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Satellite Geodesy Research Group

roit determinztion
avity field reqovery

SLR data zanzlysis
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Selected improvements in the daily processing

e Updates for international formats

= troposphere SINEX and
= clock RINEX

e Bernese internal advances

= improving the numerical stability for
reference ambiguities for GLONASS

= developing some programs for an easier import
of (multi-GNSS) broadcast ephemeries

= unifying the structures of GPSEST and ADDNEQ2
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CODE reprocessing for ITRF2020
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e Orbits for GPS back to 1994; GLONASS starts in
2002 and Galileo in 2013
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CODE reprocessing for ITRF2020
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e A limited number of stations track the constellations

at the beginning; long-arc solution is helpful.
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CODE reprocessing for ITRF2020

e As reported last year, a new set of calibrations for
the receiver antennas has been established by
Geo++.

e The set of calibrated antennas allows:

= to exclude observations for systems where no
separate calibration is available
(COPIED FROM GPS)

= to deselect stations without calibrated radoms:
with the exception of a few stations before 2000
(COPIED FROM NONE)
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Stochastic pulses in long-arc solutions

1(G07)
1(G24)

1(G30) |

1(G31)
2 (G12)
2 (G1s6)
2 (G25)
2 (G26)
2 (G28)
3 (G04)
3 (G08)
3(G17)
3(G19)
3(G27)
3 (G29)
4 (G01)
4 (G02)
4 (G06)
4 (G11)
4 (G18)
4 (G21)
5(G03)
5 (GO5)
5(G10)
5(G20)
5(G22)
6 (G09)
6 (G13)
6 (G14)
6 (G15)
6 (G23)
6 (G32)

Slide 8

Noon and midnight
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Stochastic pulses in long-arc solutions

Noon and midnight
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Misbehaving GPS satellites

PRN/SVN satellite active downweighted
02 13 1989-06-10 2004-05-13  2001-04-10 2003-06-03
14 14 1989-02-14 2000-04-16  1996-05-16 2000-04-16
15 15 1990-10-01 2007-03-14  1999-04-21 2003-01-02
16 16 1989-08-18 2000-10-14  1996-02-08 2000-10-14
17 17  1989-12-11 2005-02-24  2000-12-03 2003-07-16
18 18 1990-01-24 2000-08-19  1996-05-12 2000-08-19
19 19  1989-10-21 2001-09-12  1996-04-29 2001-09-12
21 21 1990-08-02 2003-01-28  2000-12-31 2003-01-28
23 23 1990-11-26 2004-02-17  1995-02-01 2002-01-02
24 24 1991-07-04 2011-10-01 1997-11-15 2004-07-11
29 29 1992-12-18 2007-10-24  2001-12-02 2007-10-24

e For some of the satellites it is confirmed that there
are issues with the momentum wheels; others show
the similar behavior.
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Misbehaving GPS satellites
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Misbehaving GPS satellites

Solution type
— No sat. weighting
— 5Sat. downweighting

0 100 200 300 400 500
Period in days

e Spectra of differences w.r.t. the C04 series
computed from the years 1997 to 2002
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Satellite clock corrections

e GPS constellation:

= since May 2000: 30s; 2005: 5s sampling
e GLONASS constellation:

= since 2008: 30s and 5s
e Galileo

= since 2013: 30s and 5s

e For GPS and Galileo phase bias corrections have
been computed allowing for PPP-IAR.
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Publication of CODEs repro results

e The computation of the geometry part was done at
TUM (according to the strategy developed at AIUB).
The generation of the solution for the clock
corrections and phase biases was done at AIUB.

e The AIUB contribution (1994-2019) was completed
and submitted to the IGS in September 2020.

e It will made available to public at
ftp://ftp.aiub.unibe.ch/REPRO_2020/
as soon as the combination at IGS level is finished.
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Satellite Geodesy Research Group

BR0) oroit determinztion
avity field regovery
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Multi-satellite cannonball SLR solutions

SLR solutions

_ LAGEOS-1/2,
Estimated parameters Starlette, Stella, AJISAI, LARES,

Blits, Larets, Beacon-C _ LAGEOS-1
Osculating
elements

a, e, 1, Q, o uy @
(LAGEOS: 1 set per 10 days,
LEO: 1 set per 1 day)

LAGEOS-1/2 : So, Ss, Sc

_LAGEOS-2

Dynamical (1 set per 10 days)
parameters Sta/Ste/AJl : Cp, Sc, Ss, W¢, Ws
(1 set per day)
Pseudo-stochastic LAGEOS-1/2 : no pulses
pulses Sta/Ste/AJl : once-per-revolution

in along-track only

Earth rotation Xp, Yp, UT1-UTC
parameters (Piecewise linear, 1 set per day)

Geocenter coordinates 1 set per 30 days

Earth gravity field Estimated up to d/o 10/10
(1 set per 30 days)

Station coordinates 1 set per 30 days

Other parameters Range biases for all stations (LEO)
and for selected stations (LAGEOS)
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Analysis of ERP Parametrizations

PWC: Component A priori sigma |Unit
X—Pi ;LE 30,0 mas Estimated ERPs treaten as PWC or PWL pa}rameters for LAGEOS+ETALON solutions
Y-POLE 300 —r . w.r‘.t. C04-Series (ITRF 08) .
T1-UTC first 0,00001 G os ey
(U4 pai,c h ms £t B /*\\\X_“ A _
UT1-UTC other 0,00001 ms E \;_* _________ A —
LOD 2 ,O ms /d ;8- 0.2 *\/ ipwg MEAfN'ZHYB;(aS RMS: 0.08pas
PWC/ PWL* free: 04 Jun 14 Jun 17 Jun 20 Jun‘ 23 Ju;ﬂf:
Component A priori sigma |Unit o
X-POLE 30,0 mas 2 04 //\\
E ¥ N -
Y-POLE 30,0 mas 5 oz \‘\*W_P__* pa /,/* /\“ 4
UTT-UTC first 0,00001 ms E [T \ Sy |
(4. para) :%70_2 \‘\ A '// ipwc MEAN: T21.544:aﬁ RMS: 0.05 a8
UT1-UTC other 0,0 ms | "eﬁ/‘"* . S&Eiiﬁtl’iﬁa@im;S,?i‘fMSM.fg.:,‘?f{“
LOD 0’0 ms/d Jun 14 Jun 17 Jun 20 Jun 23 Juzré“ls
PWC/PWL* sc (strong constraint): [ 8
Component A priori sigma |Unit z " ',,*\ s / . A ) - Pwopwis *s% |
X-POLE 30,0 mas e T N\ - K\/\ T
Y-POLE 30,0 mas £ |
UTT-UTC first 0,00001 ms | Y | i
(4.para) : Jun 14 Jun 17 Jun 20 Jun 23 J;Zf:
UT1-UTC other 0,1 ms
LOD 0,0 ms/d

“PWC/PWL :

ole motion is

iecewise-constant, onl

UT1-UTC is

iecewise-linear
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Satellite Geodesy Research Group

pernese GNSS Sortware

SLR data analysis
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Copernicus POD Service

At AIUB precise orbits of all Sentinel satellites are computed

"7 “ = Courtesy: ESA
Sentinel-1A

Sentinel-1B Sentinel-2A

Sentinel-2B

ﬁ POsITiv ji

Verpos @ INNOVATING SOLUTIONS

sentine-3A & esa [ Gpernicus
Sen tl n el '3 B \K\t %&g&g Europe’s eyes on Earth
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Copernicus POD Service
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Results from Copernicus POD Regular Service Review (RSR) #018 show that AIUB
solutions for Sentinel-3A are, e.g., performing best in the SLR analysis performed by
GMV (biases fixed by GMV).
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Jason-3 Precise Orbit Determination

Jason-3 POD using Bernese GNSS Software

POD using Ambiguity-float GPS carrier phase observations
POD using Ambiguity-fixed GPS carrier phase observations

Comparison of AIUB orbit solutions (ambiguity-fixed) to
solutions computed by NASA Jet Propulsion Laboratory
(JPL):

6.6 Daily mean values of comparison

0.03

*— Radial direction
! Along-track direction
Cross-track direction
0.02- {

| Image credit: CNES

= 001/ A L T Orbital parameters:

£ D.;;w,.:-*ffwﬂ Y_ L . 2 | a8 ';_:'--,1’:;;-‘;"«:;‘4‘J"‘.s'.*..."I

R E S diia S LI 3|
001 b Fiaat B r ALY LI - oL
! I Inclination 66.04°
-0.03 — .
0 50 100 150 Eccentricity 0.0007824
Day of year 2019 . : ) e
Credit: https://www.nesdis.noaa.gov/jason-3/mission.html
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GOCE Reprocessing
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Significant improvement of bi-monthly GOCE GPS-only gravity field solutions due to
weighting problematic GPS data in the reprocessed kinematic positions of the GOCE
Precise Science Orbits (PSO).

Slide 22 Astronomical Institute University of Bern AIUB



GOCE Reprocessing

weighted PSO

______ ‘ _
without /(e NG 7 \OSA v N &
ACC data T\ o Jjemessrge ™ LSRG 7 gl
with
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Artifacts are also significantly reduced in long-term solutions covering the science
phase of the GOCE mission (Nov 2009 - Oct 201 3).
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GOCE Reprocessing

Cosine

GRACE

GRACE
GPS

GOCE
GPS

equivalent
water heights
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Despite the relatively short GOCE mission duration even the largest time-variable
signals may be recovered from the analysis of the reprocessed kinematic GOCE
PSOs.
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Time-variable gravity field recovery

e Monthly gravity fields from GRACE Follow-0On are routinely derived at AIUB and
published on ICGEM (Lasser et al., 2020).

e Monthly gravity fields from various GRACE/GRACE-FO analysis centers are
combined at AIUB in the frame of COST-G (Combination Service of Time-
variable gravity fields, Jaggi et al., 2020).

) ~_ Greenland Ice Sheet
2000 [ J I

. E—— |
GFZ RLO6 | 50— T T T T T T T
CSR RLO6
——— ITSG-Grace2018 |
1500 - COST-GRLOL | 5
AIUB RLO2 f . F u ¥ m & .- e
CNESRLO4 | MI!J o | IIII! l
1000 -1 ] | T | b | 8 |
5oL Ll [y i | B
= 500 | ¥
e
o ® 100/ | B
o 1] “ = |
5 8
S \‘. 2
% -500 - \ ¥ .150 | B
E [ =
-1000 - M 44 . _
wn! -200 - ||
\?‘.\ I GFZ RLOG I
-1500 - 1 B CSRALDS ||
! 250 - | EE 1TSG-Grace2018 n
s N COST-G RLOL T
-2000 - . [ AIUB RLO2 !
I CNES RLO4 .
R ) GIS
| - - - - 1 - L —t S e A — Xl J _300[ 1 1 1 L 1 1 1 L . 1
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 1 2 3 4 5 6 7 8 9
Time Basin number

(Meyer et al., 2020, Groh et al., 2020)
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COST-G

VCE-derived weights (normalized):

' ' e GF Z
0.4 + |7—CSR
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0.1 + -
0
rp— (7
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= —— | TSG
— LUH
T
= 001 | 4 |[——AwB
LL s (GRGS
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0

AlIUB solutions get the largest weights in the combination performed on solution
level by using Variance Component Estimation (VCE).
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COST-G Level-2 Products

ICGEM Home

Gravity Field Models
Static Models

Temporal Models

Topographic Gravity
Field Medels

Calculation Service
Regular arids
User-defined points

3D Visualisation
Static Models
Temporal Models
Trend & Amplitude

Spherical Harmonics

Evaluation
Spectral domain
GNSS Leveling

Documentation

EAR
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GFZ

Helmholis Cantre
PoTrtsoam

TCGEM

Gravity Field Solutions for dedicated Time
Periods

The following gravity field time series are presently available:

GRACE and Grace-FO solutions from the Science Data System centers CSR, GFZ and JPL coliapse all

- CSR Center for Space Research at University of Texas, Austin
- GFZ Helmholtz Centre Potsdam German Research Centre for Geosciences
GFZ Release 05 monthly weekly GFZ GRACE Level-2 Processing, Revised Edition, January 2013
GFZ GRACE Level-2 Processing Standards Document for Level-2 Products, Rev.
GFZ Release 06 DOl monthiy 1.0, Oclober 26, 2018 .
GFZ Release 06 (GFO) DOI  monthly GFZ GRACE Level-2 Processing Standards Document for Level-2 Products, Rev.

1.0, June 3, 2019

- JPL Jet Propulsion Laboratory

The processing standards to generate the GRACE Level-2 products of CSR, GFZ and JPL
are also available in the Document Section of the GRACE archives at GFZ ISDC or JPL PO.DAAC

COST-G (Internaw. 2nal Combination Service for Time-variable Gravity Field)

DOI monthly
DOl monthly

collapse all

GRACE | CHAMP solutions from other groups

+ AlUB Astronomical Institute University Bern
AWUB-GRACE-FO op DOl maonthly Operational GRACE Fallow-Cn manthly gravity fisld solutions from AIUB
AIUB-RLOZ sty E§QCE monthly solutions Release 2 from AIUB, more information can be found
+ CNES Centre national d'études spatiales

Astronomical Institute University of Bern AIUB



COST-G Level-3 Products

Slide 28

Ogean Bottom Pressure

@ G r l S GFZ GERMAN RESEARCH CENTRE

Welcome to GravlS, the Gravity Information Service of the German Research Centre for Geosciences (GFZ), in collaboration with the
Alfred-Wegener-Institut (AWl) and Technische Universitdt Dresden. Data products derived from the gravimetric Earth observation
satellite misslons GRACE and GRACE-FO are widely used by scientists and other interested users to study mass variations in the
Earth system. However, processing of GRACE/GRACE-FO data into user-friendly products for dedicated geophysical applications is
nontrivial, neither when starting from original satellite observations nor from the level of gravity field products. In order to enable
the usape of satellite gravimetry data for a broader community, user-friendly ('Level-3') products are generated by various
institutions.

st recent GRACE and GRACE-FO da
addition, Level-3 products based on the most recent releas combined GRACE models from COST-G pffered as well. The
products presented at Gravls are available for download at GFZ'S f S ner (ISDC).

Gravls visualizes and describes Level-3 products based on t |ease from GFZ. In

Follow-0On mission [GRACE-FO; launched in May 2018) typically provide
monthly independent estimates of the Earth's global gravity fleld.
Differences between consecutive months are caused by mass radistribution
and mass transport in the Earth system, particularly in the geophysical fluid
layers of the atmosphere, oceans, and continental hydrosphere,

GRACE,/GRACE-FO data processing is structured into sensor data analysis

geophysical mass anemaly inversion (Level-2 to Level-3). Level-3 products at
Gravls comprise gridded mass anomalies as well as basin average time series
and are available for terrestrial water storage over non-glaciated regions,
bottom pressure variations in the oceans, and ice-mass changes in both
Antarctica and Greenland. [n order to achieve the highest possible accuracy
of the mass anomalies, several post-processing steps have been applied to
the Level-Z spherical harmonic coefficients before inversion.

Astronomical Institute University of Bern AIUB

Hewreroere Centee Poraoam

FOR GEOSCIENCES

TERRESTRIAL WATER OCEAN BOTTOM ANTARCTIC GREENLAND CORRECTIONS AND RELATED LINKS
STORAGE PRESSURE ICE-MASS CHANGE ICE-MASS CHRNGE AUKILIARY PRODUCTS

The Gravity Recovery and Climate Expeniment (GRACE; 2002 - 2017) and its ""HA\'H
2
2]

Terrestrial Water Storage (Level-0 to Level-1), global gravity field estimation (Level-1 to Level-2), and Greenland Ice-Mass Change

Antarctic Ice-Mass Change



Outlook — H2020 Project G3P

HORIZON 2020

e Satellite gravimetry with
GRACE (2002-2017) and
GRACE-FO (2018 -) is the
only technique to observe
Terrestrial Water Storage
(TWS) variations

e Resolving for groundwater
storage variations follows a
subtraction approach.

e A prototype for a global
groundwater product shall be
established for the Copernicus
Climate Change Service in the
frame of a H2020 project G3P.

Groundwater Soil moisture Lakes Rivers Ice and snow
L 1 1 1 1 |

TOTAL WATER STORAGE

Groundwater = TWS - glaciers - snow - soil moisture - storage in surface water
/f/
e i ot
(Gintner et al., 2020)
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Outlook — ERC Project SPACE TIE

Data Basis

* ~ 80 GNSS satellites

o ~ 20 LEO satellites
(gravity and altimetry)

« GNSS and SLR ground networks

=> Arigorous joint adjustment should be
envisaged

Main ldea (in a nutshell)

» Use of the Earth’s gravity field to act as an
additional global tie via satellite orbits

» Exploitation of space co-locations (space ties)
on both GNSS and LEO satellites
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Gravity field recovery using Low Callisto/Europa Orbit

To answer the extensive interest of Jupiter’s icy moons, several missions are
proposing to send a low altitude orbiter around one of the Galilean moons. As
JUICE mission will focus on Ganymede, other mission proposals are targeting
Callisto with the Chinese exploration mission Gan De and Europa with the Joint
Europa Mission. At AIUB, we performed closed-loop simulation to investigate the
aravitv field recoverv of Callisto and Europa usina different tvpes of orbits:

e Elliptic orbits: polar orbits foreseen for capture around Callisto/Europa.

e Low altitude orbits for initial science investigation.

e Very low altitude orbits which would improve even more the gravity field
knowledge (regular manoeuvres to counteract orbit decay).

° (SSO) for a permanent sunlight for the probe, and a
minimization of the spectral signature due to the Sun position. They
present an important polar gap and are highly dependent on the gravity
field knowledge at low altitude.

e Repetitive Ground Track Orbits (RGTO) which allow repeat observations of
a given point of the surface and an efficient station keeping manoeuvres.
Enough repetition within a cycle low the effect of low-density ground
tracks, in comparison with non-RGTO for a 3 months mission.
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Simulation set-up and Callisto example

Orbit characteristics Max. degree Simulation flow chart Initial condition
88° 200x200km 70 (for each orbit)

88° 400x400km 4> "l 90/200 days propagation
112° 400x400km (SSO) 18
88° 400x1400km 19 y y
i N Dailyinitial @ 2-way Doppler
Sl perturb-atlons. conditions X-band obs.
Sun, planets, Galilean moons
- Jupiter gravity field
- Tides from Jupiter 0,=50m | | Ooos=0.1mm/s
o,=1mm/s att=60s

A A 4

Reference Callisto gravity field:
gravity Generalized orbit determination

-d/o 2: Anderson et al (1998) Celestiol Mechanics A ’
- d/o 3 to 50/90: scaled Moon’s field (e e daady)

A 4

\4

Comparison: ACym, ASym, Aga,p

Stacked normal equation

k, and gravity field solution (90/200 days) Daily normal equations

Orbit propagations in a full force model, as well as the whole gravity field recovery process were
done using a development version of the Bernese GNSS Software.
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Public Outreach

.._ : ~
Virtual World Tour 2070

ILRS Virtual World Tour 2020
November 2-6, 2020

Tuesday, November 03:
13.00-15.00 UTC Tour of Zimmerwald, Switzerland

Slide 34 Astronomical Institute University of Bern AIUB



Space Debris Observations (Daytime pass!)

SLR Observed-Minus-Predicted
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EL-55 (YF24) (Long March (CZ) 2C)
NORAD: 28480

Date 12-JUN-2020

Starting pass: 18:41 UTC

Sun elevation: 6.58°

CS: 29 [m2]

Mass: 3800 [kg]

Object class: rocket body (cyl)

Credit image: Zhipeng L.
(2016)

Simultaneous Real-Time
Observables (4D) (!):
 Ranges

« Azimuth and Elevation
e Brightness
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Space Debris Observations

OBS-COMP [nsec]
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Detections by Real Time Filter

Noise
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ERS-2

NORAD: 23560

Date 17-Sep-2020

Starting pass: 02:15 UTC
Object class: decommissioned
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ILRS SLR Performance
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24 /7 operations

highly automated

2 shifts

student night observers
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O High Satellites
Lageos 1+2
O Low Satellites

O

2020-04-11 - 2020-04-17

ILRS Observed passes per week

Best week 2020
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New 1kHz 10ps Laser System

e New 1kHz, 10ps laser
arrived in Bern!

e Acceptances test going on

e Will be mounted in parallel
to existing laser (2021)

e Goals:

= increase accuracy from
12mm to 2mm

= jncrease number of
measurements by a
factorof 10
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