Compatibility between disclosed GNSS satellite phase center offsets and their induced scale

A. Villiger¹, R. Dach¹, L. Prange¹, D. Arnold¹, M. Kalarus¹, S. Schaer^{1,2}, P. Stebler¹, A. Jäggi¹

¹Astronomical Institute, University of Bern, Bern, Switzerland ²swisstopo, Wabern, Switzerland

e-mail: arturo.villiger@aiub.unibe.ch

AGU 2021, 17. December 2021

GNSS scale comparisons: test setup

Current situation

What will be presented?	GNSS	Satellite	Receiver
 IGS Repro3 is based on Galileo induced scale 	GPS (BLOCK I-II)	estim	calib
 BeiDou and QZSS are not included 	GPS (BLOCK III)	calib	calib
	GLONASS	estim	calib
Disclosed BelDou and GPS BLOCK IIIA PCO values	GALILEO	calib	calib
allow comparisons between different GNSS	BEIDOU	calib	calib
 Study based on ca. 22 month (Jan. 2020 - Oct. 2021) 	QZSS	calib	calib

• Based on CODE's MGEX solution (1-day solution)

included in the IGS contribution to the next ITRF (repro3 campaign)

Experiment setup

- Based on 2020 and 2021
- Using extended Repro3 ANTEX
- Including GPS, Galileo, GLONASS, BeiDou, and QZSS
- Based on CODE 1-day MGEX solutions
- Total of 140 stations used

Figure: Tracking situation: GPS-only Galileo BeiDou (Network 1. January 2021)

Percentage of observations compared to GPS

Setup summary

Number of stations:

(total processed: 140)

Number of observations / satellites

GNSS	early 2020	late 2021	Туре	#1000 obs	% of GPS
GPS	140	140	BLOCK IIIA	150	100
Galileo	106	115	GALILEO-2	120	80
BeiDou	70	90	BeiDou 2M	65-100	45-65
201204		50	BeiDou 3M	65-100	45-65

- GPS satellites (except of the latest GPS BLOCK IIIA) well observed
- Galileo mostly well observed (avg. 80% of the GPS observations)
- BeiDou MEO satellites are observed significantly weaker compared to GPS (45-65%)
- Potential reason for scale comparison discrepancies

Scale comparisons and experiments

- Compatibility between the different GNSS PCOs:
 - \rightarrow estimation of system-wise PCO corrections while constraining the PCOs of one GNSS
- Consistency of the disclosed PCOs of one GNSS:
 - \rightarrow scale introduced by setting up a zero mean condition on the chosen GNSS
- Analyzing the time stability of the PCOs:
 - \rightarrow PCO estimation using a sliding window of 30-days

Datum definition

- PCO fixed: PCO tightly constrained
- zero mean condition:
 - $\sum_{GNSS} PCO_{sat} = 0$

PCO estimation:

Estimation of PCO corrections w.r.t. their a priori values.

- system-wise PCO: one offset per system
- individual offset: one offset per satellite

System-wise PCO corrections for different GNSS scale definitions

Results of system-wise PCO <i>z</i> -offset estimation in cm								
	GPS	GLO	GAL	BDS*				
	-	2.1	0.3	-24.0				
	-0.8	-	-1.2	-25.3				
	0.6	2.3	-	-23.8				
	21.9	21.9	26.9	_*				
*.	ReiDou3 MEC) satellites w/	SVN latest	two RDS 3 satellity				

- QZSS PCO correction due to their IGSO orbits not listed (high correlation between clock and zPCO)
- GPS, GLONASS, and Galileo are consistent which is to be expected (GPS and GLONASS PCOs are based on Galileo scale)
- BeiDou offset is about 20cm. The reason for this is still unclear.

Detailed study details for Galileo and BeiDou will be presented in the next slides.

Galileo induced scale

Datum: zero mean condition over all Galileo satellite PCOs

Galileo induced scale: z-PCOs in cm

Stability over time: 30-day solutions (z-PCO in cm)

Galileo induced scale

- · GPS BLOCK IIIA and Galileo PCO calibrations are compatible with each other
- Galileo and GPS PCO estimations vary between +/-5 cm
- Non-BLOCK IIIA GPS and GLONASS PCOs values are based on Galileo scale
- High variations for BeiDou IGSO satellites (ightarrow expected, different geometry)
- → BeiDou MEO satellites show a higher scatter (and offset) Potential issues: network, less tracked (ca. 50% observations w.r.t. GPS) in our experiment; orbit modeling issues
- New oportunities with the disclosed PCO values. Further studies may lead to a better understanding.
- Impact of phase variations needs to be further investigated

BeiDou 3 MEO satellite induced scale

Datum: zero mean condition over all BeiDou 3 MEO satellite PCOs (exception of the latest two BeiDou3 satellites)

BeiDou 3 MEO induced scale: z-PCO in cm

Percentage of observations compared to GPS

Figure: 100% is defined as the satellite with most observations per day

BeiDou 3 MEO induced scale

- The BeiDou PCO values are not consistent with the Galileo scale
- Similar findings were confirmed by other groups (e.g Qu et al. 2021, Remote Sens.)
- The PCO offsets are not constant among different satellite types
- The estimated *z*-PCO corrections vary much more between satellites (compared to Galileo, or comparted to the Galileo case)
- BeiDou satellites are less observed compared to GPS and Galileo in our study
- IGSO satellites are less affected by scale \rightarrow difficult to estimate (high correlation with satellite clock)
- Potential issues: Satellite modeling deficiencies?
 - \rightarrow needs still further analysis

