EGSIEM combination service: combination of GRACE monthly K-band solutions on normal equation level

U. Meyer¹, Y. Jean¹, A. Jäggi¹, D. Arnold¹
and the EGSIEEM-ACs²,³,⁴

¹ Astronomical Institute, University of Bern
² Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences
³ Institute for Theoretical and Satellite Geodesy, TU Graz
⁴ Groupe de Recherche de Géodésie Spatiale, Toulouse

EGU General Assembly 2017
Vienna
April 24-28, 2017
Contents

• Motivation
• Individual Contributions
• Noise Assessment
• Combination on Normal Equation Level
• Conclusions
Motivation

Degree Amplitudes of Anomalies 01/2006: orders 0 - 29
SH coefficients – model fit of secular/seasonal variations
Motivation

Degree Amplitudes of Anomalies 01/2006: orders 0 - 29
SH coefficients – model fit of secular/seasonal variations
Motivation

Degree Amplitudes of Anomalies 01/2006: orders 0 - 29
SH coefficients – model fit of secular/seasonal variations
Motivation

Degree Amplitudes of Anomalies 01/2006: orders 0 - 29
SH coefficients – model fit of secular/seasonal variations

Includes non-seasonal signal

Represents mainly noise
Individual Contributions

![Graph showing individual contributions](image)

Title: 2006/01

Graph:
- **Y-axis:** Logarithmic scale from 10^{-9} to 10^{-11}
- **X-axis:** Degree from 10 to 90
- **Legend:**
 - Blue line: AIUB - GOCO05S
Individual Contributions

2006/01

- AIUB - GOCO05S
- ITSG - GOCO05S

degree

10^{-9} - 10^{-11}
Individual Contributions

2006/01

- AIUB - GOCO05S
- ITSG - GOCO05S
- GFZ - GOCO05S
- GRGS - GOCO05S

degree

EGU General Assembly 2017
Vienna, April 24-28, 2017
Why are formal errors so different?

Formal errors depend on the noise model applied!

Error propagation of kinematic orbits and K-band observations

Optimistic

Errors of observations:
GPS, K-band, accelerometers, star cameras

Errors of background models and de-aliasing:
ocean tides, short periodic atmosphere and ocean variations (AOD)

Realistic (empirical)
Noise Assessment

Anomalies: differences to model

[Graph showing RMS values for geoid height]
Noise Assessment

Anomalies: differences to model
Differences: differences to mean
Noise Assessment

Differences to mean to derive relative weights.
Anomalies over quiet regions to independently assess quality.
Variance component estimation on solution level taking into account all SH coefficients up to degree and order 80 with equal weight.

RMS of anomalies restricted to ocean areas as quality criterion.
Combination on Normal Equation Level

Achieve equal impact of individual contributions on pairwise combinations:

\[(N_{\text{ref}} + w_i N_i) dx = b_{\text{ref}} + w_i b_i\]

The impact is measured by:

\[\text{RMS}_i = \sqrt{\frac{\sum_{l,m} \left(K_{l,m}^{\text{comb}} - K_i^{l,m}\right)^2}{n_{\text{coef}}}}\]

Equal impact is achieved for:

\[\frac{\text{RMS}_i}{\text{RMS}_{\text{ref}}} = 1\]
Combination on Normal Equation Level

- **Equalizing weight**
 - GRGS: 1.60
 - GFZ: 1.00
 - AIUB: 7.81
 - ITSG: 2.21

EGU General Assembly 2017
Vienna, April 24-28, 2017

RMS to reference (GFZ, w=1)

RMS to other contribution

$\times 10^{-12}$
Combination: 2006/01

Solution:

<table>
<thead>
<tr>
<th>Solution</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRGS</td>
<td>0.14</td>
</tr>
<tr>
<td>GFZ</td>
<td>0.19</td>
</tr>
<tr>
<td>AIUB</td>
<td>0.29</td>
</tr>
<tr>
<td>ITSG</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Combination: 2006/01

<table>
<thead>
<tr>
<th></th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRGS</td>
<td>1.60</td>
</tr>
<tr>
<td>GFZ</td>
<td>1.00</td>
</tr>
<tr>
<td>AIUB</td>
<td>7.81</td>
</tr>
<tr>
<td>ITSG</td>
<td>2.21</td>
</tr>
</tbody>
</table>

- **equalizing weight**
 - GRGS: 1.60
 - GFZ: 1.00
 - AIUB: 7.81
 - ITSG: 2.21

Solution:
- GRGS: 0.14
- GFZ: 0.19
- AIUB: 0.29
- ITSG: 0.38
L3-Products: www.egsiem.eu -> Data -> EGSIEM-Plotter

EGSIEM graceOceanography monthly DDK3 - 2006/01/01 - 2006/01/31
Equivalent Water Heights comparison to time series mean (degree 2 to 90)
min -20.25 cm / max 24.79 cm / weighted rms 3.31 cm / oceans 2.34 cm
EGSIEM graceHydrology monthly DDK3 - 2005/01/01 - 2006/01/31
Equivalent Water Heights comparison to time series mean (degree 2 to 90)
min -24.86 cm / max 23.89 cm / weighted rms 3.16 cm / oceans 1.91 cm
Conclusions

• EGSIEM monthly gravity field combination on NEQ-level is operational.
• Noise assessment by variance component estimation on solution level.
• Relative weights based on noise levels.
• The EGSIEM combination service provides two test years (2006 + 2007):
 – SH-coefficients (Level-2): www.icgem.de
 – grids and de-aliasing (Level-3): www.egsiem.eu