

2014 AGU Fall Meeting San Francisco | USA | 15–19 December 2014

Surface mass variation monitoring from SLR and orbit information of GPS-tracked low-Earth orbiters

<u>Oliver Baur</u>¹, Matthias Weigelt², Norbert Zehentner³, Torsten Mayer-Gürr³, Tonie van Dam², Krzysztof Sośnica⁴, Adrian Jäggi⁴, Sandro Krauss¹

¹Space Research Institute, Austrian Academy of Sciences, Graz, Austria
 ²Faculty of Science, Technology and Communication, University of Luxembourg
 ³Institute of Theoretical Geodesy and Satellite Geodesy, Graz University of Technology, Austria
 ⁴Astronomical Institute, University of Bern, Switzerland

GRACE – a story of success likely to be interrupted

- Remaining mission lifetime unpredictable
- GRACE follow-on mission in late 2017 at the earliest
- Gap between GRACE and GRACE-FO very likely

Bridging candidates:

- Satellite Laser Ranging (SLR)
- GPS-tracked Low-Earth Orbiters (LEO-GPS) (non-dedicated, dedicated)

LEO-GPS: 20 satellites

SLR: 9 satellites

Period Precise orbit determination

LEO-GPS normal equations SLR normal equations Data combination "Manipulation" Degree-1 terms Post-processing Band-pass filtering Spatial averaging Inference of mass variation Surface mass densities Leakage consideration

01/2003-12/2013 based on GPS code and phase observations

kinematic orbit analysis from monthly data sets orbital, geometrical, and force model parameters on the level of normal equations

replaced, cf. Swenson et al. (2008)

cf. Weigelt et al. (2013) Gaussian smoothing with a radius of 750 km

Precise orbit determination

- Code and phase observations on L1 and L2
 - Directly used in least-squares adjustment
 - Precise point positioning (PPP) approach
- Antenna center variations for code/phase observations
 - Azimuth- and elevation-dependent for receiver and transmitter
- Ionospheric correction including 2nd, 3rd order terms and bending correction
- Azimuth- and elevation-dependent observation weighting

al e da via da via via da via da via

6

Period Precise orbit determination LEO-GPS normal equations

SLR normal equations Data combination "Manipulation" Degree-1 terms Post-processing Band-pass filtering Spatial averaging Inference of mass variation Surface mass densities Leakage consideration Time series fit 01/2003-12/2013 based on GPS code and phase observations kinematic orbit analysis from monthly data sets orbital, geometrical, and force model parameters on the level of normal equations

replaced, cf. Swenson et al. (2008)

cf. Weigelt et al. (2013) Gaussian smoothing with a radius of 750 km

LEO-GPS normal equations

Baur O, Bock H, Höck E, Jäggi A, Krauss S, Mayer-Gürr T, Reubelt T, Siemes C, Zehentner N *Comparison of GOCE-GPS gravity fields derived by different approaches*, J. Geod. 88, 959-973, 2014

Period Precise orbit determination LEO-GPS normal equations SLR normal equations

Data combination "Manipulation" Degree-1 terms Post-processing Band-pass filtering Spatial averaging Inference of mass variation Surface mass densities Leakage consideration Time series fit 01/2003-12/2013 based on GPS code and phase observations kinematic orbit analysis from monthly data sets orbital, geometrical, and force model parameters on the level of normal equations

replaced, cf. Swenson et al. (2008)

cf. Weigelt et al. (2013) Gaussian smoothing with a radius of 750 km

SLR normal equations

		SLR solutions		
Estimated parameters Osculating elements Dynamical parameters		LAGEOS-1/2, Starlette, Stella, AJISAI, LARES, Blits, Larets, Beacon-C		
Orbits	Osculating elements	a, e, i, Ω, ω, u ₀ (LAGEOS: 1 set per 10 days, LEO: 1 set per 1 day)		
	Dynamical parameters	LAGEOS- $1/2$: S ₀ , S _S , S _C (1 set per 10 days) Sta/Ste/AJI : C _D , S _C , S _S , W _C , W _S (1 set per day)		
	Pseudo-stochastic pulses	LAGEOS-1/2 : no pulses Sta/Ste/AJI : once-per- revolution in along-track only		
Earth rotation parameters		X_P , Y_P , UT1-UTC (piecewise linear, 1 set per day)		
Geocenter coordinates		1 set per 30 days		
Earth gravity field		Full up to d/o 10 (1 set per 30 days)		
Station coordinates		1 set per 30 days		
Other parameters		Range biases for all stations (LEO) and for selected station (LAGEOS)		

- Up to 9 satellites (different altitudes and inclinations)
- Weighting of observations: from 8 mm (LAGEOS-1/2) to 50 mm (Beacon-C)

Period Precise orbit determination **LEO-GPS** normal equations SLR normal equations Data combination "Manipulation" Degree-1 terms Post-processing Band-pass filtering Spatial averaging Inference of mass variation Surface mass densities Leakage consideration Time series fit

01/2003-12/2013 based on GPS code and phase observations kinematic orbit analysis from monthly data sets orbital, geometrical, and force model parameters on the level of normal equations

replaced, cf. Swenson et al. (2008)

cf. Weigelt et al. (2013) Gaussian smoothing with a radius of 750 km

Post-processing

Post-processing

Period Precise orbit determination **LEO-GPS** normal equations SLR normal equations Data combination "Manipulation" Degree-1 terms Post-processing Band-pass filtering Spatial averaging Inference of mass variation Surface mass densities Leakage consideration Time series fit

01/2003-12/2013 based on GPS code and phase observations kinematic orbit analysis from monthly data sets orbital, geometrical, and force model parameters on the level of normal equations

replaced, cf. Swenson et al. (2008)

cf. Weigelt et al. (2013) Gaussian smoothing with a radius of 750 km

Surface mass variation from GRACE-KBR

Period Gravity fields "Manipulation" Degree-1 terms c₂₀ coefficients Post-processing De-correlation Spatial averaging Inference of mass variation Surface mass densities Leakage consideration Time series fit 01/2003-12/2013 CSR, release 05

replaced, cf. Swenson et al. (2008) replaced by values from SLR, cf. Maier et al. (2014)

according to Swenson and Wahr (2006) Gaussian smoothing with a radius of 750 km

Total secular variation

GRACE-KBR

LEO-GPS & SLR

Total secular variation

17

Linear trend

Linear trend

Annual amplitude

Annual amplitude

Trend (Gt/yr)

Region	GRACE-KBR	Δ LEO-GPS (%) ^a		
		11sat ^b	11sat & SLR	20sat & SLR
Greenland	-285 ± 10	-12	-6	-6
Greenland ext.c	-316 ± 10	-13	-7	-4
Canadian Shield	172 ± 6	-12	-8	3
West Antarctica	-140 ± 10	-10	-15	-11
East Antarctica	104 ± 6	-1	0	-7

Amplitude RMS (EWH cm)

Region	GRACE-KBR	Δ LEO-GPS (%) ^a		
		11sat ^b	11sat & SLR	20sat & SLR
Amazon	15.6	-6.8	-6.2	-8.6
Mekong	10.3	-6.4	-5.2	-8.1
Niger	8.3	-10.4	-11.2	-20.6
Okavango	10.0	-15.2	-11.1	-4.7

^a Difference to GRACE-KBR.

^b \overline{C}_{20} replaced by values from SLR.

^c Including Iceland, Svalbard, and the Canadian Arctic archipelago.

Uncertainties are given at the 95% (2σ) confidence level.

Good news

- GNSS tracking of (non-dedicated) satellites allows large-scale surface mass variation detection
- Additional benefit by the incorporation of SLR to geodetic satellites
- Mass change rates agree up to 97% with GRACE K-band ranging results
- Annual amplitudes agree up to 95% with GRACE K-band ranging results; inter-annual variations are detectable
- LEO-GPS & SLR is an option to bridge from GRACE to GRACE-FO

(Present) limitations

- Level of agreement correlates with signal magnitude
- Spatial resolution (precision of GNSS and SLR observations)
- Results from orbit analysis tend to underestimate signal magnitudes (related to post-processing filtering)
- Any "bridging option" is inferior to the GRACE-KBR performance