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network cz

Motivation

and

e Numerous geodetic satellites are in low Earth orbit (LEO)

¢ Precise orbit determination (POD) by GNSS (GPS), some tracked by Satellite Laser
Ranging (SLR)

e GNSS-based LEO POD has witnessed remarkable quality improvements in recent
past (e.g., more accurate modeling of gravitational and non-gravitational forces,
single-receiver ambiguity fixing, ...)

— cm accuracy and precision possible

ed LEO orbits in SLR validation
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single-receiver ambiguity fixing, ...)

— cm accuracy and precision possible

SLR to LEO satellites
e allows for independent validation of GNSS-derived orbits
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e Numerous geodetic satellites are in low Earth orbit (LEO)

¢ Precise orbit determination (POD) by GNSS (GPS), some tracked by Satellite Laser
Ranging (SLR)

e GNSS-based LEO POD has witnessed remarkable quality improvements in recent
past (e.g., more accurate modeling of gravitational and non-gravitational forces,
single-receiver ambiguity fixing, ...)

— cm accuracy and precision possible

SLR to LEO satellites

e allows for independent validation of GNSS-derived orbits
* allows to measure orbit errors not only in radial, but also in lateral directions
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Motivation

network c:

and

e Numerous geodetic satellites are in low Earth orbit (LEO)

¢ Precise orbit determination (POD) by GNSS (GPS), some tracked by Satellite Laser
Ranging (SLR)

e GNSS-based LEO POD has witnessed remarkable quality improvements in recent
past (e.g., more accurate modeling of gravitational and non-gravitational forces,
single-receiver ambiguity fixing, ...)

— cm accuracy and precision possible

SLR to LEO satellites

e allows for independent validation of GNSS-derived orbits

* allows to measure orbit errors not only in radial, but also in lateral directions

e can be used to calibrate SLR stations (coordinates, range and timing biases) if we
have confidence in GNSS-derived orbits

ed LEO orbits in SLR validation

NSS-derive
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GPS-based POD of LEO satellites

network cz

and

e Bernese GNSS Software v5.3
e State-of-the-art models
* Macro models for non-gravitational forces
* In-flight calibrated GPS antenna phase patterns
° Spacecraft parameters (attitude, CoM, sensor locations, etc.)
g e Carrier phase ambiguity fixing:
* Single-receiver ambiguity resolution using GPS products of Center for Orbit
Determination in Europe (CODE), including new signal-specific satellite phase biases
e Ties LEO orbit to IGSxx reference frame
* Horizontal components benefit most, only weak constraint in vertical direction

ed LEO orbits in SLR validation

GNSS-derive
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CODE clock and phase bias product

Ambiguity-fixed GNSS clock corrections and phase bias products (enabling undifferenced
ambiguity-resolution) of CODE available:

SLR validation

e Operationally generated

¢ IGS Final product line:
° ftp://ftp.aiub.unibe.ch/CODE
° ftp://cddis.gsfc.nasa.gov/pub/gnss/products
e Starting from 1 January 2019

e MGEX product line:

o ftp://ftp.aiub.unibe.ch/CODE_MGEX/CODE
° ftp://cddis.gsfc.nasa.gov/pub/gnss/products/mgex
e Starting from 1 July 2018

e See also ftp://ftp.aiub.unibe.ch/CODE/IAR_README.TXT

ed LEO orbits in
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ftp://ftp.aiub.unibe.ch/CODE
ftp://cddis.gsfc.nasa.gov/pub/gnss/products
ftp://ftp.aiub.unibe.ch/CODE_MGEX/CODE
ftp://cddis.gsfc.nasa.gov/pub/gnss/products/mgex
ftp://ftp.aiub.unibe.ch/CODE/IAR_README.TXT

vork cz

Models used for POD

netw

and

SLR validation

 Earth gravity field: GOCOO05S (120 x 120)

Solid Earth tides: IERS2010

* Pole tides: IERS2010

4 e Ocean pole tides: EOT11a (50 x 50)

2 * Atmospheric densities/horizontal wind model: DTM2013 / HWM14

e Earth reflectivity/emissivity: CERES 2007

* Transmitting antenna PCO/PCV: igsl4.atx

* Receiver antenna PCV: in-flight calibration (iterative residual stacking)

erived LEO orbits in
[ ]
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network c:

Satellites considered

and

Swarm-A/B/C:
e Magnetic field
e Launched: 22 Nov 2013
e Altitude: 460 km (A/C), 510 km (B)

ed LEO orbits in SLR validation

Sentinel-3A/B:

e Altimetry
* Launched: 16 Feb 2016 (A), 25 Apr 2018 (B)
e Altitude: 810 km

GNSS-derive

GRACE Follow-On C/D:

e Gravity field
e Launched: 22 May 2018
e Altitude: 500 km
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Analysis of LEO SLR data

e Compute SLR residuals based on
e known LEQ satellite orbit, attitude, geometry, LRA characteristics
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Analysis of LEO SLR data

validation and network c:

e Compute SLR residuals based on
e known LEO satellite orbit, attitude, geometry, LRA characteristics
* known station locations (SLRF)
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Analysis of LEO SLR data

network c:

nd

na

e Compute SLR residuals based on
e known LEO satellite orbit, attitude, geometry, LRA characteristics
* known station locations (SLRF)
* state-of-the-art models (ILRS standards)
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Analysis of LEO SLR data

network c:

nd

na

e Compute SLR residuals based on
e known LEO satellite orbit, attitude, geometry, LRA characteristics
* known station locations (SLRF)
* state-of-the-art models (ILRS standards)
e outlier threshold of 20 cm, elevation cutoff of 10°.
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Analysis of LEO SLR data

network c:

nd

na

e Compute SLR residuals based on
e known LEO satellite orbit, attitude, geometry, LRA characteristics
* known station locations (SLRF)
* state-of-the-art models (ILRS standards)
e outlier threshold of 20 cm, elevation cutoff of 10°.
e Compute partials of range measurements w.r.t.
e satellite position (in RTN or s/c body frame)
* station position (in NEU frame)
* SLR range and timing bias
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Analysis of LEO SLR data

e Compute SLR residuals based on
e known LEO satellite orbit, attitude, geometry, LRA characteristics
* known station locations (SLRF)
* state-of-the-art models (ILRS standards)
e outlier threshold of 20 cm, elevation cutoff of 10°.
e Compute partials of range measurements w.r.t.
e satellite position (in RTN or s/c body frame)
* station position (in NEU frame)
* SLR range and timing bias

fixed GNSS-derived LEO orbits in SLR validation and network c:

er, 2019

* From partials and residuals, form/solve normal equations

e Correlations (station height and radial orbit component; time offset and along-track
component)
* A priori constraints or well observable set of parameters
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SLR residuals Swarm-B, (reduced-) dynamic

Amb.-float,
no non-grav.
modeling
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SLR observations of 14 high-
performance SLR stations,
SLRF2014 station coordinates
used, no parameters esti-
mated.

= Time span: 18/154 - 19/224
;g (3 Jun 2018 - 12 Aug 2019)

g 2019, 9-13 December, 2019

eetin,
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Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019

SLR residuals Swarm-B, (reduced-) dynamic
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SLR observations of 14 high-
performance SLR stations,
SLRF2014 station coordinates
used, no parameters esti-
mated.

Time span: 18/154 - 19/224
(3 Jun 2018 - 12 Aug 2019)
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Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019
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Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019

SLR residuals Swarm-B, (reduced-) dynamic
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Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019
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Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019

SLR residuals Swarm-B, (reduced-) dynamic
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Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019

SLR residuals Swarm-B, (reduced-) dynamic
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Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019

SLR residuals Swarm-B, kinematic

Kinematic orbits: Purely geometrically derived from GPS observations, fully independent
on the force models used for dynamic LEO POD.
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Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019

SLR residuals Swarm-B, kinematic

Kinematic orbits: Purely geometrically derived from GPS observations, fully independent
on the force models used for dynamic LEO POD.

E
% Amb.-float
E| (16.5 mm)
p
g_zo I
T_40
E
o Amb.-fixed
= 0
3 9.9 mm
220 ( )
[
0:_40 1 i L L - =1 - L 1

Jul Sep Nov Jan Mar May Jul

18 18 18 19 19 19 19

Date

Slide 9 of 16

Astronomical Institute, University of Bern AIUB



Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019

SLR residuals Swarm-B, kinematic

Kinematic orbits: Purely geometrically derived from GPS observations, fully independent
on the force models used for dynamic LEO POD.
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SLR STD comparable to ambiguity-fixed dynamic orbits (9.1 mm)!
— limitations of SLR?
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Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019

SLR residuals GRACE-FO, (reduced-) dynamic
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Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019

SLR residuals GRACE-FO, (reduced-) dynamic
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Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019

SLR residuals GRACE-FO, (reduced-) dynamic
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Noticeable offset for reduced-dynamic orbits, more pronounced for GRACE-FO C.
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K-band validation for GRACE-FO

Daily RMS values of K-band range residuals (additional independent validation):
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SS-derived LEO orbits in SLR valid.

Estimated corrections w.r.t. SLRF2014

Coordinate and range bias corrections from 435 days of dynamic, ambiguity-fixed
Swarm-A/B/C, Sentintel-3A/B and GRACE-FO C/D orbits:

Station SOD E [mm] N [mm] U [mm] B [mm]
Badary 18900901 8.0£06 —0.2+0.6 6.0£2.2 8.4+1.4
Yarragadee 70900513 48+01 —-03+0.1 —2.5+04 0.6 £0.2
Greenbelt 71050725 3.5+£0.2 6.2+£02 —12.7+0.6 —6.3+£0.3
Monument Peak 71100412 —-284+0.2 —-75£02 -10.7£09 0.3+0.5
Haleakala 71191402 4504 —45+£04 1.2+1.3 11.0+0.8
Papeete 71240802 12.1+0.6 4.5+£0.6 -51+21 —-128+1.2
Arequipa 74031306 02+£04 3.5+£04 —4.1+14 8.1+0.8
Hartebeesthoek 75010602 —2.7+0.3 6.44+0.3 —6.6 1.0 42406
Zimmerwald 78106801 0.8+0.2 2.0+0.2 9.6 £0.6 7.6 +£0.3
Mount Stromlo 78259001 5.9+0.3 22+0.2 5.6 +0.9 1.6 +0.5
Wettzell (SOSW) 78272201 —-1.14+0.5 —9.8+0.5 —6.4+1.7 5.7+1.0
Graz 78393402 2.84+0.2 3.3+0.2 8.7+0.7 11.84+0.4
Herstmonceux 78403501 3.2+03 1.6+£0.3 —4.0=£1.0 —23£0.6
Potsdam 78418701 1.0+0.3 3.7£0.3 17.0+0.9 —-0.7+£0.6
Matera 79417701 1.74+04 4.8+04 42+£20 —-5.3+£1.0
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SS-derived LEO orbits in SLR valid.

Estimated corrections w.r.t. SLRF2014

Coordinate and range bias corrections from 435 days of dynamic, ambiguity-fixed
Swarm-A/B/C, Sentintel-3A/B and GRACE-FO C/D orbits:

Station SOD E [mm] N [mm] U [mm] B [mm]
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Wettzell (SOSW) 78272201 —-1.14+0.5 —9.8+0.5 —6.4+1.7 5.7+1.0
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GNSS-derived LEO orbits in SLR valid

Estimated corrections w.r.t. SLRF2014

Coordinate and range bias corrections from 435 days of dynamic, ambiguity-fixed
Swarm-A/B/C, Sentintel-3A/B and GRACE-FO C/D orbits:

Station SOD E [mm] N [mm] U [mm] B [mm]
Badary 18900901 8.0+0.6 —0.24+0.6 6.0 +£2.2 8.4+1.4
Yarragadee 70900513 48+0.1 —-0.3+£0.1 —2.5+0.4 0.6 £0.2
(v nl\h a1 NaWiol~ 25 _L 09 A£9 . L 09 19 AW a2l N2
IMonument Peak 71100412 —-28+0.2 —-75+£02 —10.7£+0.9 0.3+£0.5 I
Haleakala (1191402 4.0 0.4 —4.0x 0.4 1.2 1.5 11.0x 0.8
Papeete 71240802 12.14+0.6 4.5 £0.6 —5.1+2.1 —12.84+1.2
Arequipa 74031306 0.2+04 3.5+04 —4.1+14 8.1+0.8
Hartebeesthoek 75010602 —2.7+0.3 6.4+0.3 —6.6 +£1.0 4.2+ 0.6
Zimmerwald 78106801 0.8£0.2 2.0+0.2 9.6 £0.6 7.6 +0.3
Mount Stromlo 78259001 5.9+0.3 2.24+0.2 5.6 0.9 1.6 £0.5
Wettzell (SOSW) 78272201 —-1.14+0.5 —9.8+0.5 —6.4+ 1.7 5.7+ 1.0
Graz 78393402 2.8+0.2 3.3£0.2 8.7+0.7 11.84+04
Herstmonceux 78403501 3.24+0.3 1.6 £0.3 —4.0+1.0 —234+0.6
Potsdam 78418701 1.04+0.3 3.7+£0.3 17.0 £ 0.9 —-0.7+0.6
Matera 79417701 1.7+04 4.8+0.4 4.2+2.0 —5.3+1.0
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network cz

and

SLR validation

ed LEO orbits in
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Estimated corrections w.r.t. SLRF2014 (2)

Corrections for station Monument Peak (71100412) from different orbit types:

Orbits E [mm] N [mm] U [mm] B [mm]
Float -33+02 -105+£02 -21.8£09 -25+0.5
Fixed -32£02 -78+£02 -124+09 0.8+£0.5

Fixed + NG —-28+0.2 —-7.5+0.2 -10.7+0.9 0.3£0.5
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Reduction of residuals (1)

Monument Peak (71100412), all satellites:

Without corrections

N
o

" Monument Péa
- i .: . ;Z;

[mm]

ReS|IduaIs
BN N
O O OO

i

I8}
=<
o
H
g
E
o
2
H
c
s
kil
=
3
g
o
5
»
<
8
£
5
o
w
4
5
z
5]
e
wv
(%]
=4
G
-
3

|

Sep
18

Nov
18

amic and a

Mar

Jan May Jul
19 19 19 19
Date

Slide 14 of 16

Astronomical Institute, University of Bern /'IUB



Reduction of residuals (1)

Monument Peak (71100412), all satellites:

With corrections

fixed GNSS-derived LEO orbits in SLR validation and network c:
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Reduction of residuals (2)

Without corrections
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Reduction of residuals (2)

With corrections
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Swarm-B
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Performance of dynamic and ambiguity-fixed GNSS-derived LEO orbits in SLR validation and network c:

AGU Fall Meeting 2019, 9-13 December, 2019

Reduction of residuals (2)

With corrections
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Orbits w/o corr. w/ corr. [mm]
Swarm-A +3.1£9.6 +1.0£7.7
SLR residuals (mean + std.) of Swarm-B +1.0£91  —09+£7.2
dynamic and ambiguity-fixed orbits Swarm-C +22£0.6 - +00£7T
y _ guity-tn Sentinel-3A  +1.5+10.3 4004738
with and without corrections: Sentinel-3B +1.14+102 —07+74

GRACE-FO C  +34+£101 +1.7x79
GRACE-FOD 4+1.7+10.6 +0.0+8.3
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SLR validation an

ed LEO orbits in

SS-derive

Conclusion

SLR to LEO satellites not only sensitive to radial, but also to 3-dimensional orbit
errors, as well as station positions and range (and timing) biases.

Dynamic ambiguity-fixed LEO orbits have reached a quality level that is interesting
to validate/calibrate the SLR station network. Needs good knowledge of satellite
geometry (antenna and reflector locations).

Station parameter corrections sometimes at 1 cm level even for high-performance
SLR stations.

Corrections remove mean offsets in SLR residuals for individual stations and reduces
standard deviation.

Kinematic orbits profit a lot from ambiguity fixing. SLR now sees hardly any
differences to the (superior) dynamic orbits.
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e For methodology and further results, see

Arnold D., Montenbruck O., Hackel S., Sosnica K.
(2019): Satellite Laser Ranging to Low Earth Orbiters:
Orbit and Network Validation, Journal of Geodesy,
93(11), 2315-2334, doi:10.1007/s00190-018-1140-4

e For CODE's phase bias products, see
ftp://ftp.aiub.unibe.ch/CODE/IAR_README.TXT

Thank you for your attention!
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