GRAIL orbit determination in the Bernese GNSS Software

first results with combined Doppler and inter-satellite KBRR

Stefano Bertone¹ Daniel Arnold¹ Adrian Jäggi¹ Gerhard Beutler¹ Leos Mervart²

¹Astronomical Institute, University of Bern, Switzerland ²Czech Technical University, Prague, Czech Republic

25th International Symposium on Space Flight Dynamics 22 October 2015, Munich

Outline

Slide 2 of 20

The GRAIL mission

Science objectives

- Determine structure of lunar interior, from crust to core
 - $\rightarrow\,$ Subsurface structure of impact basins, mascons, ...
- Understand (asymmetric) thermal evolution of Moon

The GRAIL mission

Pre-GRAIL lunar gravity missions: Lunar Prospector (NASA, 1998-99) JGL165P1, SELENE (JAXA, 2007-09) SGM150J

The **GRAIL** mission

GRAIL: Latest official $l_{max} = 900$ gravity field models: GRGM900C (Lemoine et al., 2014), GL0900C (Konopliv et al., 2014)

The GRAIL mission: Satellite signals

- S-band (~ [2]GHz) for 2-way Doppler tracking by NASA Deep Space Network (DSN)
- X-band (~ [8]GHz) for 1-way Doppler tracking
- Ka-band ($\sim [32]GHz$) inter-satellite link

Slide 5 of 20

The GRAIL mission: Satellite signals

- S-band (~ [2]GHz) for 2-way Doppler tracking by NASA Deep Space Network (DSN)
- X-band (~ [8]GHz) for 1-way Doppler tracking
- Ka-band ($\sim [32]GHz$) inter-satellite link

Our motivation: Why not adapt our procedures for the processing of GRACE data (Ka-band, etc.) to GRAIL, get experienced in this new environment and eventually provide an independent lunar gravity field solution?

GRACE vs. GRAIL

GRAIL: DSN Doppler tracking (near-side only) yields positions

Stefano Bertone: GRAIL orbit determination in the Bernese GNSS Software ISSFD 2015, 22 October, Munich (Germany)

The GRAIL mission: Available data

Selection of available data for our activities:

• 1-way (X-band) and 2-way (S-band) Doppler data

Current Bernese Software: GNSS (LEO) and SLR for orbit and gravity field determination \rightarrow development of DSN Doppler capability !

- Ka-band range data: Ka-band range rate (KBRR)
 - \rightarrow [5]s-sampling in primary, [2]s-sampling in extended mission phase

Selection of available data for our activities:

• 1-way (X-band) and 2-way (S-band) Doppler data

Current Bernese Software: GNSS (LEO) and SLR for orbit and gravity field determination \rightarrow development of DSN Doppler capability !

- Ka-band range data: Ka-band range rate (KBRR)
 - $\rightarrow~$ [5]s-sampling in primary, [2]s-sampling in extended mission phase
- Reduced-dynamic positions (GNI1B) of GRAIL-A and GRAIL-B (by-product of JPL gravity field estimation)
 - $\rightarrow~$ [5]s-sampling in primary and extended mission phase

Use of the GNI1B positions as pseudo-observations : back to GRACE-like scenario \rightarrow generalization of the force model

(implemented in the Bernese GNSS Software)

Selenocentric equation of motion for satellite i

$$\ddot{\mathbf{r}}_i = -GM_M \frac{\mathbf{r}}{r^3} + \mathbf{f}(t, \mathbf{r}, \dot{\mathbf{r}}, q_1, ..., q_d)$$

$$\mathbf{f} = \nabla V + \mathbf{a}_b + \mathbf{a}_t + \mathbf{a}_r + \mathbf{a}_e + \mathbf{a}_n$$

Selenocentric equation of motion for satellite i

$$\ddot{\mathbf{r}}_i = -GM_M \frac{\mathbf{r}}{r^3} + \mathbf{f}(t, \mathbf{r}, \dot{\mathbf{r}}, q_1, ..., q_d)$$

$$\mathbf{f} = \nabla V + \mathbf{a}_b + \mathbf{a}_t + \mathbf{a}_r + \mathbf{a}_e + \mathbf{a}_n$$

V Lunar gravity potential:

$$V(r,\lambda,\phi) = \frac{GM_M}{r} \sum_{l=1}^{l_{\max}} \left(\frac{R_M}{r}\right)^l \sum_{m=0}^l \bar{P}_{lm}(\sin\phi) \left(\bar{C}_{lm}\cos m\lambda + \bar{S}_{lm}\sin m\lambda\right)$$

Selenocentric equation of motion for satellite i

$$\ddot{\mathbf{r}}_i = -GM_M \frac{\mathbf{r}}{r^3} + \mathbf{f}(t, \mathbf{r}, \dot{\mathbf{r}}, q_1, ..., q_d)$$

$$\mathbf{f} = \nabla V + \mathbf{a}_b + \mathbf{a}_t + \mathbf{a}_r + \mathbf{a}_e + \mathbf{a}_n$$

V Lunar gravity potential:

$$V(r,\lambda,\phi) = \frac{GM_M}{r} \sum_{l=1}^{l_{\max}} \left(\frac{R_M}{r}\right)^l \sum_{m=0}^l \bar{P}_{lm}(\sin\phi) \left(\bar{C}_{lm}\cos m\lambda + \bar{S}_{lm}\sin m\lambda\right)$$

 \mathbf{a}_b 3rd body perturbations (Earth, Sun, Jupiter, Venus, Mars, according to JPL ephemerides DE421)

Selenocentric equation of motion for satellite i

$$\ddot{\mathbf{r}}_i = -GM_M \frac{\mathbf{r}}{r^3} + \mathbf{f}(t, \mathbf{r}, \dot{\mathbf{r}}, q_1, ..., q_d)$$

$$\mathbf{f} = \nabla V + \mathbf{a}_b + \mathbf{a}_t + \mathbf{a}_r + \mathbf{a}_e + \mathbf{a}_n$$

 \mathbf{a}_t Tidal deformation of Moon due to Earth and Sun. IERS2010 conventions:

$$\Delta \bar{C}_{lm} - i\Delta \bar{S}_{lm} = \frac{k_{lm}}{2l+1} \sum_{j=2}^{3} \frac{GM_j}{GM_M} \left(\frac{R_M}{r_j}\right)^{l+1} \bar{P}_{lm}(\sin\Phi_j) e^{-im\lambda_j}$$

Use Love numbers k_{20} , k_{21} , k_{22} and k_{30} from Lemoine et al. (2013), neglect change of deg. 4 coefficients due to deg. 2 tides.

Selenocentric equation of motion for satellite i

$$\ddot{\mathbf{r}}_i = -GM_M \frac{\mathbf{r}}{r^3} + \mathbf{f}(t, \mathbf{r}, \dot{\mathbf{r}}, q_1, ..., q_d)$$

$$\mathbf{f} = \nabla V + \mathbf{a}_b + \mathbf{a}_t + \mathbf{a}_r + \mathbf{a}_e + \mathbf{a}_n$$

\mathbf{a}_r Relativistic corrections

Slide 8 of 20

Selenocentric equation of motion for satellite i

$$\ddot{\mathbf{r}}_i = -GM_M \frac{\mathbf{r}}{r^3} + \mathbf{f}(t, \mathbf{r}, \dot{\mathbf{r}}, q_1, ..., q_d)$$

$$\mathbf{f} = \nabla V + \mathbf{a}_b + \mathbf{a}_t + \mathbf{a}_r + \mathbf{a}_e + \mathbf{a}_n$$

 \mathbf{a}_r Relativistic corrections \mathbf{a}_e Empirical forces

Selenocentric equation of motion for satellite i

$$\ddot{\mathbf{r}}_i = -GM_M \frac{\mathbf{r}}{r^3} + \mathbf{f}(t, \mathbf{r}, \dot{\mathbf{r}}, q_1, ..., q_d)$$

$$\mathbf{f} = \nabla V + \mathbf{a}_b + \mathbf{a}_t + \mathbf{a}_r + \mathbf{a}_e + \mathbf{a}_n$$

- \mathbf{a}_r Relativistic corrections
- \mathbf{a}_e Empirical forces
- \mathbf{a}_n Non-gravitational accelerations, especially solar radiation pressure ightarrow **not yet explicitly modeled**

Selenocentric equation of motion for satellite \boldsymbol{i}

$$\ddot{\mathbf{r}}_i = -GM_M \frac{\mathbf{r}}{r^3} + \mathbf{f}(t, \mathbf{r}, \dot{\mathbf{r}}, q_1, ..., q_d)$$

$$\mathbf{f} = \nabla V + \mathbf{a}_b + \mathbf{a}_t + \mathbf{a}_r + \mathbf{a}_e + \mathbf{a}_n$$

- \mathbf{a}_r Relativistic corrections
- \mathbf{a}_e Empirical forces
- \mathbf{a}_n Non-gravitational accelerations, especially solar radiation pressure ightarrow **not yet explicitly modeled**

Orbit parametrization: $\mathbf{r}_i(t; a, e, i, \Omega, \omega, u_0; Q_1, ..., Q_d, P_1, ..., P_s)$

- *Q_i*: Dynamic parameters (general and arc-specific)
- Pi: Pseudo-stochastic parameters (pulses, all directions)

- Numerical integration (with a priori parameters) of equations of motion and variational equations.
- Set up of normal equations (NEQs) for each observation type (Doppler, KBRR, positions, ...) on a daily basis.
- Combination of the NEQs with appropriate weighting. \rightarrow w.r.t. relative accuracy of observations
- NEQ manipulation (e.g., preelimination of parameters and accumulation to weekly, monthly, etc... NEQs)
- NEQ inversion \rightarrow simultaneous solution for the improved parameters (orbit, gravity field coefficients, etc...)

- Numerical integration (with a priori parameters) of equations of motion and variational equations.
- Set up of normal equations (NEQs) for each observation type (Doppler, KBRR, positions, ...) on a daily basis.
- Combination of the NEQs with appropriate weighting. \rightarrow w.r.t. relative accuracy of observations
- NEQ manipulation (e.g., preelimination of parameters and accumulation to weekly, monthly, etc... NEQs)
- NEQ inversion \rightarrow simultaneous solution for the improved parameters (orbit, gravity field coefficients, etc...)

[Beutler, G. et al., The celestial mechanics approach: theoretical foundations. Journal of Geodesy, 2010]

[Jäggi, A. et al., *Pseudo-Stochastic Orbit Modeling Techniques for Low-Earth Orbiters.* Journal of Geodesy, 2006.]

Setup and results using Doppler+KBRR data (New implementation in Bernese GNSS Software, preliminary study)

Doppler orbit determination

Use the GNI1B positions as pseudo-observations for an initial orbit determination for GRAIL-A and GRAIL-B.

Add the Ka-band range rate data to improve orbit determination.

DSN Doppler data processing

Doppler model based on [Moyer, 2000]. It includes :

- Tracking stations Earth-fixed coordinates (Folkner W., 1997+)
- Earth rotation (IERS2010)
- planetary ephemeris (DE421, ...)
- Space-time frame transformations (IAU2010)
- Relativistic effects (Shapiro, ...)
- Atmospheric delay (troposphere, ionosphere)

Doppler orbit determination

Use the GNI1B positions as pseudo-observations for an initial orbit determination for GRAIL-A and GRAIL-B.

Add the Ka-band range rate data to improve orbit determination.

Doppler orbit determination

Goal: Replace GNI1B positions by original DSN Doppler observations.

Two-way S-band Doppler

We consider 3 background models over the primary mission (PM):

- GRGM900C (up to d/o 300), dynamic modeling
- GRGM900C (up to d/o 300), acc: const A + opr R , pulses: 30' AO
- SGM150J (SELENE mission), dynamic modeling

Doppler only solution

Daily RMS values of Doppler residuals and orbit differences of GRAIL-A (PM) w.r.t. GNI1B: results comparable with GEODYN and GINS with similar setup (*private communications: S. Goossens and J.-C. Marty*).

Slide 14 of 20

Combined orbit: KBRR residuals

Daily RMS values of KBRR residuals for GRAIL-A (PM), using different gravity field models and parametrizations. (**nominal:** $0.1\mu m/s$, see Kruizinga G., AAS 2013)

• Days 140 - 150 at lower altitude \rightarrow larger residuals

Combined orbit: KBRR residuals

Visible effects:

- impact of the pseudo-stochstic pulses (here, every 40');
- solar radiation pressure at light/shadow transitions.

Improve force modelling (SRP) to further reduce residuals!

Combined orbit: position differences

Daily RMS values of orbit differences of GRAIL-A (PM) w.r.t. GNI1B, using several gravity fields and parametrizations. (see Kruizinga G., AAS 2013)

• Days 140 - 150 at lower altitude \rightarrow larger residuals

Gravity field determination

Goal: Gravity field determination from initial orbit determination

Gravity field determination: 2WDOP, $l_{\rm m} = 120$

Slide 19 of 20

Conclusion & Outlook

Conclusion & Outlook

- Development of new capabilities for the Bernese GNSS Software
 - generalization of the force model
 - 1-way and 2-way Doppler modeling
- GRAIL orbit determination results based on Doppler and KBRR data comparable with other groups (if using "good" background model)
- Possible application to other planetary missions.
- Orbit parametrization, arc-length and data screening need to be optimized for robustness.
- Several iterations over gravity field might be necessary for a fully independent solution.
- Pseudo-stochastic orbit parametrization allows for "Bernese" lunar gravity fields without sophisticated background models (SRP is still a limiting factor).

