Time varying gravity from SLR and combined SLR and high-low satellite-to-satellite tracking data

K. Sośnica (1), A. Jäggi (1), M. Weigelt (2), U. Meyer (1), T. van Dam (2), N. Zehentner (3), T. Mayer-Gürr (3)

- (1) Astronomical Institute, University of Bern, Switzerland
- (2) Faculté des Sciences, de la Technologie et de la Communication, University of Luxembourg, Luxembourg
- (3) Institute of Theoretical Geodesy and Satellite Geodesy, Graz University of Technology, Austria

GRACE Science Team Meeting 2014 29th Sep -1st Oct 2014, Potsdam, Germany

Satellite Laser Ranging (SLR)

- SLR provides very precise (at a few mmlevel) distance measurements between ground stations and satellites.
- SLR geodetic satellites have minimized area-to-mass ratios. They orbit the Earth at higher altitudes than the satellite missions dedicated to gravity recovery.
- Up to now SLR observations were mostly used for deriving low-degree gravity field coefficients (mainly degree 2) or zonal harmonics.
- We show that also tesseral and sectorial harmonics up to d/o 10/10 of monthly gravity field models can be very well derived from SLR observations.

SLR station in Zimmerwald, Switzerland

SLR-only solutions

Space Segment of SLR satellites

LAGEOS-1

Up to 9 SLR satellites with different altitudes and different inclinations are used.

For LAGEOS-1/2 10-day arcs are generated without estimating once-perrevolution empirical accelerations in out-of-plane (due to correlations with C20).

- For low orbiting satellites 1-day arcs are generated.
- Different weighting of observations is applied: from 8mm for LAGEOS-1/2 to 50mm for Beacon-C.

List of estimated parameters

SLR solutions LAGEOS-1/2, **Estimated parameters** Starlette, Stella, AJISAI, LARES, Blits, Larets, Beacon-C a, e, i, Ω , ω , u_0 **Osculating** (LAGEOS: 1 set per 10 days, elements LEO: 1 set per 1 day) LAGEOS-1/2: S_0 , S_S , S_C **Orbits Dynamical** (1 set per 10 days) parameters $Sta/Ste/AJI : C_D, S_C, S_S, W_C, W_S$ (1 set per day) Pseudo-stochastic LAGEOS-1/2: no pulses pulses Sta/Ste/AJI: once-per-revolution in along-track only Earth rotation X_P, Y_P, UT1-UTC parameters (Piecewise linear, 1 set per day) **Geocenter coordinates** 1 set per 30 days Earth gravity field Estimated up to d/o 10/10 (1 set per 30 days) **Station coordinates** 1 set per 30 days Other parameters Range biases for all stations (LEO) and for selected stations (LAGEOS)

AJISAI:

- Diameter: 2.15 n
- Mass: 685 kg
- Area-to-mass: A/m: 58·10⁻⁴ m² kg⁻¹

LAGEOS:

- Diameter: 0.60 m
- Mass: 407 kg
- A/m: 6.9·10⁻⁴ m²kg⁻¹

LARES:

- Diameter: 0.36 m
- Mass: 387 kg
- A/m: 2.7·10⁻⁴ m² kg⁻¹

Beacon-C:

- Dimension: unknown
- Mass: 32 kg
- Center-of-mass correction: unknow
- Area-to-mass: unknown BUT: due to low inclination (41°) and large eccentricity (0.023), this satellite can be used for decorrelation of some gravity field parameters.

Processing scheme

Sensitivity of SLR satellites to SH coefficients

- LAGEOS-1/2 are very sensitive to degree 2 SH.
- LAGEOS sensitivity drops down for degrees higher than 4.
- LEOs are not very sensitive to even zonal coefficients (C20, C40, C60) due to short arcs (1-day) and estimated empirical orbit parameters.
- LARES remarkably contributes to degree 4 and 6.
- Contribution from Larets and Blits is small.

Comparison w.r.t. GRACE K-Band

SLR and GRACE solutions agree very well, especially for sectorial and tesseral SH coefficients.

Comparison w.r.t. GRACE K-Band

Even the coefficients of degree 6 can be still very well recovered by SLR.

SLR-only solutions

SLR can recover the largest gravity variations, e.g., in Amazon basin, Greenland, Africa, and South-East Asia. The spatial resolution is, however, limited due to high satellite latitudes and a low number of data.

Mean monthly gravity field variations up to d/o 10/10 derived from SLR-only (no filtering applied, scale in m)

SLR-only solutions

Slide 12

SLR-only solutions

Combined SLR + hl-SST solutions

Combination of hISST and SLR

In the combination with hISST, SLR contributes mostly to degree 2 coefficients, but the relative weighting is still an open issue.

SLR+hl-SST solutions

GRACE vs. hl-SST vs. SLR+hl-SST

60°S

120° E

120° W

signals.

GRACE vs. hl-SST vs. SLR+hl-SST

60°S

120° E

120°W

Summary

Low degree gravity field parameters can be well derived from SLR observations to geodetic satellites. Low-degree SH provide information about large-scale mass transport in the system Earth.

The mean difference of seasonal signal for low degree SH between SLR-only and GRACE K-band is 7.5E-12, i.e., 23% of mean total annual signal. It implies that the agreement between SLR and GRACE is at 77% level by means of low degree SH.

The combination SLR + hl-SST provides information about mass transport in the system Earth with higher spatial resolution w.r.t. SLR-only solutions.

The AIUB SLR-only temporal gravity field solutions will be published soon on ICGEM website.

Thank you for your attention

Back-up slides

RMS of differences of monthly solutions (x1E-12)

The mean RMS of differences between estimated SH coefficients are: 41, 47, and 36.E-12 for SLR vs.GRACE, SLR vs.hISST+SLR, and GRACE vs. hISST+SLR, respectively.

In hISST solutions the amplitudes are overestimated by about 12%.

The RMS of differences between estimated amplitudes are 7.5, 9.0, and 13.9E-12 for SLR-GRACE, SLR-hISST, and GRACE-hISST, respectively.

hISST denotes hISST+SLR

hISST denotes hISST+SLR

Amplitudes of annual signal (x1E-12)					
	Mean (up to $d/o 4/4$)	Mean without zonals			
SLR	30.8	31.5			
GRACE	34.2	31.6			
hISST+SLR	40.0	36.2			
Mean differences of annual amplitudes (x1E-12)					
SLR – GRACE	9.9	7.5			
SLR - hISST+SLR	9.6	9.0			
GRACE - hISST+SLR	17.3	13.9			
Mean correlation coefficients					
SLR - GRACE	0.47	0.51			
SLR - hISST+SLR	0.36	0.41			
GRACE - hISST+SLR	0.44	0.52			
RMS of differences (x1E-12)					
SLR - GRACE	42	41			
SLR - hISST+SLR	52	47			
GRACE - hISST+SLR	39	36			

SLR Satellite Sensitivity to Gravity Field

Perturbing accel.	Accel. on LAGEOS	Accel. on AJISAI	Accel. on LARES	Accel. on Stella	
Gravitational perturbations:					
· Earth's monopole	2.7	6.4	6.5	7.7	
· Earth's oblateness C_{20}	$1.0\cdot 10^{-3}$	$6.2\cdot 10^{-3}$	$6.3\cdot 10^{-3}$	$8.8\cdot 10^{-3}$	
· Low-order grav. C_{22}	$6.0\cdot 10^{-6}$	$3.6\cdot 10^{-5}$	$3.7\cdot 10^{-5}$	$5.1\cdot 10^{-5}$	
· Low-order grav. C_{66}	$8.6\cdot 10^{-8}$	$3.1\cdot 10^{-6}$	$3.2\cdot 10^{-6}$	$6.3\cdot 10^{-6}$	
· Mid-order grav. C_{2020}	$8.1\cdot 10^{-13}$	$1.5\cdot 10^{-8}$	$1.6\cdot 10^{-8}$	$1.1\cdot 10^{-7}$	
· Grav. attr. of Moon	$2.1\cdot 10^{-6}$	$1.4\cdot 10^{-6}$	$1.4\cdot 10^{-6}$	$1.3\cdot 10^{-6}$	
· Grav. attr. of Sun	$9.6\cdot 10^{-7}$	$6.4\cdot 10^{-7}$	$6.5\cdot 10^{-7}$	$5.7\cdot 10^{-7}$	
\cdot Grav. attr. of Venus	$1.3\cdot 10^{-10}$	$8.5\cdot 10^{-11}$	$8.5\cdot 10^{-11}$	$7.8\cdot10^{-11}$	
\cdot Solid Earth tides	$3.7\cdot 10^{-6}$	$2.0\cdot 10^{-5}$	$2.0\cdot 10^{-5}$	$2.9\cdot 10^{-5}$	
· Ocean tides	$3.7\cdot 10^{-7}$	$1.9\cdot 10^{-6}$	$2.0\cdot 10^{-6}$	$3.0\cdot 10^{-6}$	
General relativity:					
\cdot Schwarzschild effect	$2.8\cdot 10^{-9}$	$1.1\cdot 10^{-8}$	$1.1\cdot 10^{-8}$	$1.4\cdot 10^{-8}$	
\cdot Lense-Thirring effect	$2.7\cdot 10^{-11}$	$1.3\cdot 10^{-10}$	$1.4\cdot 10^{-10}$	$1.8\cdot 10^{-10}$	
\cdot Geodetic precession	$3.4\cdot 10^{-11}$	$4.2\cdot 10^{-11}$	$4.2\cdot 10^{-11}$	$4.3\cdot 10^{-11}$	
Non-gravitational perturbations:					
\cdot Solar radiation pressure	$3.5\cdot 10^{-9}$	$2.5\cdot 10^{-8}$	$1.1\cdot 10^{-9}$	$4.4\cdot 10^{-9}$	
\cdot Earth radiation pressure	$4.4\cdot 10^{-10}$	$8.6\cdot 10^{-9}$	$3.9\cdot 10^{-10}$	$1.8\cdot 10^{-9}$	
\cdot Thermal re-radiation	$5.0\cdot10^{-11}$	$4.1\cdot10^{-10}$	$1.9\cdot 10^{-11}$	$6.9\cdot10^{-11}$	
\cdot Light aberration	$1.1\cdot 10^{-13}$	$1.1\cdot 10^{-12}$	$5.1\cdot 10^{-14}$	$2.0\cdot 10^{-13}$	
\cdot Atmospheric drag (\sim min)	$0.8\cdot 10^{-14}$	$3.0\cdot 10^{-11}$	$2.6\cdot10^{-12}$	$5.0\cdot10^{-11}$	
\cdot Atmospheric drag (\sim max)	$2.0\cdot10^{-13}$	$5.9 \cdot 10^{-10}$	$4.8\cdot10^{-11}$	$5.0 \cdot 10^{-8}$	

Diameter: 2.15 m

Mass: 685 kg

Area-to-mass:

A/m: 58·10⁻⁴ m² kg⁻¹

LAGEOS:

Diameter: 0.60 m

Mass: 407 kg

Area-to-mass:

A/m: 6.9·10⁻⁴ m² kg⁻¹

LARES:

Diameter: 0.36 m

Mass: 387 kg

Area-to-mass:

A/m: 2.7·10⁻⁴ m² kg⁻¹

SLR solution with and without estimating gravity field

For LoD, the simultaneous estimation of the gravity field parameters:

- reduces the offset of LoD estimates,
- 2. substantially reduces the a posteriori error of estimated LoD. The mean a posteriori error of LoD is 1.3, 16.9, 7.1, and 44.6 μs/day in the multi-SLR solution with gravity, multi-SLR solution without gravity, LAGEOS-1/2 solution without gravity, and SLR-LEO solution without gravity field parameters, respectively.
 - 2. reduces peaks in the spectral analysis, which correspond, e.g., to orbit modeling deficiencies (peaks of 222 days, i.e., draconitic year of LAGEOS-2, 280 days, i.e., eclipsing period of LAGEOS-1),

Estimated parameters of SLR satellites

Satellite	Nominal CoM [mm]	Estimated CoM [mm]	Error [mm]
Starlette	75	77.8	3.1
Stella	75	77.8	3.1
Blits	-209.6	-205.7	8.5
Larets	56.2	63.1	5.5
LARES	133	133.6	2.1
Beacon-C	no data	276.5	4.8
Beacon-C			
(N hemisphere)	no data	285.1	4.9
Beacon-C			
(S hemisphere)	no data	220.7	6.7

Due to the lack of information about the parameters of Beacon-C, the center-of-mass corrections had to be estimated on a basis of in-orbit analysis. A significant difference was found in CoM for SLR stations located in Southern and Northern hemispheres.

Estimated area-to-mass for Beacon-C: A/m = $1.75\pm0.2\cdot10^{-2}$ m² kg⁻¹

For Larets, a significant difference w.r.t. nominal CoM was found.

