Complete 5-years time series of combined monthly gravity field models derived from Swarm GPS data

EGU2019-13412 - Session G4.1 - 11 April 2019

Pieter Visser\(^{(1)}\), João de Teixeira da Encarnação\(^{(2,1)}\), Eelco Doornbos\(^{(1)}\), Jose van den IJssel\(^{(1)}\), Xinyuan Mao\(^{(1)}\), Elisabetta Iorfida\(^{(1)}\), Daniel Arnold\(^{(3)}\), Adrian Jäggi\(^{(3)}\), Ulrich Meyer\(^{(3)}\), Aleš Bezděk\(^{(4)}\), Josef Sebera\(^{(4)}\), Jaroslav Klokočník\(^{(4)}\), Matthias Ellmer\(^{(5)}\), Torsten Mayer-Gürr\(^{(5)}\), Sandro Krauss\(^{(5)}\), Junyi Guo\(^{(6)}\), Chaoyang Zhang\(^{(6)}\), C.K. Shum\(^{(6)}\), and Yu Zhang\(^{(6)}\)

\(^{(1)}\) Faculty of Aerospace Engineering of the Delft University of Technology, Delft, The Netherlands, \(^{(2)}\) Center for Space Research, University of Texas at Austin, Austin, United States, \(^{(3)}\) Astronomical Institute of the University of Bern, Bern, Switzerland, \(^{(4)}\) Astronomical Institute of the Czech Academy of Sciences, Ondrejov, Czech Republic, \(^{(5)}\) Institute of Geodesy of the Graz University of Technology, Graz, Austria, \(^{(6)}\) School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
Multi-approach gravity field models from Swarm GPS data

- ESA/DISC funded project (since 9/2017)
- Provide highest-quality monthly-independent Swarm gravity field models
- Combine individual gravity solutions, computed with:
 - different kinematic orbit solutions
 - different inversion approaches
- Monthly combined Swarm gravity field models:
 - from Dec. 2013 to Sept. 2018
 - available from:
 - ICGEM (http://icgem.gfz-potsdam.de/series)
 - ESA (https://earth.esa.int/web/guest/swarm/data-access, soon)
Kinematic orbit solutions

- **TU Delft:** GPS High precision Orbit determination Software Tool (GHOST) Helleputte (2004); Wermuth et al. 2010
- **AIUB:** Bernese v5.3 Dach et al., (2015); Jäggi et al. (2007)
- **IfG:** Gravity Recovery Object Oriented Programming System (GROOPS) Zehentner et al. (2016)
Gravity field estimation approaches

• AIUB: **Celestial Mechanics Approach** (CMA), Beutler et al. (2010)

• ASU: **Decorrelated Acceleration Approach** (DAA), Bezdek et al. (2014); Bezdek et al. (2016)

• IfG: **Short-Arc Approach** (SAA), Mayer-Gürr (2006)

• OSU: **Improved Energy Balance Approach** (IEBA), Shang et al. (2015)
Combination of individual gravity field solutions

• Combination at the level of solutions, up to degree 40
• Weights derived from Variance Component Estimation (VCE)
• Degrees 2-20 considered in VCE
• Combination at the level of Normal Equations was tested but has slightly larger discrepancies w.r.t. GRACE (not shown)
Gravity field model pre-processing

• Truncation to degree 40
• C_{20} replaced with value from *GRACE Technical Note 11*
• Temporal variations relative to static GGM05G (GRACE and GOCE)
• Gaussian smoothing with 750-km radius (unless noted)
• GRACE CSR RL06 considered (with same pre-processing)
• GRACE and Swarm solutions interpolated to the union of both time domains (identical for all scenarios)
Agreement with GRACE over Land areas
Agreement with GRACE over Land areas

degree-mean temporal corr. coeff.
wrt GRACE RL06 CSR land (2002-04 to 2018-12)
750km Gaussian smoothing
Swarm and Grace un-modeled ocean RMS
Amazon

- GRACE RL06 CSR 750km Gaussian smoothing
- SWARM RL01 750km Gaussian smoothing
- GRACE RL06 CSR 1000km Gaussian smoothing
- SWARM RL01 1000km Gaussian smoothing

Equ. Water Height [m]

Time:
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
Summary and conclusions

- Swarm signal useful below degree 15
- Temporal correlations decrease sharply over degree 10
- Swarm basin averages noisier than GRACE, except for largest basins
- Global spatial agreement with GRACE at 1 cm RMS Eq. W. H.
 - over periods of low solar activity
 - Gaussian smoothing radius of 750 km
- Seasonal signal clearly resolvable by Swarm