Impact of accelerometer modelling and parameterization on the BepiColombo orbit determination and gravimetry experiment

Alireza HosseiniArani 1,2,5, Stefano Bertone 3,4, Daniel Arnold 1, Adrian Jäggi 1, Nicolas Thomas 2

1 Astronomical Institute, University of Bern, Bern, Switzerland
2 Physics Institute, University of Bern, Bern, Switzerland
3 NASA Goddard Space Flight Center (GSFC), Baltimore, MD, United States
4 Center for Research and Exploration in Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD, USA
5 Institute of geodesy, Leibniz University Hannover, Hannover, Germany (current affiliation)

43th COSPAR Scientific Assembly
28. Jan – 04. Feb 2021 | Sydney, Australia
Introduction

Mission:
BepiColombo mission
Launch: October 2018
Arrival to Mercury: Dec. 2025
MPO: Mercury planetary orbiter

Relevant on-board instruments:
ISA: Italian Spring Accelerometer
MORE: Mercury Orbiter Radio-science Experiment

Goal of the study:
Impact of accelerometer noise modelling and its parameterization on the MPO orbit determination and gravimetry experiment

Tool:
Planetary extension of **Bernese GNSS software**
Developed at the Astronomical institute of the University of Bern
Also used for planetary POD for GRAIL and for mission concepts at Europa
Model description

Force model:
- Mercury gravity field HGM050 d/o 50
- Sun and planets third body gravitational perturbation
- Tidal perturbations (Sun)
- Solar and planetary radiation pressure

Simulation of Doppler observations:
- 2-way X-band and K-band
- White noise on the observations
- Station and planetary eclipses

Simulation of accelerometer measurements:
- White and colored noise based on ISA team publications
- Random biases are added to the accelerometer measurements (constant for every two weeks)

Parameter estimation

Assumptions:
- Error on the initial state vector of each arc
- NO knowledge of non-gravitational forces

We solve for:
- Initial state vector of the arcs
- Coefficients of the gravity field
- Accelerometer parameters

Impact of accelerometer modelling and parameterization on the BepiColombo orbit determination and gravimetry experiment
Model description

\[A_{\text{meas}} \approx B + S_f A_{\text{true}} + A_{\text{noise}} \]

Alessi et al (2012)
Model description

Accelerometer model

Alessi et al (2012)
Zero test: A test for model verification

- No Doppler noise, No initial condition error
- We use the same force model in simulation and parameter estimation
- Doppler residuals are in the order of 1E-5 Hz
Results

Sensitivity analysis
Recovery of the accelerometer parameters to the arc length

Recovery error of ACC biases as a function of arc length

Along-track direction of the ACC bias can be determined with one day arc

Factor 10 improvement with 5 days arc

Factor 50 improvement with 10 days arc

Impact of accelerometer modelling and parameterization on the BepiColombo orbit determination and gravimetry experiment

Recovery of ACC bias
Using 1 day of observation

Recovery of ACC bias
Using 15 days of observation

Recovery of ACC bias
Using 1 day of observation

Recovery of ACC bias
Using 15 days of observation

Impact of accelerometer modelling and parameterization on the BepiColombo orbit determination and gravimetry experiment
Sensitivity analysis
Recovery of the accelerometer parameters to the Doppler and accelerometer noise

Impact of accelerometer modelling and parameterization on the BepiColombo orbit determination and gravimetry experiment
Results

- Recovery of the gravity field, spacecraft orbit and accelerometer parameters
- At least 5 days of observation for the recovery of the ACC parameters
- Different assumptions on the accelerometer noise and bias lead different results for the recovery of the orbit and the gravity field

Impact of accelerometer modelling and parameterization on the BepiColombo orbit determination and gravimetry experiment
• If the a priori field is similar/close to the real field the process is
• If a degraded field is used, accelerometer parameters must be dealt with very carefully.
• If not constrained, the ACC parameters can absorb the unmodelled dynamics and ruin the solution
• Stochastic pulses / empirical accelerations are needed to absorb the unmodelled dynamics and avoid them from going to the ACC parameters.
• One solution is to first solve for the orbit/gravity by ignoring the ACC parameters and solve for them using the recovered field
• Testing different orbit determination strategies
• Full results, including the final accuracy of the gravity/orbit recovery in different cases will be presented in the paper to be submitted