

Status of the IGS-MGEX Project

R. Dach¹, O. Montenbruck², L. Prange¹

(1) Astronomical Institute, University of Bern, Switzerland(2) DLR, German Space Operations Center, Oberpfaffenhofen, Wessling, Germany

EUREF Symposium – EUREF 2014 June 3-7, 2014 in Vilnius, Lithuania

1

The International GNSS Service is ...

- ... a federation of more than 200 institutions and organizations worldwide
- ... a Service of the International Association of Geodesy (IAG) founded in 1994
- ... operational since more than 20 years
- ... the premier source of the highest-quality GNSS data, products, and related standards and conventions
- ... in support of many applications that benefit the scientific community and society
- ... following an open data policy
- ... open to everybody to participate

 $(\neg S)$

Constellation Status (May 2014)

Blocks	Signals	Sats*)
IIA	L1 C/A, L1/L2 P(Y)	7
IIR-A/B	L1 C/A, L1/L2 P(Y)	12
IIR-M		7
IIF		5(+1)
M	L1/L2 C/A + P	24
	IIA IIR-A/B IIR-M IIF	IIAL1 C/A, L1/L2 P(Y)IIR-A/BL1 C/A, L1/L2 P(Y)IIR-MIIF

*) brackets indicate satellites not yet declared healthy/operational

Constellation Status (May 2014)

System		Blocks	Signals	Sats*)
GPS	in the	IIA	L1 C/A, L1/L2 P(Y)	7
		IIR-A/B	L1 C/A, L1/L2 P(Y)	12
		IIR-M	+L2C	7
		IIF	+L5	5(+1)
GLONASS		Μ	L1/L2 C/A + P	24
	A LANGE	K	+L3	(1)

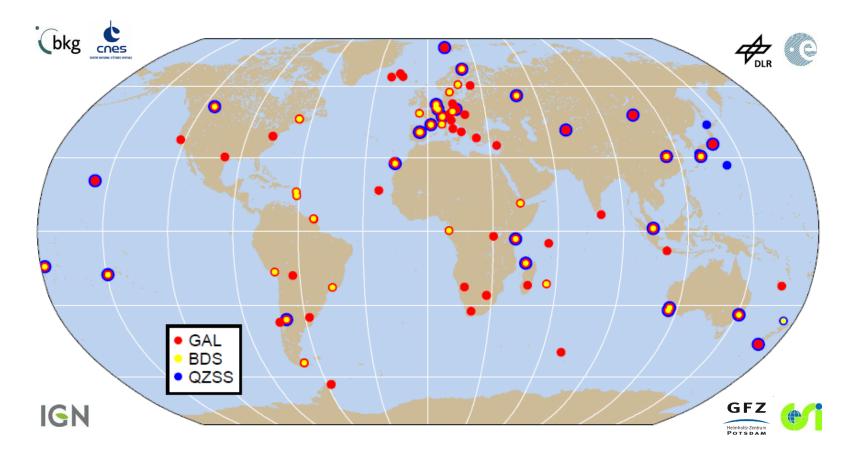
*) brackets indicate satellites not yet declared healthy/operational

Constellation Status (May 2014)

System	Blocks	Signals	Sats*)
GPS	IIA IIR-A/B IIR-M IIF	L1 C/A, L1/L2 P(Y) L1 C/A, L1/L2 P(Y) +L2C +L5	7 12 7 5(+1)
GLONASS	M K	L1/L2 C/A + P +L3	24 (1)
BeiDou	GEO IGSO MEO	B1, B2, B3 B1, B2, B3 B1, B2, B3	5 5 4
Galileo	IOV	E1, (E6), E5a/b/ab	(4)
QZSS	IGSO	L1 C/A, L1C, SAIF L2C, E6 LEX, L5	1
IRNSS	IGSO	L5, S	(2)

*) brackets indicate satellites not yet declared healthy/operational

1 2


Multi-GNSS Experiment (MGEX)

- Multi-GNSS Experiment (MGEX)
 - MGEX call-for-participation released mid-2011 (ongoing)
 - Steered by Multi-GNSS Working Group (MGWG)
- Some 27 contributing agencies from 16 countries
- Global tracking network, mostly real-time
 - State-of-the-art receivers and antenna
 - Tracking of Galileo, BeiDou, QZSS, SBAS (but no IRNSS, yet)
- Free and open access
 - Data archives at CDDIS, IGN, BKG (RINEX 3.x)
 - Real-time NTRIP caster (RTCM3-MSM)
 - Product archive at CDDIS

The IGS MGEX Network

Archive: ftp://cddis.gsfc.nasa.gov/pub/gps/data/campaign/mgex/ Streams: http://mgex.igs-ip.net

http://igs.org

Receivers and Tracked Signals

Receiver Type		Sites	Observations
Javad TR_G2T, TRE_G3TH		29	G: 1C,1W,2X,2W,5X E: 1X,5X
Javad TRE_G3TH (v8 board)		1	G: 1C,1W,2X,2W,5X E: 1X,5X,7X,8X C: 2I,7I
Trimble NETR9	Final Martin	36	G:1C,2X,2W,5X E: 1X,5X,7X,8X C: 2I,6I,7I
Leica GR10/25, GRX1200+GNSS		17	G: 1C,2S,2W,5Q E: 1C,5C,7C,8Q
NovAtel OEM6	and the second	1	G: 1C,2W,5Q E: 1C,5Q
Septentrio PolaRxS/4/4TR, AsteRx3	a september	15	G: 1C,1W,2L,2W,5Q E: 1C,5Q,7Q,8Q C: 2I,7I

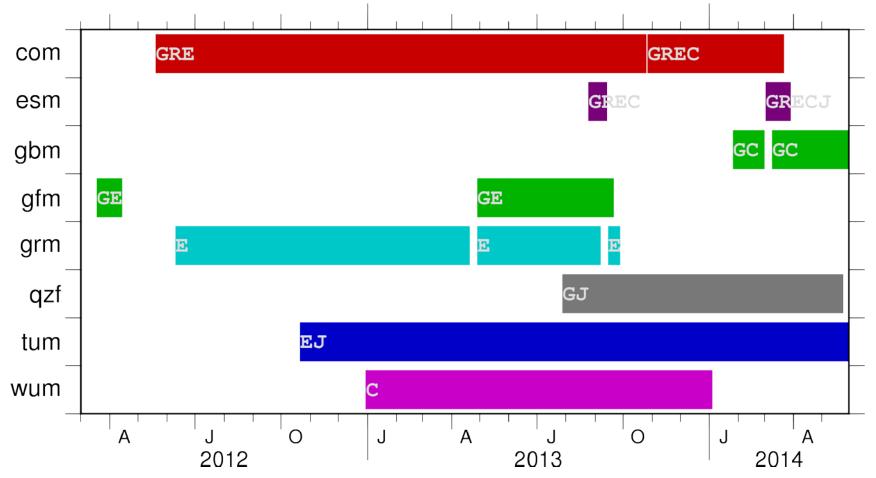
MGEX Analysis Centers and Products

IGS

Institution	ID	Systems
CNES/CLS, France	grm	GAL
CODE(AIUB), Switzerland	com	GPS+GLO+GAL(+BDS)
ESA/ESOC, Germany	esm ⁽¹⁾	GPS+GAL(+GLO+BDS+QZS)
GFZ, Germany	gfm	GPS+GAL
	gbm	GPS+BDS
JAXA, Japan	qzf ⁽²⁾	QZS
TUM, Germany	tum	GAL+QZS
Wuhan Univ., China	wum	GPS+BDS

Products provided at ftp://cddis.gsfc.nasa.gov/pub/gps/products/mgex/

Remarks:

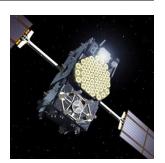

(1) Selected short campaigns, only

(2) Copy of JAXA precise orbit and clock product

http://igs.org

MGEX Product Availability

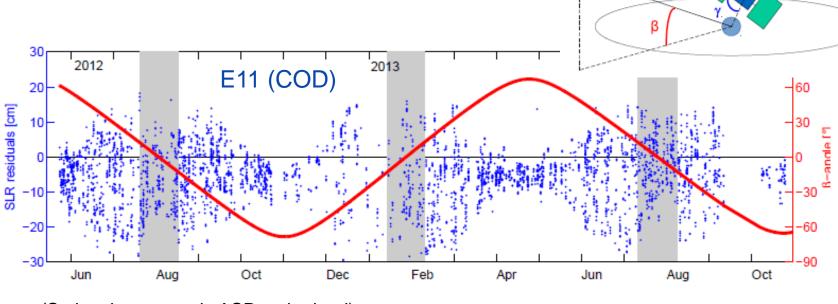
Status: 30-May-2014


Satellite system IDs according to the content of the precise orbit files at ftp://cddis.gsfc.nasa.gov/pub/gps/products/mgex/

http://igs.org

Galileo Orbit and Clock Products

- Routine products from 4 ACs
 - Different s/w packages and processing strategies
- Orbit performance assessment
 - 3-day solutions (COD, GFZ, TUM) 2-3x better than 1-day (CNES)
 - 10-15 cm level (3D rms) consistency
 - 5-8 cm day boundary discontinuities
 - 10 cm rms SLR residuals


(Steigenberger et al., ASR, submitted)

Jun Aug Oct Dec Feb

(Steigenberger et al., ASR, submitted)

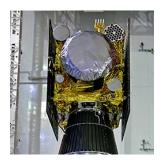
Best results for high β -angles

Bias -5 cm

http://igs.org

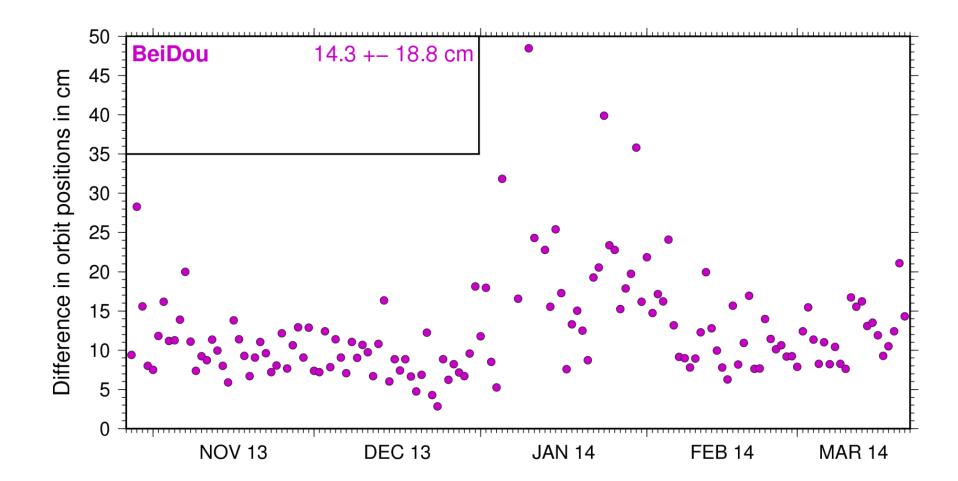
- 1/rev radial orbit errors with up to +/- 20 cm amplitude
- Amplitude varies with Sun-angle above orbital plane (β -angle)

Galileo IOV – SLR Residuals

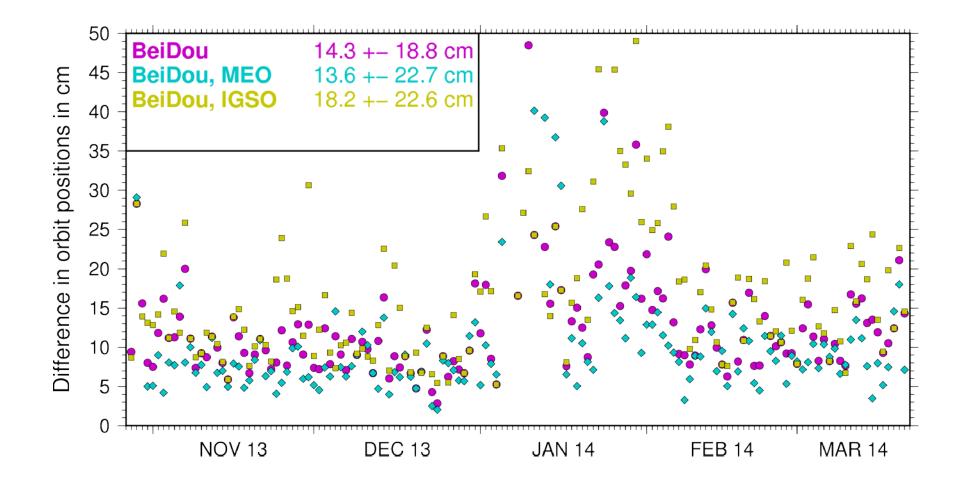


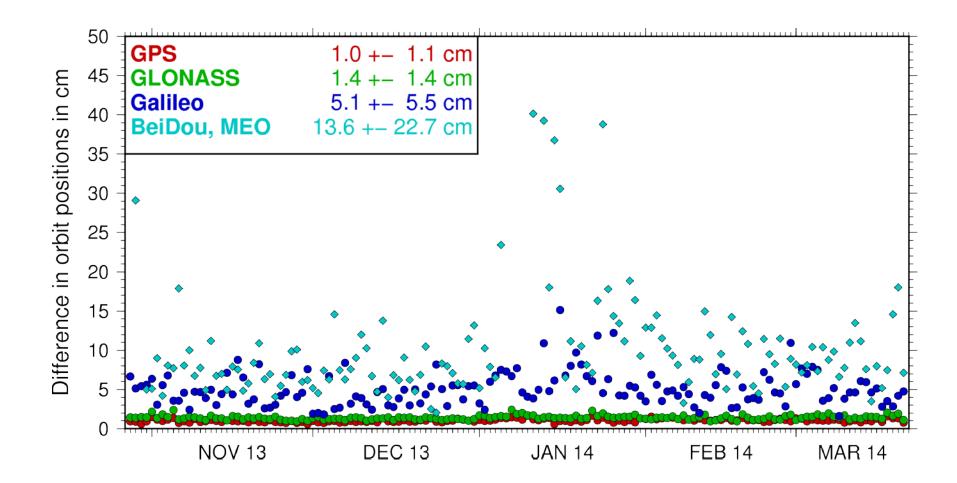
http://igs.org

BeiDou Orbit and Clock Products

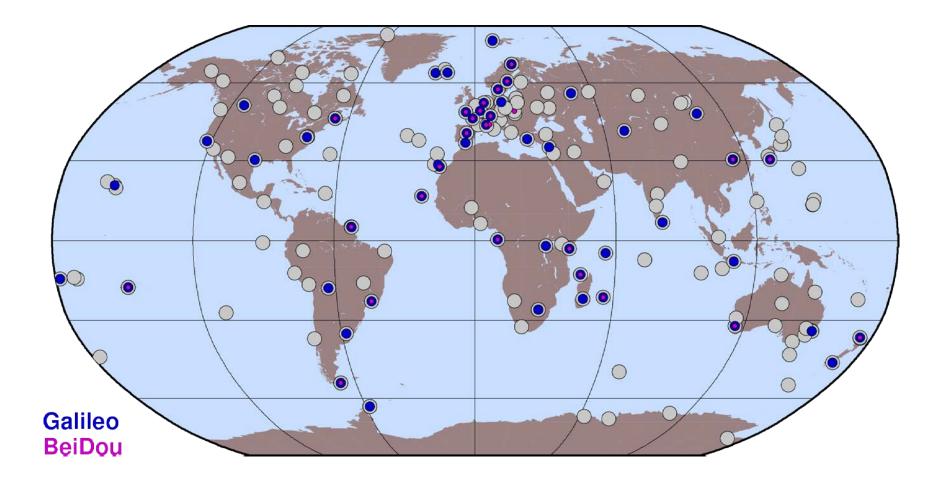

- Products from 3 ACs
 - Different s/w packages (PANDA⁽¹⁾, EPOS, BSW) and processing strategies
 - Different networks (MGEX-only vs. MGEX+BETS⁽²⁾)
 - Only short overlapping periods available (CODE-WUH/CODE-GFZ)
- Orbit performance assessment
 - SLR residuals (10 cm MEO/IGSO; 0.5m GEO?)

- (1) Processing details from Wuhan solution are pending
- (2) BeiDou Experimental Tracking Stations (BETS)




BeiDou: Orbit Overlaps (CODE)

BeiDou: Orbit Overlaps (CODE)

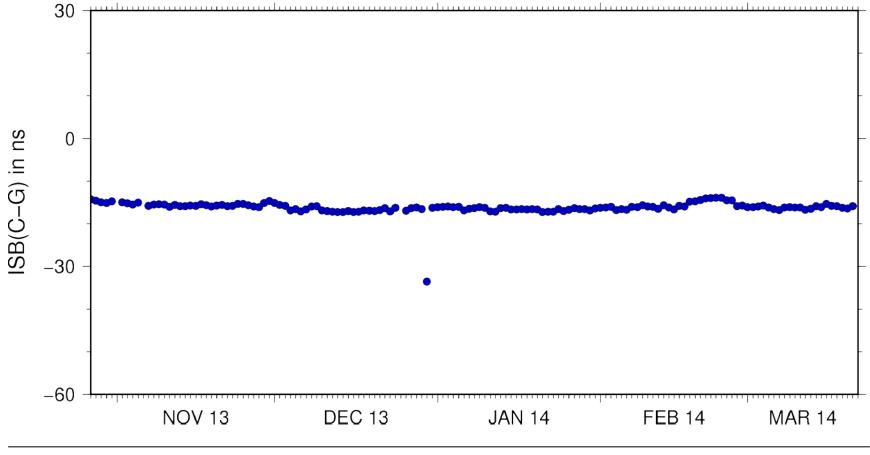


BeiDou: Orbit Overlaps (CODE)

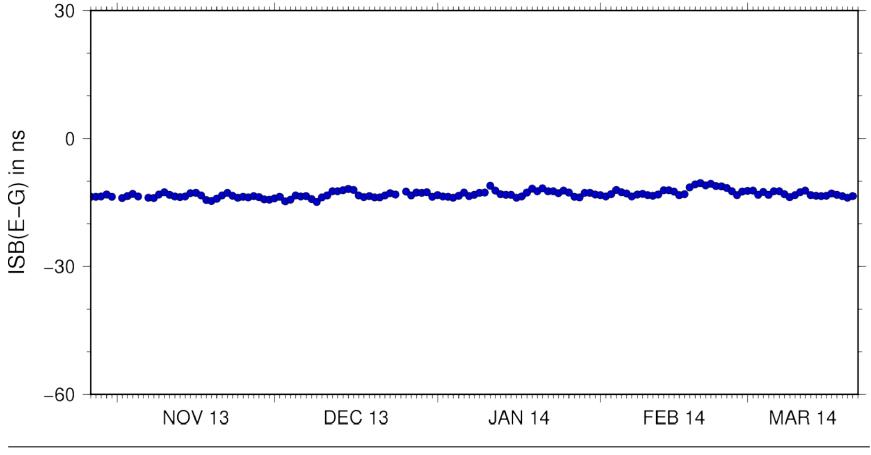
CODE: Network configuration

- IGS
- Limited coverage of GEO/IGSO satellites by current MGEX network
- Lacking information on antenna phase center offsets and attitude modes
- No maneuver information (NABUs?)
- Will B3 signal remain accessible for tracking?
- Need common standard for clock offsets
 - All receivers provide B1/B2, only a subset offers also B3
 - B3 used for broadcast clocks
 - ACs (may) employ different conventions for intersystem biases
- Support SLR tracking for all BeiDou satellites!?

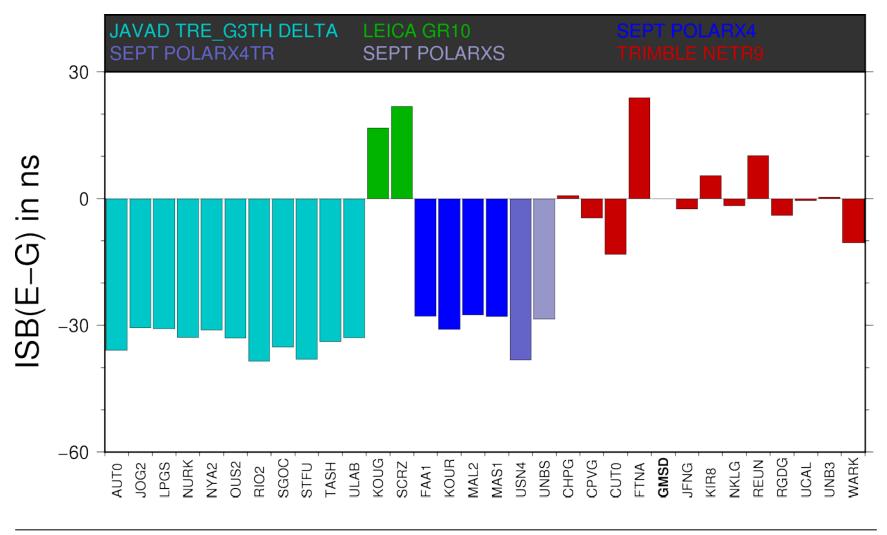
Inter-System-Bias (CODE): BeiDou

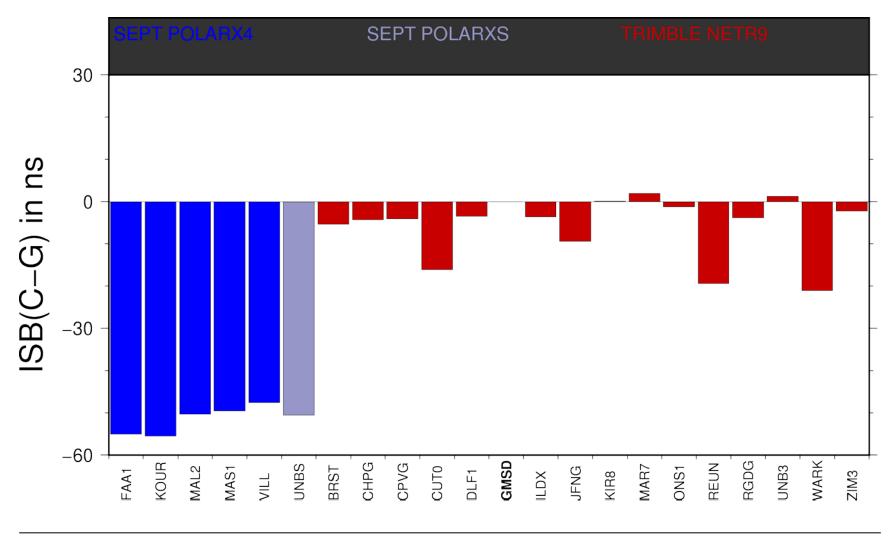


Inter-System-Bias (CODE): BeiDou


CUT0

http://igs.org


Inter-System-Bias (CODE): Galileo


http://igs.org

Inter-System-Bias (CODE): Galileo

http://igs.org

Inter-System-Bias (CODE): BeiDou

http://igs.org

EUREF 2014 23

The CODE-MGEX solution is referring to: GPS: C1P/C2P Galileo: C1X/C5X

BeiDou: C2I/C7I

If other groups are using difference observation types, the **Differential Code Biases** become relevant.

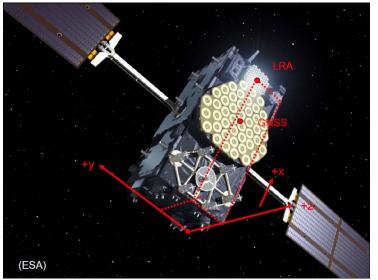
MGEX DCB Products are available in Bias SINEX format:

- Supported constellations: GPS, GLO, BDS, GAL
- Available at

ftp://cddis.gsfc.nasa.gov/pub/gps/products/mgex/dcb

There are several groups of satellites that are expected only marginally relevant for EUREF because of their «location»:

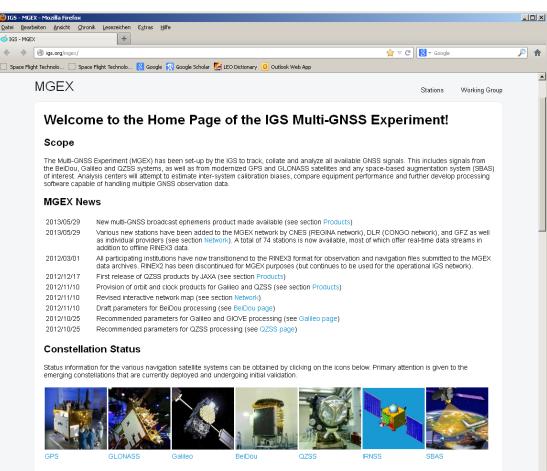
- QZSS: Quasi Zenith Satellite System, Japan
- IRNSS: Indian Regional Navigation Satellite System
- IGSO, GEO for BeiDou


These satellites are not or at least only visible in low elevations for (Central) European stations.

Their contribution to EPN products is consequently limited.

|GS|

Standardization Efforts


- Continued interactions of MGWG with:
 - GNSS system providers
 - Equipment manufacturers
 - Other IGS Working Groups (Ant WG, Bias WG, RT WG)
- Recommendations, conventions and processing standards:
 - Attitude models
 - Antenna offsets and patterns
 - SRP models
- Data formats:
 - Observations and navigation data (RINEX 3.x, RTCM3.2)
 - Biases (SINEX?)
 - Orbits and attitude (ORBEX?)

EUREF 2014

IGS MGEX – http://igs.org/mgex/

Network

An overview of the current MGEX network is shown in the map below. For detailed information on individual stations see the MGEX station list. The latest site logs are available from the IGS MGEX site log archive.

- Central portal for MGEX related information
- Entry point for data and product servers