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GOCE satellite mission (1)

- Gravity and steady-state Ocean
Circulation Explorer

- First Earth Explorer of the Living
Planet Program of the European
Space Agency

- Launch: 17 March 2009 from
Plesetsk, Russia

- Sun-synchronous orbit

- Altitude: 255 km (lowered later on)
- Mass: 1050 kg at launch

. 5.3mlong, 1.1 m? cross section

- Re-entry: 11 November 2013 near
the Falkland Islands

Courtesy: ESA
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GOCE satellite mission (2)

Low orbit operations
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GOCE satellite mission (3)

Three axes stabilized, nadir
pointing, aerodynamically shaped
satellite

Drag-free attitude control (DFAC) in
flight direction employing a
proportional Xe electric propulsion
system

Very rigid structure, no moving
parts

Attitude control by magnetorquers

Attitude measured by star cameras

C
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GOCE satellite mission (4)

Main mission goal:

Determination of the Earth’s gravity field
with an accuracy of 1mGal (= 10°°> m/s?) at
a spatial resolution of 100 km using the
concept of space gradiometry

Released Gravity Field Models:

R1: 01/11/2009 — 11/01/2010 (TIM,DIR,SPW)
R2: 01/11/2009 — 05/07/2010 (TIM,DIR,SPW)
R3: 01/11/2009 — 17/04/2011 (TIM,DIR)

R4: 01/11/2009 — 19/06/2012 (TIM,DIR)

R5: 01/11/2009 — 20/10/2013 (TIM,DIR)

Courtesy: ESA
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GOCE satellite mission (5)

- Satellite-to-Satellite Tracking
Instrument (SSTI)

- Dual-frequency L1, L2
- 12 channel GPS receiver
. 1 Hz datarate

- =>Primary instrument for orbit
determination

- Antenna phase center variations
amount up to £3cm on ionosphere-
free linear combination

- => Mission requirement for precise

— \' l | science orbits: 2 cm (1D RMS)

Courtesy: ESA
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GOCE High-level Processing Facility (HPF)

National Space Research
Center of the
Netherlands (SRON)

Institute of Geaphysics,
University Copenhagen,
Denmark (UCPH)

Institute of
Astrodynamics and
Satellite Systems, Techn.
University Delft, The
Netherlands (FAE/A&S)

GeoForschungsZentrum

Potsdam, Dept. 1 Geodesy

and Remaote Sensing,

| Germany (GEZ)
i

PI & Project Management:
Institute of Astronomical
and Physical Geodesy,
Techn. Univ. Munich,
Germany (IAPG)

Institute of Theoretical
Geodesy, University
Bonn, Germany (ITG)

Asfronomical Institute,
University Berne,
Switzerland (AIUE

Centre Nationale
d*Etudes Spatiales,
Toulouse, France
{(CNES)

Institute for Navigation and
Satellite Geodesy, Graz University
of Techn., Austria (TUG)

Politechnico di Milanao,
Italy (POLIMI)

Responsibilities
for orbit
generation:

DEOS:

=> RSO (Rapid
Science Orbit)

AlUB:

=> PSO (Precise
Science Orbit)

IAPG:

=> Validation
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GOCE PSO procedure

Preparation of
CODE | GPS orbits, clocks | Auxiliary
products ' andERPs | data
(30 hours) . .
- Tailored version of Bernese
[ ] GPS Software used
GOCE Pseudorange:
GPS data first a priori orbit - Undifferenced processing
!
Receiver clock - Automated procedure
synchronization
Data pre- . - 30 h batches => overlaps
processing Phase: _
Ry GOCE - CODE final products
screenin attitude data _
Sl - Reduced-dynamic and
- g kinematic orbit solutions are
Reduced- computed
dynamic orbit _ﬁ(inematic orbit
solution \ solution
(iterative)

Piece-wise constant accelerations (6 min)
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Overlaps of reduced-dynamic PSO solutions
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The results are based on 5h overlaps (21:30-02:30) and reflect the internal consistency
of subsequent reduced-dynamic solutions.

The same orbit determination settings were used for the operational PSO computation

over the entire mission period.
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Differences reduced-dynamic vs. kinematic (1)
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The results show the consistency between both orbit-types and mainly reflect the
qguality of the kinematic orbits.

A high correlation with ionosphere activity and L2 data losses is observed.
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Differences reduced

-dynamic vs. kinematic (2)
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Orbit validation with SLR
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Gravity field recovery from orbital positions

Slide 16

Kinematic GOCE positions contain
independent information about the
long-wavelength part of the Earth’s
gravity field

1-sec kinematic positions serve as
pseudo-observations together with
covariance information to set-up an
orbit determination problem, which
also includes gravity field parameters

Non-gravitational forces are absorbed
by empirical parameters in the course
of the generalized orbit determination
problem, accelerometer data are not
used for the results shown in this
presentation

Gravity field coefficients are solved
without applying any regularization
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Impact of polar gap

Differences to ITG-GRACE2010 Differences to ITG-GRACE2010
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e 0d; is dominated by zonal and near-zonal terms, degradation depends on max. d/o

e =>exclusion according to the rule of thumb by van Gelderen & Koop (1997)
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Impact of maximum resolution
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T T T T T

10
e ommission errors are avoided, ...

“ e ..., but artifacts appear at low degrees
E . e Artifacts are restricted to near-zonal
- coefficients. Rule of thumb needs to
2 be enlarged
g 10°F

oo Zonals and near-zonals excluded, enlarged by 2 orders
10 T T T T T
—— |TG-GRACE201 0
e GOCE (n=120) |l 10°
4 ) . ‘ . — G(IZ)CE (n = 160)
10 0 20 40 60 80 100 120
Degree of spherical harmonics

E .

e Stronger artifacts in 2010, ... §° 1

e ..., but again mostly related to near-
zonal coefficients, which are very _ S—
sensitive to the increasing data » = SOcEm=120)
problems such as the L2 losses ©o 20 w0 o e0

Degree of spherical harmonics

Slide 18 Astronomical Institute University of Bern AIUB



mission and their use for Gravity Field Recovery. COSPAR Scientific Assembly 2014, Aug 02-10

Jaggi, A., H. Bock, U. Meyer, M. Weigelt (2014): GOCE Precise Science Orbits for the entire

Assessment of solutions for nominal altitude
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The bi-monthly solution for 2009 shows the best quality, slightly worse qualities are
obtained for 2010 and 2012, the most degraded solution is obtained for 2011.

The long-term solution R4 shows no significantly improved quality with respect to the
bi-monthly solutions below degree 30.
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Systematic effects in the orbits (1)
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Systematic effects in the orbits (2)

e Systematic effects around the geomagnetic equator are present in the
ionosphere-free GPS phase residuals => affects kinematic positions

e Degradation of kinematic positions around the geomagnetic equator
propagates into gravity field solutions.

mean residuals at lonosphere—crossing: 2011, doys 245-365 x107°

Phase observation residuals Geoid height differences
(-2mm ... +2 mm) (-5cm ... 5 cm);
mapped to the ionosphere TIM-R4 model

piercing point
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Removal of systematic effects (1)

e One possible cause is the neglection of the higher order ionosphere
(HOI) correction terms.

e First tests using HOI correction terms did, however, not show any
improvement in the results.
e But an empirical approach can be adopted:

= Removal of observations, which have large ionosphere changes from one
epoch to the next (e.g. >5cm/s).

T
5 | —
lonosphere change >5cm/s excl, 300-365, 2011 x 107

10 |

L1-L2 (m)

-15 ¢

-20 -

257 + G30
‘+ G30; >50m/§ excluded ‘ ‘ ‘
25 30 35 40 45
min Gedldaseighs elivbdienaes idioads/ Dec 2011)
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Removal of systematic effects (2)
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Attempts to model the systematic effects (1)

Conventional modeling of HOI correction terms does not show any
improvements. Also the application of further HOI correction terms
than recommended by the IERS Conventions 2010 does not bring any
further improvements.

lonosphere delays (= slant TEC) need to be directly derived from the
geometry-free linear combination to compute more realistic HOI
correction terms.

STEC
400 T

L] I—2 350} S @
\/ lonosphere wl ; N
- . . i 250} o g;[f
Ionosphere free elimination First )
linear k=== =—=-14 order - %
combination effect
STEC deli Higher
from _ %a%e%'gn— — 4 order
GPS data effects
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Attempts to model the systematic effects (2)

e STEC estimations are fed into the kinematic orbit determination
instead of the global ionosphere map

e HOI correction terms are computed based on the STEC estimations
e Only partial reduction achieved so far in gravity field solutions

With new STEC, 300- 2011

Phase observation residuals Geoid height differences
(-2 mm ... +2 mm) (-5cm ... 5cm);
mapped to the ionosphere Nov-Dec 2011

piercing point
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SSTI-B

Solutions from different antennas
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Time variability from GOCE, CHAMP, GRACE (1)

SIN GOCE Kalman %107 COSs GOCE Kalman %107
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Time variability from GOCE, CHAMP, GRACE (2)
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Summary

e Precise Science Orbits are of excellent quality

= 1.84 cm SLR RMS for reduced-dynamic orbits
= 2.42 cm SLR RMS for kinematic orbits

e Orbit quality is correlated with ionosphere activity

= L2 losses over geomagnetic poles
= Systematic effects around geomagnetic equator

e GPS-only gravity field solutions

= Sensitivity at least up to d/o 120 (static part)
= Limited sensitivity to annual time variable signals
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Difference degree amplitudes
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== = (3
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Degree of spherical harmonics

Impact of accelerometer data and optimal constraining of empirical parameters.

=> Only very low degrees are affected.
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