Contribution of Satellite Laser Ranging to Space Geodesy

Krzysztof Sośnica^{1,2}

 Astronomical Institute, University of Bern, Switzerland
Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland

European Geosciences Union General Assembly 2015

Astronomical Institute University of Bern

Table of contents

Part I

Satellite Geodesy & Satellite Laser Ranging

Part II

Gravity field determination from SLR and GRACE

Part III

SLR measurements to GPS and GLONASS

Conclusions

Three Pillars of Satellite Geodesy

Geometry

Determination of geometrical threedimensional positions and velocities (in global, regional, and local reference frames),

Gravity

Determination of the Earth's gravity field and its temporal variations,

Rotation

Modeling and observing of geodynamical phenomena (tectonic plates, loading crustal deformations) including the rotation and orientation of the Earth (polar motion, Length-of-day, precession and nutation).

Satellite Geodesy

Satellite Laser Ranging (SLR)

- SLR provides very accurate distance measurements (at a few mm-level) between ground stations and satellites.
- SLR geodetic satellites have a minimized area-to-mass ratio. They orbit the Earth at higher altitudes than the satellite gravity missions (e.g., GRACE, GOCE).
- SLR observations are typically used for deriving low-degree gravity field coefficients (degree 2) or zonal harmonics.
- The higher-degree monthly gravity field models can also be well derived from SLR observations using a combination of long and short arcs.

SLR station at Zimmerwald, Switzerland

SLR gravity field solutions in Bernese GNSS Software

		SLR solutions
Estimated parameters		LAGEOS-1/2, Starlette, Stella, AJISAI, LARES, Blits, Larets, Beacon-C
	Osculating elements	a, e, i, Ω, ω, u ₀ (LAGEOS: 1 set per 10 days, LEO: 1 set per 1 day)
Orbits	Dynamical parameters	LAGEOS-1/2 : S_0 , S_S , S_C (1 set per 10 days) Sta/Ste/AJI : C_D , S_C , S_S , W_C , W_S (1 set per day)
	Pseudo-stochastic pulses	LAGEOS-1/2 : no pulses Sta/Ste/AJI : once-per-revolution in along-track only
Earth rotation parameters		X _P , Y _P , UT1-UTC (Piecewise linear, 1 set per day)
Geocenter coordinates		1 set per 30 days
Earth gravity field		Estimated up to d/o 10/10 (1 set per 30 days)
Station coordinates		1 set per 30 days
Other parameters		Range biases for all stations (LEO) and for selected stations (LAGEOS)

Reference: Sośnica, K., Jäggi, A., Thaller, D., Beutler G., Dach, R. (2014). Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geod 88(8): 789-804, doi: 10.1007/s00190-014-0722-z

- Up to 9 SLR satellites with different altitudes and different inclinations are used.
- For LAGEOS-1/2: 10-day arcs are generated, for low orbiting satellites: 1-day arcs.
- Different weighting of observations is applied: from 8mm for LAGEOS-1/2 to 50mm for Beacon-C.
- Constraints introduced to regularize the normal equations (on GFC, pulses, EOPs).

Comparison w.r.t. GRACE K-Band

Secular changes of geoid deformations derived from SLR show a very high level of consistency with the GRACE-based results, however, with a lower spatial resolution.

The ice mass loss in Greenland, West Antarctica and Patagonia is well captured in the SLR solutions.

Reference: Sośnica, K., Jäggi, A., Meyer, U., Thaller, D., Beutler G., Arnold, D., Dach, R. (2015). Time variable Earth's gravity field from SLR satellites. **J Geod** (submitted manuscript).

Comparison w.r.t. GRACE K-Band

The SLR solutions can recover the largest seasonal and secular variations of the gravity field, which correspond to the large-scale mass transport in the system Earth, e.g., the accelerating ice mass depletion in Greenland.

The amplitudes in the SLR solutions up to d/o 10/10 are typically underestimated due to the limited sensitivity of SLR solutions to coefficients of degree 7–10.

Geoid height changes from SLR

Geocenter coordinates from SLR

Astronomical Institute University of Bern

Why is the SLR tracking of GNSS important?

Microwave GNSS	LAGEOS+Etalon		
GNSS Station Coordinates	SLR Station Coordinates		
-	Geocenter coordinates		
GPS and GLONASS orbits	LAGEOS and Etalon orbits		
Earth Rotation Parameters (X pole, Y pole, Length-of-Day)			
Phase-code, Inter-system,			
Inter-frequency Biases	Range Biases (1-3 stations)		
APL Scaling Factors	APL Scaling Factors		
Troposphere Delays	-		

«Classical» co-location on the ground using local ties

Microwave GNSS	SLR@GNSS	LAGEOS+Etalon			
GNSS Station Coordinates	SLR Station Coordinates				
Geocenter Coordinates					
GPS and GLC	LAGEOS, Etalon orbits				
Antenna Offset	LRA Offset	-			
Earth Rotation Parameters (X pole, Y pole, Length-of-Day)					
Phase-code, Inter-system, Inter-frequency Biases	Range biases (all stations)	Range Biases (1-3 stations)			
APL Scaling Factors APL Scaling		ng Factors			
Troposphere Delays		-			

Co-location in space: SLR observations to GNSS are needed

Local tie **Co-location** at GNSS

Atmospheric Pressure Loading- the Blue-Sky Effect

Astronomical Institute University of Bern

Satellite signature effect: Single photon vs. multi-photon SLR detectors

Astronomical Institute University of Bern

Slide 13

Summary

1. SLR substantially contributes to the evaluation of the mass transport mechanisms and global variations of the mass balance in terms of the indications of climate change.

2. The consistency between SLR and GNSS solutions is currently mostly limited by two effects, i.e., the Blue–Sky effect, which is related to the atmospheric pressure loading affecting the SLR stations and the weather–dependency of SLR observations, and the satellite signature effect, which is defined as a spread of optical pulse signals due to reflection from multiple reflectors in the laser reflector arrays.

3. The scale agreement between SLR and GNSS solutions is at the level of ~1mm, when using improved solar radiation pressure modeling (the new ECOM), single-photon detectors, and satellites with uncoated corner cube reflectors.

Thank you for your attention