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Introduction

CODE MGEX (COM) orbit and clock solution since 2012 (see doi:
10.1007/s00190-016-0968-8 for description; changes from 2015 on
summarized in next IUGG report); SRP model: ECOM?2

BeiDou2 (BDS2) MEO+IGSO since late 2013; QZSS since early 2014
BDS2 and QZS-1: Orbit-Normal (ON) attitude during eclipses

ECOM models designed for Yaw-steering (YS); not suitable for ON-
mode (= very poor orbit quality during ON periods)

Other groups: ECOM plus box-wing a priori model (Montenbruck et al.
2017, Zhao et al. 2018) for individual satellites or additional along-
track acceleration parameters (e.g., Guo et al. 2017)

Our goal: definition of an ECOM suitable for the ON-mode (to be used
stand-alone or together with an a priori model)
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Attitude modes of GNSS satellites

GNSS YS | Ecl. law Other
(small B)
GPS X X

GLONASS X X

Galileo X X

BDS2 MEO, IGSO X X X (|B] < 4°)

BDS3 MEO, IGSO X X

QZSS 1GSO X X X (IB] < 17°)

IRNSS X
GEO (SBAS, BDS, QZSS, non GNSS) X

(see doi 10.1016/j.asr.2015.06.019 for detailed information)

« MEO and IGSO satellites (BDS2, QZS-1): ON-mode is a special case
of an eclipse attitude law (applied to avoid rapid noon and midnight
turns at small B-angles)

* GEO satellites keep ON permanently (|B| < (23.5° + 1)) IS
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Solar Radiation Pressure (SRP) - definitions

SRP acceleration due to illumination of a surface (without re-radiation)

Aror = Ay + A, + ag according to Milani (1987):

a, = —PFcosOa absorption (coeff. a)
a, = —PF 2cos® 0 pesy, specular reflection (coeff. p)
as = —PF cos0 (6¢, + %5 esy) diffuse reflection (coeff. §)

PF: Pre-factor; function of solar flux, speed of light, AMR

Unit vector in Sat.-Sun direction

ew. Unit vector normal to orbital plane
with eqy, espy. Unit vectors normal to surface i and to solar panel
0: Angle enclosed by - and eg),
B: Elevation of the Sun above the orbital plane
Au: Difference between arguments of latitude of SC and Sun
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SRP during YS mode

Spacecraft-fixed reference frame
(Yaw-Steering attitude):

Acceleration due to solar radiation (Yaw-Steering attitude):

hd = €5,

Solar panel (SP) plane is always parallel to the
terminator plane and normal to the vector
Satellite-Sun (1)) (= 6=0)

SRP due to SP: covered by one parameter in

SC's Y-sides: are never illuminated (= E2=0;
exception: Y-bias)

SC body (+Z, -Z, +X panels): causes additional
SRP signal, periodic w.r.t. Auin 0 and E1
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SRP during ON mode

Spacecraft-fixed reference frame Acceleration due to solar radiation (Orbit-Normal attitude):
(Orbit-Normal attitude):

|
e "lv?!.\x g

SP-normal (SPN) deviates from the vector 1) (= 6 =)
Power generation and SRP (a;,;) reduced - compared to the YS-mode

SRP force vector due to SP is in the plane spanned by [, Y, and SPN (if all
energy would be absorbed, the vector would point in -1 direction)

SRP due to SC body causes additional SRP signal, which is periodic w.r.t.

Au and
B <
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Coordinate systems for modelling SRP

OPLAN (Orbital Plane) frame: Acceleration due to solar radiation (Orbit-Normal attitude),
and its projection into an Orbital Plane Fixed Reference Frame (OPLAN)
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TERM (Terminator) frame: Acceleration due to solar radiation (Orbit-Normal attitude),

and its projection into the Terminator Reference Frame (TERM)

ep Xew

| eTi = ep Xew
By = €p X e,
er, = ep

SRP due to SP can be absorbed by 2 parameters, which are constant w.r.t.
Au, but not w.r.t. B = both frames are suitable in practice

TERM better suited for physical interpretation (T2 component depends solely
on reflected solar radiation) ®
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Coordinate systems for modelling SRP

RSW (orbit-fixed) frame:

 OPLAN is special case of RSW

W « TERM is special case of ECOM
_____ o c. -g = ° Difference: frame rotation = in RSW
el and ECOM one of the constant
e W components is split up into two
E‘(ﬂ;s components, which are periodic w.r.t.
g, B and Au, respectively

= more complex
ECOM (Empirical CODE Orbit Model) frame: « SRP due to SC bus is adding to it

« ECOM-frame offers at least
operational advantages: the same

=0 A =2 basic ECOM model could be used for
Ny YS and ON modes = model switch
o by adding/removing constraints on
® . 1{51_' the additional E2-parameters;
\:iz. . physical interpretation of periodic E2-
R coeff. would be same as for T2
@
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SRP simulation

Simulation of SRP (based on Milani, 1987) for SP and SC body separately

with varying Au and 8 angles

Data basis: QZS-1 meta data released by Cabinet Office, Government of

Japan (2017) and by Montenbruck (2017)

Projection into different possible SRP model frames (RSW, ECOM, TERM,

OPLAN); final decision in favor of TERM

Fit of simulated accelerations with truncated Fourier series and selection of

significant coefficients
ECOM-TM: * Minimal parameterization for SP only

* B slowly changing in time = param. not

constant = not suited for long arcs

Simulation, SP, T3 component Simulation, SP, T2 componant

8
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SRAP accalaration [nmis* 2]

1 1 1 |
B8 BB & 8 -
SRP accalaratio

T3(Au,3) = T30C1b cos 3
T2(Au, ) = T20S2bsin 23
Fl{Au,5) =0

ECOM-TBM: « ECOM-TM considerung B-dependency

= suitable for long arcs

.
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SRP model definition

SRP acceleration due to the surfaces of the SC body causes more complex signal:

o Simulation, box, T3 component 15 Simulation, box, T2 component . Simulation, box, T1 component
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du [deg] du [deq] du [deg]
(Colors highlight B-angles: green: -80°, blue: -30°, red: 0°, gray, dotted:+80°)

ECOM-TB: <+ Full model (covering SP + SC body) with 9 SRP parameters
« Stochastic pulses/accelerations (= ECOM-TBP) or an a priori
model may be added

T3(Au,3) = T30Clbcos 3  + T3C2uClb cos2Aucos 3
+ T3S2uC1bsin 2Au cos /3
+ T3C4uC1lbcos 4 Aucos 3
+ T3S4uC1bsin 4 Au cos 5
T2(Au, 3) = T2083bsin33 + T2C2uS2b cos 2Au sin 23
+ T2S2uS2b sin 2Awu sin 23
U (A, ) = T1S2uC1lbsin 2Au cos 3
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Application to POD of QZS-1

Agreement between simulated and estimated (QZS-1) ECOM-TB coefficients:
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Significant reduction of SLR residuals and CLK-fit RMS during ON-periods (QZS-1,
3-day long arc solution) @
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External Validation

Comparison between QZSS orbits (QZS-1 in black) from the MGEX solutions
“JAXA” and “COM”. Time windows with ON mode are shaded in gray
(screenshot taken from http://mgex.igs.org/analysis/):

Ephemeria comparison
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Internal Validation

Orbit validation with SLR residuals (SLR), linear fit of satellite clock corrections
(CLK), orbit misclosures (OMC), and 3-day long-arc fit (ORB-fit) for BDS2 IGSO
(Bl), BDS2 MEO (BM), and QZS-1 (Q1) satellites with different SRP models
during ON-periods in late 2014 to late 2015:

Vali.-Method | SLR, IQR [cm] CLK-fit, median [ns OMC, median [cm] ORB-fit, med. [cm]

Sat.-System

ECOM2 205 21.0 620 1.72 161 143 559 29.2 424 230 101 141
ECOM-TB - - 15.2 - - 0.35 - - 142 - - 5.6
ECOM-TBP - - - - - 9.8

ECOM-TBMP - - - - - - 440

QZS-1: improvement by factor of 3 -4 (ECOM-TB vs. ECOM2)

« BDS2 MEO: improvement by factor 2 with ECOM-TBP (pulses in R,S,W every
12h added)

« BDS2 IGSO: minimal model (2 SRP param., no periodic terms) plus pulses
(ECOM-TBMP); improvement by factor 2 over ECOM2 for most validation
methods; poor long-arc fit, because model is highly un-physical; difficulties to
determine full ECOM-TB in a long arc POD ®
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Summary

Terminator reference frame (TERM) defined as a suitable
coordinate system for empirical modelling of SRP
accelerations during ON-mode

Definition of the ECOM-TB (i.e., an ECOM using the
TERM frame and considering the B-angle) model ‘family’

ECOM-TB performs well for POD of QZS-1

Problems with POD of BDS2 IGSOs - especially for long-
arcs (pulses needed)

Activated for COM since Summer 2018
Paper containing model details: submitted to ASR

Combination with a priori models not yet tested
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Thank you
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your interest!
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Orbit errors

Ground stations contributing 90
to and ground-tracks of
BDS2 (IGSO) and QZS-1
orbits. The width of the lines
corresponds with the
number of ground stations
with view to the satellite at
the given location (elevation ~ -45 |
cutoff 45°; early 2015).

Latitude [deq]
o

'BDS2 IGSO ‘

oo

—— BDS2 MEO

 —— QZS-1 Longitude [deg]
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Formal error of radial orbit component

Formal error radial [cm]
I

2 (in cm) of QZS-1, BDS2
oL MEO, and orbits (YS and
ECOMZ2 applied to all satellites)
Day of year 2015 &
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