	
Pseudo-stochastic pulses	no pulses	in along-track (twice per day)		Oce
Earth Rotation	X_P, Y_P, UT	1 <i>– UTC</i>]	-
Parameters	piecewis		Ear	
Constants	1 set pe	r 7 days		
Geocenter coordinates	free geo]	Loa	
Station coordinator	1 set pe			
Station coordinates	NNR an	d NNT		De
Range biases	1 set per 7		De-	
	selected stations	all stations] []]	
				Ear

Background models

Models	Description
Reference frame	SLRF2014
ERP	IERS-14-C04
Nutation model	IAU2000 (Mathews et al. 2002)
Subdaily pole model	DESAI: IERS 2010
Ocean tide model	FES2014b: d/o 30 (Lyard et al. 2021) + admittances
Earth Tides	Solid earth tides, Pole tides and Ocean pole tides: IERS 2010
Loading corrections	Ocean tidal loading: FES2014 Atmospheric tidal loading: Ray and Ponte (Ray and Ponte 2003)
De-aliasing products	Atmosphere + Ocean RL06: d/o 30 incl. S1- and S2-atmosphere tides (Dobslaw et al. 2017)
Earth gravity field	GGM05S, COST-G, ? : d/o 90

Study the impact of a priori gravity field models on the estimation of geodetic parameters!

A priori gravity field models

Outline:

UNIVERSITÄT RERN

- Parametrization
 - + Models
- A priori Gravity fields
- •Results •Summary &
 - Outlook

Slide 4

• GGM05S + time-variable coefficients for the zonals $C_{20}/C_{30}/C_{40}/C_{50}/C_{60}$ and C_{21}/S_{21} provided by the ILRS

(«semi» time-variable field)

COST-G (time-variable field)

GGM05S (static field)

Static

L₃₂|L₃₃

Further option: replace C_{21}/S_{21} according to the IERS2010 conventions

LAGEOS-1/2 + LARES: Results

Outline:

UNIVERSITÄT BERN

- Parametrization
 - + Models
- A priori Gravity fields

IUGG Berlin 2023, 28th GENERAL ASSEMBLY, Session: G03c - Time-variable Gravity Field Linda Geisser: Impact of a Priori Gravity Field Models on SLR Data Processing Results LAGEOS-1/2 + LARES

```
\geq LAGEOS-1/2 +
  LARES + Starlette
```

• Summary & Outlook

Glossary: • A: LAGEOS-1/2 • C: LARES

	Replace	X pole	e [µas]	Y pol	e [μαs]	UT1-UTC [μs]		
	C_{21}/S_{21}	Bias	3ias WRMS		WRMS	Bias	WRMS	
Static	×	-295.1	350.8	-12.5	158.7	-36.2	133.7	
Static	~	22.6	132.2	-9.8	116.9	-13.4	83.5	
Time-var. ILRS	×	-86.8	166.5	38.3	146.1	-16.3	87.0	
Time-var. ILRS	~	21.1	130.6	-11.9	115.3	-12.6	81.4	
COST-G	×	-74.8	148.7	60.4	136.8	-8.9	79.1	
COST-G	~	126.6	177.3	-16.0	117.6	-10.2	75.2	

Station coordinates

LAGEOS-1/2 + LARES: Results

Outline:

UNIVERSITÄT RERN

Time-variable Gravity Field

GO3c

Session:

ASSEMBLY

GENERAI

lUGG Berlin 2023, 28th Linda Geisser: Impact o

 Parametrization + Models • A priori Gravity fields Results \geq LAGEOS-1/2 + LARES \geq LAGEOS-1/2 + LARES + Starlette • Summary & Outlook Glossary: • A: LAGEOS-1/2 C: LARES

Conclusions

- The replacement of C_{21}/S_{21} (according to the IERS2010 conventions)
 - improves the geodetic parameters: ERPs (except for X-pole if COST-G model is used), station coordinates,
 - reduces the observation residuals,

independent of the used a priori gravity field model.

The use of the gravity field model provided by COST-G

- improves some ERPs and the station coordinates,
- reduces the observation residuals of LARES.

UNIVERSITÄT BERN

LAGEOS-1/2 + LARES + Starlette: Parametrization

Outline: • Parametrization	Parametriza	tion	VCE		•	Orbital p	lanes			LAC	GEOS-1 GEOS-2 IRES arlette
 + Models • A priori Gravity fields 	Satellites Parametrization	LAGEOS-1/2		2 Starlette			$\left(\right)$		7		
 Results LAGEOS-1/2 + LARES LAGEOS-1/2 + 	Osculating elements Constant and once-per-revolution accelerations	$ \begin{array}{c} 1 \text{ set per 7 days} \\ \hline S_0, S_S, S_C, W_S, W_C \\ \hline 1 \text{ set per 7 days} \\ \end{array} $									
LARES + Starlette • Summary & Outlook	Pseudo-stochastic pulses	no pulses	in along- track (twice per day)	in along- track (twelve per day)							
Glossary: • A: LAGEOS-1/2 • C: LARES • D: Starlette	Earth Rotation Parameters	X _P	$Y_P, UT1 - UT$ Diecewise-linea	rC			1	\bigtriangledown			
	Geocenter coordinates	1 set per 7 days free geocenter 1 set per 7 days NNR and NNT					LAGEOS-1	LAGEOS-2	LARES	Starlette	[1]
	Station coordinates					Diameter [m] Weight [kg]	0.60	0.60	0.36	0.24	
References:	Range biases	1 selected stations	set per 7 days f all sta	or ations		Altitude [km]	5860	5620	1450 69 5	812	
[1] https://ilrs.gsfc.nasa.gov			1				105.0	52.0	05.5	40.0	1

Astronomical Institute, University of Bern **AIUB**

IUGG Berlin 2023, 28th GENERAL ASSEMBLY, Session: G03c - Time-variable Gravity Field Linda Geisser: Impact of a Priori Gravity Field Models on SLR Data Processing • Results LAGEOS LARES LAGEOS LARES + • Summar Outlook

- Glossary: • A: LAGEOS-
- C: LARES
- D: Starlette

Referen

[1] https://ilrs.g

Slide 7

UNIVERSITÄT RERN

LAGEOS-1/2 + LARES + Starlette: Results

Outline:

Earth Rotation Parameters

-	Replace	X pole	e [µas]	Y pol	e [µas]	UT1-UTC [μs]		
	<i>C</i> ₂₁ / <i>S</i> ₂₁		WRMS	Bias	WRMS	Bias	WRMS	
Time-var. ILRS	×	19.8	128.0	47.7	134.3	-8.3	73.2	
Time-var. ILRS	✓	89.1	150.0	0.5	112.5	-9.5	73.1	
COST-G	*	-70.8	150.5	59.7	143.9	-11.1	80.1	
COST-G	✓	145.3	193.3	-33.0	129.8	-6.0	71.7	

Station coordinates

GENERAL

THE 28TH GENERAL ASSEMB

LAGEOS-1/2 + LARES + STARLETTE: RESULTS

Outline:

UNIVERSITÄT RERN

- Parametrization + Models • A priori Gravity
- fields

Time-variable Gravity Field Results \geq LAGEOS-1/2 + LARES LAGEOS-1/2 + LARES + Starlette • Summary & GO3c

Outlook Glossary: • A: LAGEOS-1/2 • C: LARES

• D: Starlette

Session:

SSEMBLY,

lUGG Berlin 2023, 28th Linda Geisser: Impact o

Conclusions

- LARES and Starlette receive from the VCE the highest weights if the COST-G model is used.
- The replacement of C_{21}/S_{21} (according to the IERS2010 conventions)

Astronomical Institute, University of Bern **AIUB**

- has a major impact on the weights of LARES,
- downgrades the X-pole, while the Ypole is improved

independent of the used a priori gravity field model.

SUMMARY & OUTLOOK

Outline:

UNIVERSITÄT

- Parametrization
 - + Models
- A priori Gravity fields
- Results
- \geq LAGEOS-1/2 + LARES
- ➤ LAGEOS-1/2 +
- LARES + Starlette

Summary:

- The a priori gravity field model has an impact on the estimated geodetic parameters of SLR analyses.
- The COST-G model can (should) also be used in the SLR processings.
- Outlook:
 - Study the impact of the a priori gravity field model when the low-degrees are co-estimated.

SUMMARY & OUTLOOK

