Comparison of robot and chamber based receiver calibrated antenna pattern for TRF scale determination

A. Villiger¹, L. Prange¹, R. Dach¹, F. Zimmermann², H. Kuhlmann², A. Jäggi¹

¹Astronomical Institute, University of Bern, Bern, Switzerland ²Institut für Geodäsie und Geoinformation, Universität Bonn

AGU Fall Meeting 2019, 9 - 13 December 2019

• The International GNSS Service (IGS) provides satellite orbits, Earth rotation parameters, satellite clock corrections, station coordinates, etc.

- The International GNSS Service (IGS) provides satellite orbits, Earth rotation parameters, satellite clock corrections, station coordinates, etc.
- The IGS contributes with dedicated GNSS reprocessings to the realizations of the International Terrestrial Reference Frame

- The International GNSS Service (IGS) provides satellite orbits, Earth rotation parameters, satellite clock corrections, station coordinates, etc.
- The IGS contributes with dedicated GNSS reprocessings to the realizations of the International Terrestrial Reference Frame
- The IGS14, the IGS reference frame aligned to the ITRF2014. is based on GPS and GLONASS

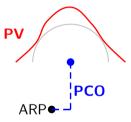
- The International GNSS Service (IGS) provides satellite orbits, Earth rotation parameters, satellite clock corrections, station coordinates, etc.
- The IGS contributes with dedicated GNSS reprocessings to the realizations of the International Terrestrial Reference Frame
- The IGS14, the IGS reference frame aligned to the ITRF2014. is based on GPS and GLONASS
- The IGS will contribute to the realization of the next ITRE

Why should we include Galileo?

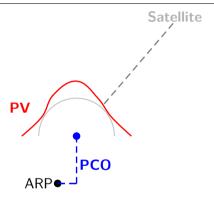
- Galileo is the third GNSS which reached the full constellation
- Currently 24 Galileo satellites are active (more satellites for the user \rightarrow better coverage)
- GSA disclosed as the first Global GNSS System provider metadata, including macromodel, mass history, and the antenna calibrations

Introduction - Receiver antenna calibrations

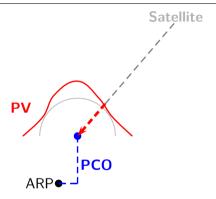
What is needed to use the Galileo satellite antenna calibrations?


- The antenna calibrations of the current IGS 14 covers GPS and Galileo
- For the full benefit of the satellite antenna calibrations Galileo pattern for the ground segment are needed

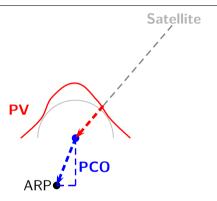
Antenna calibration methods:



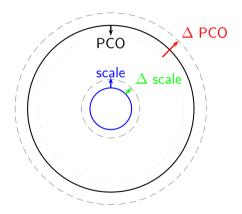
- Receiver antenna: A well defined point on the antenna.
- Satellite antenna: Currently the center of mass


Antenna Phase Center Offset and Phase Variations

- Receiver antenna: A well defined point on the antenna.
- Satellite antenna: Currently the center of mass


Antenna Phase Center Offset and Phase Variations

- Receiver antenna: A well defined point on the antenna.
- Satellite antenna: Currently the center of mass


Antenna Phase Center Offset and Phase Variations

- Receiver antenna: A well defined point on the antenna.
- Satellite antenna: Currently the center of mass

Relation: Scale - Satellite and receiver antenna calibrations

- PCO to Scale: [Zhu et al. 2002] 1m = -7.8 ppb $1 \text{ ppb} \triangleq -0.13 \text{ m}$
- PCO's: -4 m △ PCO
- Stations: 20 cm offset.

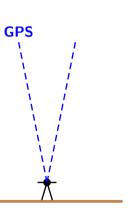
Comparison between robot and chamber calibrations

Table: Difference of the Z-PCO of between robot and chamber calibrations (IF, GPS: L1/L2, GLONASS: L1/L2, Galileo: E1/E5a) in mm. Datum: Zero-mean condition over PV and constant term removed. ROB: Robot calibrations. CHA: chamber calibrations

Antenna		GPS	GLONASS	Galileo
ASH701945C_M	NONE	5.28	-2.32	6.86
JAVRINGANT_DM	NONE	-2.63	-3.31	-1.46
LEIAR20	LEIM	5.04	5.49	3.69
LEIAR20	NONE	3.41	4.92	3.32
LEIAR25.R3	LEIT	9.03	3.20	6.03
TRM55971.00	TZGD	-2.55	-4.95	-2.63
TRM59800.00	NONE	1.88	1.55	-0.85
Mean value		0.53	-0.65	0.43

Multi-GNSS antenna calibration patterns: consistency

Inter-System Translation Bias Parameter (ISTP):


Offset between GPS and Galileo phase center at the ground GPS station

Current situation (IGS14.atx)

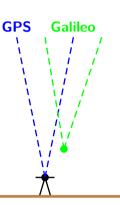
- GPS and GLONASS estimated according to IGS14 ("ITRF2014" compatible)
- Galileo: chamber calibrated patterns

Adjusted "Galileo-scale" satellite antenna PCOs

- GPS and GLONASS adjusted to fit Galileo
- Galileo: chamber calibrated patterns

Multi-GNSS antenna calibration patterns: consistency

Inter-System Translation Bias Parameter (ISTP):


Offset between GPS and Galileo phase center at the ground station

Current situation (IGS14.atx)

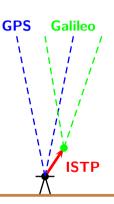
- GPS and GLONASS estimated according to IGS14 ("ITRF2014" compatible)
- Galileo: chamber calibrated patterns

Adjusted "Galileo-scale" satellite antenna PCOs

- GPS and GLONASS adjusted to fit Galileo
- Galileo: chamber calibrated patterns

Multi-GNSS antenna calibration patterns: consistency

Inter-System Translation Bias Parameter (ISTP):

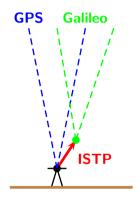

Offset between GPS and Galileo phase center at the ground station

Current situation (IGS14.atx)

- GPS and GLONASS estimated according to IGS14 ("ITRF2014" compatible)
- Galileo: chamber calibrated patterns

Adjusted "Galileo-scale" satellite antenna PCOs

- GPS and GLONASS adjusted to fit Galileo
- Galileo: chamber calibrated patterns

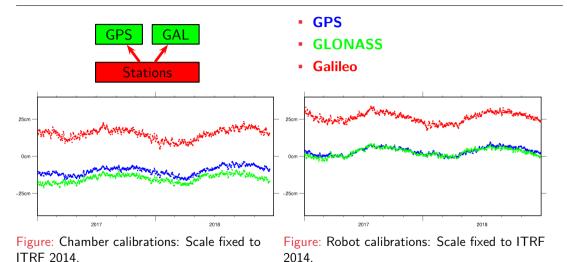

Consistency test: average ISTP values (up-component)

Current situation (IGS14.atx)

Method	GPS-GLO	GPS - GAL			
Chamber	-3.15 mm	8.40 mm			
Robot	-1.07 mm	6.63 mm			

Adjsuted "Galileo-scale" satellite antenna PCOs

Method	GPS-GLO	GPS - GAL
Chamber	-1.11 mm	0.19 mm
Robot	-1.07 mm	0.05 mm



Inter-system Translation Bias (ISTP) and elevation dependent offset. Median value over a two year period.

Antenna		CHA		ROB			
		#	Up	Trp	#	Up	Trp
JAVRINGANT_DM	NONE	15	8.50	-0.00	15	3.34	0.66
JAVRINGANT_DM	SCIS	1	0.82	1.39	1	-7.92	3.68
JAVRINGANT_G5T	NONE	6	-8.50	2.22	6	-1.80	1.49
LEIAR10	NONE	4	2.14	-0.07	4	3.27	0.35
LEIAR25.R4	NONE	7	0.57	0.45	7	0.43	0.64
LEIAT504	NONE				1	1.96	0.42
SEPCHOKE_B3E6	NONE				1	-2.07	1.46
TRM57971.00	NONE	17	1.64	-0.86	17	-0.13	-0.86
TRM59800.00	NONE	29	2.62	-0.72	31	0.60	-0.06
TRM59800.00	SCIS	14	-5.10	0.70	14	-2.31	0.38

PCO estimation: ITRF 2014 scale

Astronomical Institute, University of Bern *AIUB*

PCO estimation: GPS scale

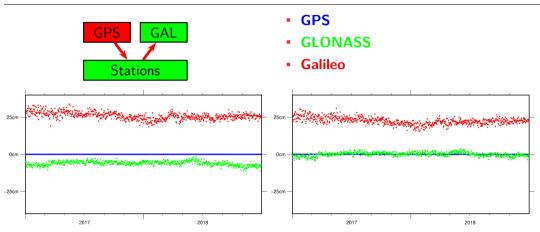


Figure: Chamber calibrations: Scale realized by Figure: Robot calibrations: Scale realized by introducing GPS satellite PCOs.

introducing GPS satellite PCOs.

PCO estimation: Galileo scale

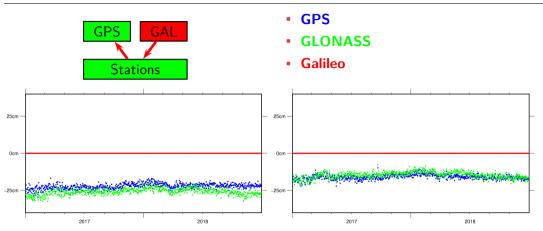


Figure: Chamber calibrations: Scale realized by Figure: Robot calibrations: Scale realized by introducing Galileo satellite PCOs. introducing Galileo satellite PCOs.

Comparison of different scale estimations

System-wise PCO offset estimates in cm constraining different PCOs. Two years of NEQs were stacked (2017-2018).

			scale	
		GPS	GLO	GAL
chamber	GPS	-	4.0	-22.1
	GLO	-6.1	-	-25.8
	GAL	25.8	31.6	-
robot	GPS	-	5.4	-16.2
	GLO	-3.5	-	-15.3
_	GAI	22.5	23.1	_

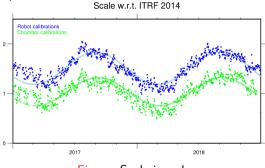


Figure: Scale w.r.t. ITRF 2014

VLBI, SLR, and DORIS scale from Altamimi et al. J. Geophys. Res. Solid Earth, 2016

Conclusion

Antenna consistency

- Robot and chamber receiver antenna calibrations provide Galileo patterns
- Both methods show a good agreement between GPS and Galileo pattern
- Differences between the two methods \rightarrow the next IGS ITRF contribution relies on robot calibrations

Scale determination

- The GNSS scale w.r.t. ITRF 2014 lies between 1.03 ppb (chamber calibrations) and 1.41 ppb (robot calibrations)
- The backward compatibility (back to 1994) will be studied based on the ongoing IGS reprocessing effort

