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1 Introduction

In the seventies and eighties a dynamic development of space techniques occurred, es-
pecially of the Satellite Laser Ranging (SLR). SLR became an exceptional contributor
to the space geodesy in particular after the launch of the first two SLR-designed geode-
tic satellites, i.e., Starlette in 1975 and the LAser GEOdynamics Satellite (LAGEOS) in
1976. SLR allowed defining a global terrestrial reference frame, observing Earth rotation
parameters (ERP) and the Earth’s long-wavelength gravitational potential with a previ-
ously unprecedented accuracy. SLR confirmed the theory of the drift of tectonic plates
and allowed defining the precise value of one of the fundamental values in physics and
astronomy, i.e., the standard gravitational parameter of the Earth GM (Seeber, 2003).

The SLR technique remains constantly crucial in many fields of the space geodesy,
even though it has been nowadays superseded in many fields by other space geodesy
techniques. The densification of the reference frame and ERP are better established
by the Global Navigation Satellite Systems (GNSS), and the Earth gravity field by the
dedicated missions: CHAMP, GRACE, and GOCE. Nevertheless, the contribution of SLR
to the definition of the origin of the reference frame (geocenter coordinates), the global
scale, GM , and low degree spherical harmonics of the Earth’s gravity field (especially the
oblateness term) is essential due to the remarkable orbit accuracy of geodetic satellites
and the precision of laser observations at a level of a few millimeters. Considering these
aspects, SLR has an exceptional potential in establishing global networks and deriving
geodetic parameters of the supreme quality (Rothacher, 2003). Furthermore, the long
time series of precise SLR observations allow us to verify special aspects of the theory of
general relativity, e.g., the geodetic precession and the Lense-Thirring effect (Pavlis et al.,
2012a).

SLR faces today the highest requirements of the Global Geodetic Observing System
(GGOS, Pearlman and Plag, 2009), asking for 1 mm of long-term station coordinate and
0.1 mm/y of velocity stability. Applying the latest state-of-the-art models, standards, and
conventions is essential in order to achieve the highest quality of SLR-derived products.

The goal of this work is to assess the contribution of the latest models and corrections
to the SLR-derived parameters, to enhance the quality and reliability of the SLR-derived
products, and to propose a new approach of orbit parameterization for the low Earth
orbiting geodetic satellites. The study concerning methods of orbit parameterization is
unavoidable when the SLR-derived parameters of superior quality are to be obtained.
Therefore, the impact of orbit perturbing forces is hereinafter studied in detail, including
perturbing forces of gravitational origin (Earth’s gravity field and ocean tides) and per-
turbing forces of non-gravitational origin (atmospheric drag, albedo and Earth’s infrared
radiation pressure). Different parameterizations of low Earth orbiting geodetic satellites
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are verified by comparing the quality of the derived parameters such as station coordi-
nates, ERPs, time-variable Earth’s gravity field parameters, geocenter coordinates, and
satellite orbits. A multi-satellite combined solution is obtained using SLR observations
of LAGEOS-1, LAGEOS-2, Starlette, Stella, and AJISAI. The quality of SLR-derived
parameters from the combined solution is compared with external solutions. The ERPs
are compared to the IERS-C04 series (IERS stands for the International Earth Rotation
and Reference Systems Service) and the GNSS-derived series, whereas the time-variable
Earth’s gravity field coefficients are compared to the CHAMP- and GRACE-derived re-
sults. The external sources of ERPs and gravity field coefficients serve here as quality
indicators of the SLR products and provide the information about the inter-technique
consistency within the space geodesy.

Chapter 2 gives a general overview on the SLR technique and describes the principle
of satellite distance measurements using ultra-short laser pulses. Moreover, many other
aspects of data processing are introduced, i.e., precise orbit determination, parameter
estimation using the least-squares method, and special aspects of SLR data processing.

The impact of gravitational forces on LAGEOS orbits is studied in Chapter 3. A set
of the latest Earth gravity field models based on various satellite missions, e.g., CHAMP,
GRACE, and GOCE, is validated by analyzing the induced orbit perturbations. In anal-
ogy to the Earth gravity field models, the latest ocean tide models are also validated. The
ocean tide models significantly benefited recently from the contributions of the satellite
missions, e.g., Topex/Poseidon, ERS-1, Jason-1/-2. The sensitivity of LAGEOS to max-
imum degree and order of Earth gravity field and ocean tide models is also addressed.
Finally, the impact of mismodeling of the zonal harmonic C20 is addressed, because C20

is a main contributor to the perturbations of the precise orbits of geodetic satellites.
Chapter 4 describes the impact of non-gravitational forces on geodetic satellites. The

atmospheric drag, indirect solar radiation pressure (albedo), and thermal effects (the
Yarkovsky and the Yarkovsky-Schach effect) are discussed in detail, and their impact on
the satellite orbits and terrestrial frame is assessed. The computation of mean orbital
elements allows, e.g., deriving the value of the secular decay of the semi-major axis due
to non-gravitational forces.

Chapter 5 is entirely devoted to the quality enhancement of the SLR-derived products
and to the improvement of compatibility between SLR and other satellite observation
techniques. Initially, Chapter 5 addresses the importance of the atmospheric pressure
loading (APL) corrections for the product consistency of the different space geodesy
techniques. The omission of APL corrections may in particular lead to inconsistencies
between solutions of the optical (SLR) and microwave (e.g., GNSS) techniques of the
space geodesy. SLR observations are carried out during almost cloudless sky conditions,
whereas microwave observations are weather-independent. Cloudless weather conditions
are typically related to high air pressure conditions, when the Earth’s crust is deformed
downwards to the greatest extent by the pressure loading. Therefore, the weather depen-
dence of the optical observations causes a systematic shift of the station heights, which
is called the Blue-Sky effect. In Chapter 5 the possible improvement of the compatibility
between SLR and GNSS solutions is addressed by applying APL corrections at the obser-
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vation level. The impact of the Blue-Sky effect is assessed for all SLR stations. Moreover,
the impact of the atmospheric tidal loading, atmospheric non-tidal loading, and ocean
tidal loading on the SLR stations and the SLR-derived parameters are examined.

Subsequently, Chapter 5 investigates the quality of SLR-derived products using the
observations of low orbiting geodetic satellites: AJISAI, Starlette, and Stella. The most
favorable orbit parameterization is searched for by studying the length of orbital arc,
optimum set of empirical orbit parameters, pseudo-stochastic orbit parameters, and the
solutions with different satellite combinations.

Finally, all results from Chapters 3-5 are applied in order to deliver the state-of-the-art
multi-satellite solution using SLR data to LAGEOS-1, LAGEOS-2, AJISAI, Starlette,
and Stella. Satellite orbits, station coordinates, geocenter coordinates, ERPs, and low
degree spherical harmonics of Earth’s gravity field are estimated in one fully consistent
solution. The quality of the results is assessed by a comparison with GNSS, CHAMP,
and GRACE solutions.

For the purpose of this dissertation, the capability of processing SLR observations
to low orbiting geodetic satellites (e.g., Starlette, Stella, AJISAI, BLITS, LARES) was
implemented in the Bernese GNSS Software.

Keywords: Satellite Geodesy; SLR; LAGEOS; Reference Frame; Earth Rotation;
Gravity Field; Geocenter Coordinates; Orbit Perturbations
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2 Satellite Geodesy

Satellite geodesy is the science of the measurement and mapping of Earth’s surface, its
deformations, orientation, and gravity field by applying observations of artificial and
natural satellites (Seeber, 2003). The term ’space geodesy’ is much broader, because
it also comprises interferometric observations of extragalactic objects. The main three
pillars of space geodesy can be summarized according to Beutler (2001) as follows:

• precise determination of geometrical three-dimensional positions and velocities (in
global, regional, and local reference frames),

• determination of the Earth’s gravity field and its temporal variations,

• modeling and observing of geodynamical phenomena (tectonic plates, loading crustal
deformations) including the rotation and orientation of the Earth (polar motion,
Earth rotation, precession and nutation).

Furthermore, satellite geodesy essentially contributes to physics and astronomy by de-
riving the remarkably accurate values of fundamental constants, e.g., the GM product,
i.e., the product of the gravitational constant and the mass of the Earth, and by proving
the effects of general relativity, i.e., the geodetic precession (de Sitter effect), and the
Lense-Thirring effect (Pavlis et al., 2012a).

Today, the space geodesy provides four observation techniques that are used for the
definition of the International Terrestrial Reference Frame (ITRF, Altamimi et al., 2011),
namely:

• Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR),

• Very Long Baseline Interferometry (VLBI),

• Global Navigation Satellite Systems (GNSS),

• Doppler Orbitography and Radiopositioning Integrated by Satellite (Détermination
d’Orbite et Radiopositionnement Intégré par Satellite, DORIS).

Within the GGOS (Pearlman et al., 2007), other techniques are also adopted for geode-
tic monitoring of the system Earth:

• satellite altimetry,

• Interferometric Synthetic Aperture Radar (InSAR),

• satellite gravimetry,
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Table 2.1: Applications of space geodetic techniques, adopted version based on: Rothacher
(2003).

Parameter VLBI GNSS DORIS SLR LLR Altimetry, Gravity
type InSAR missions
Quasar coordinates XXX
Nutation XXX X X XX
Polar Motion XX XXX X XX X
UT1-UTC XXX XX
Length-of-Day XX XXX XX XXX X
Sub-daily ERPs XXX XXX XX XX
ERP Ocean Tide Ampl. XX XX XX XX XXX XX
Station coordinates XXX XXX XXX XXX XX X
Gravitational const. X X XXX XX
Geocenter XX XX XXX X X X
Gravity Field XX XX XXX X X XXX
Orbits XXX XXX XXX XXX XX XX
Ionosphere XX XXX XX XX XX
Troposphere XX XXX XX X X XX
Timing XX XXX X XXX X

• satellite optical imagery,

• other remote sensing techniques (e.g., geomagnetic field mapping).

The different techniques of space geodesy are sensitive to different global parameters
of the system Earth. Table 2.1 gives a general overview on the sensitivity of the geodetic
techniques for determination of global parameters. X - denotes a technique which has a
potential to establish a particular parameter, XX - parameters are routinely established
using this technique, XXX - is a major and most important source of a parameter.

This chapter gives a general introduction to satellite geodesy by the definition of refer-
ence systems and frames, an introduction to parameter estimation using the least squares
method, a description of the SLR technique, and general aspects of SLR data modeling.
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2.1 Reference Systems and Frames

The definition of reference systems is needed for expressing locations of points w.r.t. the
Earth or in space. The motion of artificial Earth satellites is best described in a celestial
reference system, whereas a terrestrial reference system rotating with the Earth, is most
conveniently used for the description of site positions. The terms ’reference system’ and
’reference frame’ have to be distinguished. A reference system is the set of prescriptions
and conventions together with the modeling required to define at any time a triad of axes
(Petit and Luzum, 2011). A terrestrial reference frame is the realization of the reference
system by means of station coordinates and their velocities. The celestial reference frame
is a realization of the reference system by means of coordinates of quasars or other celestial
objects. The Earth orientation parameters are mandatory to transform the coordinates
between the celestial and the terrestrial reference frame.

2.1.1 International Terrestrial Reference Frame (ITRF)

The International Terrestrial Reference System (ITRS, Petit and Luzum, 2011) is defined
as a right-handed orthogonal coordinate system. Its orientation is equatorial, i.e., the Z-
axis is the direction of the IERS reference pole, the X-axis is the line of intersection
between the Earth’s equator and the IERS reference meridian, and the Y-axis completes
the system.

The ITRS is realized by the series of the International Terrestrial Reference Frames
(ITRF, Boucher and Altamimi, 1993), which is maintained by the IERS. The ITRF
consists of lists of coordinates and velocities referring to a specified epoch (and their
interval validities) for a selected number of IERS sites defined by VLBI, SLR, GNSS,
and DORIS observations. The construction of the ITRF is based on the combination of
the individually reprocessed solutions provided by the analysis centers of the technique-
specific services (Altamimi et al., 2011).

Analysis centers of individual techniques typically derive and apply their own reference
frames, which differ in number of stations considered (IGS081, SLRF20052, SLRF20083),
receiver antenna phase center calibrations (IGS08/IGb08), or in the scale of the reference
frame4 (SLRF2005). The frequency of recent releases of ITRF is every three to five years,
therefore, all new sites or sites affected by earthquakes are not appropriately handled.
These issues are solved in the technique-specific reference frames by the more frequent
updates.

The latest realization of the ITRS is the ITRF2008, which follows the standards (Al-
tamimi et al., 2011):

• the origin is defined in such a way that there are no translations at epoch 2005.0
and no translation rates between the ITRF2008 and the SLR time series,

1ftp://igs.org/pub/station/coord/IGS08.snx
2http://ilrs.gsfc.nasa.gov/docs/2007/AWG_GRASSE_24.09.2007.pdf
3ftp://cddis.gsfc.nasa.gov/pub/slr/products/resource/SLRF2008_110913.txt
4http://cddis.gsfc.nasa.gov/lw16/docs/presentations/sci_3_Mueller.pdf
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• the scale is defined in such a way that there is null scale and scale rate between
ITRF2008 and the average of VLBI and SLR scales/rates,

• the orientation is defined in such a way that there are null rotations at epoch 2005.0
and null rotation rates between the ITRF2008 and ITRF2005. These two conditions
are applied over a core network.

The final ITRF2008 solution comprises station positions, velocities, and Earth Orien-
tation Parameters (EOP). The EOPs are defined in the early eighties by VLBI and SLR,
while the DORIS contribution starts from 1993.0, and GPS from 1997.0 (Altamimi et al.,
2011).

The SLR contribution to ITRF2008 comprises the observations of LAGEOS-1/2 and
Etalon-1/2. The SLR observations of other geodetic or GNSS satellites are currently not
considered for the realization of the reference system.

2.1.2 Effects on Station Positions

Site positions on the Earth’s crust change in time with respect to an Earth-fixed reference
frame due to various reasons. Plate motions impose site drifts up to several centimeters
per year (maximally ∼ 8 cm/year for the Indo-Australian Plate). This effect is accounted
for by providing linear velocities to each station.

The ITRF is materialized by geodetic reference sites, for which a set of coordinates for
a reference epoch and velocities is assigned to. The instantaneous position of a point on
the Earth’s surface at epoch t, i.e., X(t) can be expressed as a sum of a position XR(t)
and position corrections ∆Xi(t) which account for various time changing effects:

X(t) = XR(t) +
∑
i

∆Xi(t). (2.1)

The time-variable crustal deformations include effects of, e.g., solid Earth tides, tidal
and non-tidal ocean and atmosphere pressure loading, and hydrological effects. The site
position XR(t) at epoch t is modeled as a linear function of the site position at a reference
epoch t0 and the site velocity ∆Ẋ as:

XR(t) = X0(t) + ∆Ẋ(t− t0). (2.2)

The linear motion may be derived from tectonic plate motion models, but in practice,
it is typically taken from the geodetic data.

In the process of data analysis the tidal and non-tidal surface loading displacements
can be imposed on station coordinates. Some of the corrections are recommended to
be applied at the observation level, namely the Ocean Tidal Loading (OTL) corrections.
Atmospheric Tidal Loading (ATL), Atmospheric Non-Tidal Loading (ANTL), non-tidal
oceanic and hydrological corrections are not recommended to be applied for the current
IERS products, because of a too large uncertainty of the current models or an insufficient
latency of the models.
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The mass redistributions in oceans, in groundwater (hydrology), and in the atmosphere
cause deformations of the Earth crust. OTL deformations are induced by ocean tides due
to the gravitational attractions of Moon and Sun. Atmospheric Pressure Loading (APL)
deformations are related to variations in the surface pressure ∆p(ϕ, λ, t), because the mean
deformation caused by the reference (mean) pressure p(ϕ, λ, t) is included in the station
coordinates of a reference frame. APL can be considered as the sum of the ATL, typically
expressed by the S1 and S2 tidal constituents (Ray and Ponte, 2003), and the ANTL.
ATL has maximum variations of about 1.5 mm in the equatorial areas, whereas ANTL
assumes maximum variations up to 20 mm for inland stations (Böhm et al., 2009). Both
oceanic and atmospheric loading deformations are calculated on the basis of a Green’s
function ϑ(cos(β)) (Farrell, 1972) describing the deformations of the Earth’s crust as a
function of the Legendre polynomials Ψ(cos(β)) of angular distance β, load Love’s number
h′n, gravitational constant G, mean Earth radius ae, and the mean surface gravity g:

ϑ(cos(β)) =
Gae
g

∞∑
n=1

h′nΨ(cos(β)). (2.3)

The Green’s Function describes the reaction of the Earth’s crust to any mass load. For
hydrology or ice-mass it is basically the same as for the OTL and APL. The only difference
for the ice-mass is the Love’s number that has to describe the long-term reaction of the
Earth, instead of the instantaneous reaction.

Subsequently, e.g., for APL, the Earth surface deformation in the vertical component
is calculated by an integration of the pressure variations ∆p over the area A:

ζup(ϕ, λ, t) =

∫
A

∆p(ϕ′, λ′, t)

g
ϑ(cos(β))dA, (2.4)

where (ϕ′, λ′, t) denotes the location of the surface element dA at time t. A detailed
description of Earth crust deformations induced by loading can be found, e.g., in Farrell
(1972) or Blewitt (2003).

2.1.3 Earth Orientation Parameters

The ITRS is referred to the International Celestial Reference System (ICRS) as a function
of time by rotations between the two systems describing the Earth’s orientation (Mc-
Carthy and Petit, 2004). The Earth’s orientation can be expressed by three independent
Euler angles. In practice, for monitoring of the Earth’s orientation, five Earth orientation
parameters (EOP) are defined, giving corrections to the uniform daily rotation, and the
model for precession and nutation.

The following transformation has to be applied to convert coordinates from the ITRS
into the ICRS at epoch t (Beutler, 2005):

XC = P N R3(−θ) R1(Y) R2(X) XT , (2.5)

with:

9



2 Satellite Geodesy

Figure 2.1: Earth orientation parameters: precession, nutation, and polar motion, original
version by D. Schmedt.

• XC - vector in the ICRS,

• XT - vector in the ITRS,

• P - transformation matrix containing precession parameters,

• N - transformation matrix containing nutation parameters,

• θ - the Greenwich apparent sidereal time (GAST),

• X and Y - pole coordinates.

The gravitational attraction of Moon and Sun imposes torques on the oblate Earth,
which force the equatorial plane to precess with respect to an inertial system (Beutler,
2005). The long periodic variation of the mean pole of the equatorial plane around the
pole of the ecliptic plane with a period of about 26000 years (precession) is distinguished
in geodesy and astronomy from the nutation, which stands for the periodic motion of the
true pole around the mean pole. The main period of nutation at 18.6 years is due to the
precession of the lunar orbital plane around the pole of the ecliptic plane.

The EOPs refer to a conventional axis, the Celestial Intermediate Pole (CIP), which is
defined by the precession and nutation model and its corrections (the celestial pole offsets
expressed as nutation in ecliptical longitude dψ and nutation in obliquity dε or dXn and
dYn). The diurnal rotation of the rotating system around the CIP is given by the Earth
rotation angle θ defining the sidereal rotation of the Earth. For common use, the IERS
does not provide θ but its associated time scale UT1 (universal time) given in mean solar
time.

The excess of the rotation period with respect to the mean period is called the excess
of the Length-of-Day (LoD or LoD excess). The CIP is referred to the polar axis of the
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Figure 2.2: Sun-Satellite-Earth coordinate system, after Urschl et al. (2007).

terrestrial reference frame by two small rotation angles (polar motion, see Figure 2.1),
called the pole coordinates (X, Y). LoD (or UT1-UTC) and the pole coordinates define
the Earth rotation parameters (ERP), which are well established from the satellite obser-
vations. The absolute values of the celestial pole offsets dψ, dε and θ can only be derived
from the observations directly referring to the ICRS (VLBI and LLR).

2.1.4 Satellite Reference Systems

The orbit perturbations are typically expressed in a Cartesian coordinate systems with
the origin in the satellite center-of-mass and rotating w.r.t. inertial space. The < sys-
tem is used for the description of orbit perturbations in this thesis. It decomposes the
accelerations into:

• R - the radial direction, describing the direction of the satellite state vector eR = r
|r| ,

• W - the out-of-plane (cross-track, normal) direction, describing the direction per-
pendicular to the osculating orbital plane eW = r×ṙ

|r×ṙ| ,

• S - the along-track direction completing the orthogonal right-handed system and
pointing approximately to the direction of motion eS = eW ×eR. The S component
approximates the tangential direction for the near-circular satellite orbits.

The orbit perturbations related to the direct and indirect solar radiation pressure are
typically expressed in the Sun-Satellite-Earth (SSE) coordinate system (see Figure 2.2).
The SSE is defined by:
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• β0 - elevation of the Sun above the orbital plane,

• ∆u - argument of latitude of the satellite w.r.t. the argument of latitude of the Sun,

• E - elongation Sun-Satellite-Geocenter angle, defined as cosE = cosβ0 cos ∆u.

In case of the GNSS satellites the satellite antenna is always pointing towards the geo-
center, whereas the solar panels are lying in the plane perpendicular to the Sun-satellite
vector. Most of the spherical geodetic satellite do not have an attitude control (with excep-
tion of, e.g., SpinSat also known as Atmospheric Neutral Density Experiment ANDE-3),
providing that the orientation of the satellites is entirely subject to natural physical forces.

The empirical accelerations, estimated along with other orbital parameters (see Sec-
tion 2.2.2) may be expressed in different satellite reference systems. The directions,
which the empirical accelerations are determined for, can, e.g., be the axes of the <
orbital system (R,S,W ), the axes of a sun-oriented system (D,Y,B), or the axes of a
mixed non-orthogonal system (D,S,W ).

12
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2.2 Satellite Orbit Modeling

According to the law of universal gravitation, described by Newton, the acceleration of a
point of negligible mass compared to the mass M of the Earth (the so-called two-body
problem) reads as:

r̈ = −GM
r2

r

|r|
, (2.6)

with:

• r̈ - geocentric acceleration vector of the satellite due to the Earth’s monopole,

• G - gravitational constant,

• M - total mass of the Earth (with oceans and atmosphere),

• r - geocentric position vector of the satellite.

Equation 2.6 describes the motion of a satellite in the gravity field of the Earth, which
is assumed to be spherically symmetric. The differential equation characterizes the un-
perturbed two-body problem. The equation of motion together with initial conditions
and perturbing forces defines the orbit of a satellite (Beutler, 2005). Despite the fact
that more than 99.96% of total acceleration acting on LAGEOS is solely due the Earth’s
monopole (see Table 4.5 in Chapter 4), the other perturbing forces have to be taken into
account, as well.

2.2.1 Orbital Elements

The state vector, i.e., the satellite’s position r and velocity vector ṙ, referred to a particular
epoch t, fully define a set of initial conditions for an equation of motion of artificial
satellites. The state vector can be transformed to a set of osculating orbital elements
referring to a particular epoch t, assuming that perturbing forces are much smaller than
the central force (Earth’s monopole).

The following set of orbital elements (Keplerian elements) is typically used for a de-
scription of initial conditions (see Figure 2.3):

• a(t) - semi-major axis,

• e(t) - eccentricity,

• i(t) - inclination with respect to the equatorial plane,

• Ω(t) - right ascension of the ascending node,

• ω(t) - argument of perigee,

• u0(t) - argument of latitude at time t (alternatively T0(t) - perigee passing time or
v0(t) - true anomaly).

13
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Figure 2.3: Keplerian elements describing satellite orbits.

2.2.2 Equation of Motion of an Artificial Earth Satellite

The equations of motion of an artificial satellite orbiting the Earth may be expressed in
a geocentric quasi-inertial system (Beutler, 2005) as:

r̈ = −GM
r3

r + ap(t, r, ṙ, d1, d2,··· , dm, s1, s2,··· , sn), (2.7)

with the initial conditions:

r(t0) = r(a, e, i,Ω, ω, u0(t0)), ṙ(t0) = ṙ(a, e, i,Ω, ω, u0(t0)), (2.8)

where

• ap - perturbing acceleration,

• d1, d2,··· , dm - dynamic (empirical) orbit parameters,

• s1, s2,··· , sn - other orbit parameters, e.g., pseudo-stochastic parameters.

The −GM
r3

r term represents the central gravity term. The vector ap includes the sum
of all perturbing accelerations acting on an artificial Earth satellite.

The empirical accelerations ai in the direction i can be written as follows:

ai = (a0i + aCi cosu+ aSi sinu) · ei, (2.9)

with

• a0i - constant empirical acceleration in the direction i,
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• aCi, aSi - once-per-revolution (OPR) empirical acceleration in the direction i (cosine
and sine terms, respectively),

• ei - unit vector in the direction i.

2.2.3 Perturbations of the Satellite’s Orbit

The perturbing accelerations ap may have a gravitational origin (due to the asphericity
of the Earth, Earth’s tides, other celestial bodies), a non-gravitational origin ang (at-
mospheric drag, direct and indirect solar radiation pressure) or they may originate from
the theory of general relativity agr. Thus, the equation of motion of the satellite in the
geocentric system referred to the quasi-inertial system (Beutler, 2005) reads as:

r̈ = −GM
∫
Ve

ρpr
r− rp

|r− rp|3
dVe−G

n∑
j=1

mj

(
r− rp

|r− rp|3
− rj

|rj |3

)
+
∑

ang+
∑

agr+
∑

ads,

(2.10)
where:

• r̈ - acceleration vector of the satellite in the geocentric system,

• r - geocentric position vector of the satellite,

• rj - geocentric position vector of a point mass j,

• rp - geocentric position vector of a volume element of the Earth,

• Ve - volume of the Earth,

• ρpr - relative density function (i.e., density in units of the Earth’s mass),

• mj - mass of the point mass j (e.g., Moon, Sun, planets),

• ang - non-gravitational accelerations,

• agr - perturbations due to the general relativity,

• ads - other dynamic and stochastic orbit parameters.

The first term in the equation of motion describes the gravitational acceleration acting
on an artificial Earth satellite due to the total Earth’s gravity potential. The second term
describes the third-body accelerations caused by point masses, e.g., Moon, Sun, and plan-
ets, whereas the remaining terms correspond to all accelerations due to non-gravitational
forces, due to the general relativity, and due to other accelerations represented by dynamic
and stochastic orbit parameters.
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Earth’s Gravity Field

The central perturbing force acting on a satellite is caused by the non-spherical part of the
Earth’s gravity potential. The acceleration r̈ can be written as the gradient of a gravity
potential V :

r̈ = OV, (2.11)

whereas the gravity potential of the Earth V (r, λ, φ) can be represented by a spherical
harmonic expansion (e.g., Beutler, 2005):

V (r, λ, φ) =
GM

r

∞∑
n=0

(ae
r

)n n∑
m=0

Pnm(sinφ)[Cnm cos(mλ) + Snm sin(mλ)], (2.12)

where:

• λ, φ - geocentric longitude and latitude of the satellite,

• ae - mean equatorial radius of the Earth,

• n,m - degree and order of the geopotential term,

• Pnm - associated fully normalized Legendre function of degree n and order m,

• Cnm, Snm - geopotential coefficients of degree n and order m.

The coefficients Cnm and Snm represent the Earth’s internal mass distribution. We dis-
tinguish between zonal (m = 0), sectorial (m = n), and tesseral (0 < m < n) coefficients.
The terms Cn0 can also be expressed as Jn = |Cn0|.

The coefficient C00 = 1 as the first term in the geopotential expansion corresponds
to the two-body potential V = GM/r and defines the physical scale of the Earth. The
first order terms C10, C11, and S11 describe the shift of the Earth’s center of mass w.r.t.
the origin of the coordinate system and correspond to the x, y, and z components of
translation, respectively (the so-called geocenter coordinates):

C11

S11

C10

 =
1

aeM
√

3C00


∫
Ve
ρjxjdV∫

Ve
ρjyjdV∫

Ve
ρjzjdV

 =
1

ae
√

3


x
y
z

 , (2.13)

where ρj is the density of the unit Earth’s mass element j. The geocenter coordinates are
equal zero, if the origin of the coordinate system is in the center of mass.

The Earth’s oblateness, represented by the zonal term C20, is the major source of
perturbing accelerations. This term causes, e.g., the precession of the nodal line and of
the perigee of the satellite orbit (Beutler, 2005).

Tidal Deformations

The periodic deformations of the solid Earth’s crust caused by the gravitational attraction
of the Moon and Sun are called solid Earth tides. The oceans’ response to lunisolar
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tidal perturbations is known as ocean tides. The Earth’s gravity potential exhibits small
periodic variations, due to ocean tides and solid Earth tides, which in turn influence the
satellite’s motion (Petit and Luzum, 2011).

Ocean Tides

Ocean tides are typically expressed by the coefficients of amplitudes and waves of partic-
ular discrete frequencies f (Petit and Luzum, 2011), causing variations of geopotential ν:

ν(λ, φ, t) =
∑
f

Zf (λ, φ) cos(θf (t)− ψf (λ, φ)), (2.14)

where:

• Zf - amplitude of a wave,

• ψf - phase in Greenwich meridian,

• θf - the Doodson argument.

The hydrodynamical effects of ocean tides can be expanded as periodic variations of
the normalized Stokes’ coefficients of degree n and order m. After the expansion into a
spherical harmonic function, the equation reads as (Petit and Luzum, 2011):

ν(λ, φ, t) =
∑
f

∞∑
n=1

n∑
m=0

Pnm(sinφ)

−∑
+

C±f,n,m cos(θf +χf±mλ)+S±f,n,m sin(θf +χf±mλ),

(2.15)
where:

• C±f,n,m, S
±
f,n,m - prograde and retrograde spherical harmonic coefficients of the main

wave f of degree n and order m,

• χf - phase bias according to Shureman conventions (Petit and Luzum, 2011),

• Pnm - associated fully normalized Legendre function.

Relativistic Corrections

Three main effects of general relativity perturbing satellite orbits are typically considered
(Petit and Luzum, 2011):

• Schwarzschild acceleration:

r̈Sch =
GM

c2r3

{[
2(β + γ)

GM

r
− γṙ · ṙ

]
r + 2(1 + γ)(r · ṙ)ṙ

}
, (2.16)
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• Lense-Thirring effect:

r̈L−T =
GM

c2r3
(1 + γ)

[
3

r2
(r× ṙ)(r · J) + (ṙ× J)

]
, (2.17)

• Geodetic precession (DeSitter effect):

r̈dS = (1 + 2γ)
GMS

c2r3
s

(ṙs × rs)× ṙ, (2.18)

where:

• γ, β - parameters of general relativity (assumed to be unit values),

• c - speed of light,

• r - geocentric position vector of the satellite,

• ṙ - geocentric velocity vector of the satellite,

• J - angular momentum of the Earth,

• GMS - the gravitational constant multiplied by the mass of Sun,

• rs - geocentric position vector of the Sun,

• ṙs - geocentric velocity vector of the Sun.

The satellite acceleration due to the Schwarzschild term is of the order of 1.4·10−8 ms−2,
the Lense-Thrirring effect is 1.8 · 10−10, and the geodetic precession is 4.3 · 10−11 on low
orbiting geodetic satellites, e.g., Starlette or Stella. The Schwarzschild term and the
Lense-Thirring effect strongly depend on the altitude of the satellite, but the Lense-
Thirring effect is smaller by two orders of magnitude. The perturbations due to the
geodetic precession are of the same order for all satellites, because they depend mostly
on the distance between Earth and Sun. At the altitude of LAGEOS the Lense-Thirring
effect and the geodetic precession are of the same order of magnitude. For satellites lower
than LAGEOS the Lense-Thirring effect is more important, for satellites with higher
altitudes the perturbation due to the geodetic precession is larger (see Figure 2.4).

For relativistic effects affecting SLR observations (signal propagation) see Section 2.5.7.

Non-gravitational Forces

Non-gravitational forces are caused by particles or electromagnetic radiation. The elec-
tromagnetic radiation originates mainly in the radiation pressure due to photons emitted
by the Sun, which are reflected or absorbed and re-emitted by a satellite (i.e., direct solar
radiation pressure), or photons emitted by the Sun and reflected or absorbed and re-
emitted by the Earth (i.e., Earth radiation pressure). Non-gravitational forces have also
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Figure 2.4: Acceleration on satellites due to relativistic effect as a function of height for
circular orbits, adopted version based on Hugentobler (2008).

the origin in the interaction of the satellite with residual air particles. The correspond-
ing non-gravitational perturbing accelerations are usually proportional to the satellites’
area-to-mass ratio A

m (Beutler, 2005), where the area corresponds to the cross-section of
the satellite.

The solar radiation pressure (SRP) acting on a spherically symmetric cannonball satel-
lite can be expressed as:

r̈ = −CR
A

m

S

c
a2
u

r− rs

|r − rs|3
, (2.19)

where:

• CR - solar radiation pressure coefficient defined as CR = (1 + 4
9δ), where δ is a

diffusion coefficient (diffusely reflected fractions),

• S - solar constant,

• au - astronomical unit.

Amongst the other sources of orbit non-gravitational perturbations, we may distin-
guish perturbations caused by the satellite asymmetricity, light aberration, Earth albedo
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reflectivity and emissivity, thermal effects (Yarkovsky and Yarkovsky-Schach effects), and
atmospheric drag. The impact on LAGEOS and on other geodetic satellites of the last
three perturbation types is discussed in detail in Chapter 4.

2.2.4 Mean Orbital Elements

Osculating orbital elements I(t), derived from the series of satellite’s state vectors r(t), ṙ(t),
show large high-frequency variations. Calculating the mean orbital elements, which allow
us to study the long-term evolution of orbital elements, is necessary in order to study
secular orbit perturbations of the order of several mm/year. The mean elements are com-
puted by averaging the osculating elements over a number of full revolutions (Beutler,
2005). A set of mean elements:

Ī(t) =
{
ā(t), ē(t), ī(t), Ω̄(t), ω̄(t), ū0(t)

}
, (2.20)

is obtained by:

Ī(t,∆t(t)) =
1

∆t

∫ t+∆t/2

t−∆t/2
I(t′)dt′, (2.21)

where ∆t(t) denotes the averaging time interval covering an entire number of revolution
periods and I(t) is a set of orbital elements associated with an epoch t:

I(t) = {a(t), e(t), i(t),Ω(t), ω(t), u0(t)} . (2.22)

This approach follows the implementations described by Ostini (2012).
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2.3 Parameter Estimation Using the Least-Squares Method

2.3.1 General Introduction

The process of parameter estimation in space geodesy is based on solving of systems of
normal equations. The system of observation equations is over-determined, and therefore,
a mathematical method minimizing the variance of the sum of squares of residuals (the
least-squares adjustment) is applied to solve the system of observation equations. The
observation equations L are described by the functional model F(X) defining the relations
between estimated parameters X and the observations L. The number of observations
n is larger than the number of parameters (unknowns) u, thus the equation system is
not consistent and the residual corrections v have to be added to the observations. The
observation equation system reads as:

L + v = F(X), (2.23)

with:

• L - n× 1 vector of observations,

• v - n× 1 vector of observation residuals,

• X - u× 1 vector of parameters,

• F(X) - functional model relating the observations w.r.t. the parameters.

In satellite geodesy the observation equations are typically nonlinear. Therefore, the
n× u matrix A is introduced, containing the partial derivatives of the observations with
respect to the unknown parameters X approximated at X0. The A matrix is called the
first design matrix. The elements of the A matrix are defined as:

A =
∂F(X)

∂X
|X=X0

. (2.24)

Consequently, the linearized observation equation system follows:

L + v = F(X0) + Ax, (2.25)

where:

• X0 - the a priori values of the unknown parameters X,

• x - unknown corrections w.r.t. X0, so that X = X0 + x,

• A - first design matrix established through a first-order Taylor series expansion
according to Eq. 2.24.

Rearranging the linearized equation system for the residual vector v gives:

v = Ax− (L− F(X0)) = Ax− l, (2.26)
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where l = L− F(X0) is the difference between the observations and the values of math-
ematical model computed for the approximated parameters X0. This expression is often
named ’observed minus computed’ term (O-C).

The stochastic model describes the a priori variance-covariance information of the ob-
servations in the system of observation equations. The stochastic model follows:

P = Q−1
ll = σ2

0C−1
ll , (2.27)

where:

• P - n× n weight matrix of the observations,

• Qll - n× n a priori cofactor matrix of observations,

• σ0 - a priori sigma of the unit weight,

• Cll - n× n a priori variance-covariance matrix of the observations.

In a case of uncorrelated observations, the matrix Cll is a diagonal matrix with diagonal
elements Cll,ii = σ2

i , where σ2
i is the a priori variance (square of standard deviation) of

the corresponding observation i.
The system of observations is solved by applying the condition of minimizing the

weighted sum of square residuals vTPv → min., thus this method is called the least-
squares adjustment (LSQ). Assuming that the system of observations is positive-defined
the minimum of the function is obtained when d

dx(vTPv) = 0. Then, the normal equation
system follows as:

(ATPA)x = ATPl, (2.28)

or
Nx = b, (2.29)

where:

• N = ATPA - the symmetric u× u normal equation matrix,

• b = ATPl - the u × 1 vector defining the right-hand side of the normal equation
system.

The improvements of the estimated parameters are computed from:

x = (ATPA)−1ATPl = N−1b. (2.30)

By the law of covariance propagation the cofactor matrix Qxx of parameters x is defined
as:

Qxx = ((ATPA)−1ATP)Qll((A
TPA)−1ATP)T = (ATPA)−1 = N−1. (2.31)

The estimated a posteriori variance of unit weight m2
0 can be derived for n− u > 0 as:

m2
0 =

vTPv

n− u
, (2.32)
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or by the equivalent expression as:

m2
0 =

lTPl− xTb

n− u
. (2.33)

The quantity f = n− u denotes the degree of freedom of the normal equation system.

The covariance matrix of estimated parameters is given by:

Cxx = m2
0Qxx = m2

0N
−1. (2.34)

The square roots of diagonal terms of Cxx matrix correspond to the mean errors of
the estimated parameters. The off-diagonal elements (covariances) are related to the
correlations between the estimated parameters. The correlation coefficient ρ between the
i and the j parameter reads as:

ρ =
Cxx,ij√

Cxx,ii Cxx,jj

, (2.35)

where Cxx,ii and Cxx,jj are the diagonal elements of Cxx matrix describing the variances of
the i and the j parameter, and Cxx,ij is the off-diagonal element describing the covariance
between the i and the j parameter.

2.3.2 Particular Aspects of the Least Squares Adjustment

Constraining of Parameters

The observations of a particular type are not always sensitive to all parameters in a
functional model. In such a case NEQs are singular. Thus, some additional information
or constraints must be introduced to solve the system. The constraints may also be
applied in order to force parameters to assume their values within a restricted range (e.g.,
SLR range biases are assumed to be at a millimeter or at a centimeter level) or to reduce a
range of variations of relative parameter changes (e.g., satellite velocity changes estimated
as pseudo-stochastic pulses).

The constraints (defined as pseudo-observations) are introduced as ’exterior’ informa-
tion concerning the parameters:

Hx = h + vh with D(h) = σ2P−1
h , (2.36)

where:

• H - r × u matrix with given coefficients,

• h - vector of unknown constants with dimension r × 1,

• vh - residual vector with dimension r × 1,

• P−1
h - dispersion matrix of the introduced constraints with dimension r × 1.
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Analogously to the functional model of the least squares adjustment, for non-linear
pseudo-observations a linearization has to be performed through a first-order Taylor series
expansion. This leads to the NEQ system:

x̂ = (ATPA + HTPhH)−1(ATPl + HTPhh). (2.37)

Parameter Pre-Elimination

The pre-elimination of parameters reduces the size of the normal equation system by limit-
ing the number of explicitly estimated parameters. The reduced parameters are estimated
implicitly, implying that the values of explicitly estimated parameters are equivalent to
those from a solution without pre-eliminating any parameters.

After splitting the parameter vector x into a part to be pre-eliminated x2 and the
remaining part x1, the normal equation system reads as:(

N11 N12

N21 N22

)(
x1

x2

)
=

(
b1

b2

)
, (2.38)

where N11, N22, and N12 = NT
21 are parts of N corresponding to x1, x2, and a mixture

of x1 and x2, respectively. Assuming N22 to be regular, the resulting equation reads as:

(N11 −N12N
−1
22 N21)x1 = b1 −N12N

−1
22 b2, (2.39)

which can be abbreviated by:

Ñx1 = b̃, (2.40)

where:

• Ñ = N11 −N12N
−1
22 N21 - the reduced normal equation system,

• b̃ = b1 −N12N
−1
22 b2 - the right-hand side of the reduced normal equation system.

Then, the weighted sum of residuals vTPv of reduced normal equation system reads as:

vTPv = lTPl− xT1 b̃− bT2 N−1
22 b2. (2.41)

The reduced normal equation system does not explicitly contain x2, but the impact
of the parameters x2 on x1 is preserved and the parameters x1 are not affected by the
pre-elimination of x2.

Stacking of Normal Equation Systems

Stacking of normal equations is a process, where parts of NEQs corresponding to com-
mon parameters are combined in a subsequent step. The results are the same as if all
observations were used in one LSQ, provided that the observations series are independent
(Brockmann, 1997).
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Assuming the two statistically uncorrelated equation systems containing the common
parameters, the observing equations for the common parameters read as:{

v1 = A1x− l1
v2 = A2x− l2

. (2.42)

The superposition of the individual normal equation systems follows simply from the
observation equations as:

Nc = N1 + N2 = AT
1 P1A1 + AT

2 P2A2, (2.43)

bc = b1 + b2 = AT
1 P1l1 + AT

2 P2l2. (2.44)

Finally the common parameters xc can be estimated from the combined normal equation
system:

Ncxc = bc, (2.45)

with the sum of weighted squared residuals obtained from the superposition:

vTPv = (lT1 P1l1 + lT2 P2l2)− xTc (AT
1 P1l1 + AT

2 P2l2). (2.46)

The above technique of combining parameters from individual NEQs is also known as
sequential least-squares adjustment.
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Figure 2.5: GPS Block IIF, GLONASS-M, and Galileo-In-Orbit-Validation-A satellites.

2.4 Global Navigation Satellite Systems (GNSS)

The primary application of Global Navigation Satellite Systems was the land, marine,
and aeronautic military navigation. In ’80, the U.S. Global Positioning System (GPS)
turned out to have applications not only in navigation, but also in precise geodesy. The
relative position of the GPS receiver w.r.t. an other receiver could be determined at
the cm-level, when using the differences of the carrier phase of GPS signals, instead
of using the zero-difference code measurement as typically for the navigation purposes.
Since ’80 the role of GNSS in geodesy has considerably expanded, encompassing the
precise positioning of static and rover receivers (including the air-borne and satellite-
borne receivers), densification of geodetic networks, plate tectonic studies, determination
of ERPs, mapping the Earth’s ionosphere, 4D troposphere tomography, and many others
(Dach et al., 2007).

GPS was the first fully operational GNSS reaching its Full Operational Capability
(FOC) in 1995 with 24 active satellites. The satellites (Figure 2.5) are distributed in six
orbital planes which are separated by 60◦ in the equatorial plane. The orbital planes
are nominally occupied by four, but today by five or six satellites. The satellites in each
plane are not evenly spaced to improve satellite coverage in case of satellite failures. The
satellite orbits are almost circular with the inclination angle 55◦ and semi-major axes of
about 26.560 km, corresponding to an altitude of approximately 20.200 km above the
Earth’s surface.

However, only two GPS satellites of Block IIA are equipped with satellite laser arrays
(LRA) for SLR observations. Over 20 year time span of SLR observations to GPS satellites
enables precise validation of microwave orbits (Flohrer, 2008) and the scale transfer from
the SLR to GPS (Thaller et al., 2009).

The Russian satellite navigation systems GLONASS was developed in parallel to GPS.
After a short FOC phase in 1996 the system degraded rapidly due to financial problems.
Recently, the system was rebuilt and in 2011 reached the FOC again. The GLONASS
is a realization of a uniform orbital constellation (Walker constellation) with 24 nominal

26



2.4 Global Navigation Satellite Systems (GNSS)

satellites (including 3 spare satellites), equally distributed on the three orbital planes.
The satellites have a nominal inclination of 64.8◦. The plane spacing is 120◦ and the 45◦

with eight satellites per plane. Satellites in adjacent planes are shifted by 15◦ (in the
argument of latitude u). The orbits are close to circular with semi-major axes of about
25.510 km (19.140 km over Earth’s surface).

All GLONASS satellites are equipped with LRA for SLR observations and they are
routinely observed by the SLR stations.

Apart from these two fully operational systems, there are two more GNSS to become
operational in the near future: the European Galileo system as the first GNSS under full
civil control (with 4 currently operating test satellites) and the Chinese Beidou system
with 14 operating satellites in geostationary, inclined geosynchronous, and medium Earth
orbits.

For a detail description of GNSS data analysis please refer to, e.g., Dach et al. (2007),
or Meindl (2011).
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2.5 Satellite Laser Ranging

SLR is one of the space-geodetic techniques used for precise positioning, for determination
of the Earth’s gravity field, and for measurement of geodynamical phenomena. The
original application of SLR was deriving geodetic parameters, as contrary to other geodetic
techniques, whose original and first applications were navigation, astrometry, or orbit
determination (for GNSS, VLBI, and DORIS, respectively).

SLR is the only technique needing a passive element at the satellite allowing for these
easy-structure cannonball satellites. SLR is also the only technique using the optical spec-
trum of electromagnetic waves, whereas all others are acting in the microwave spectrum.

The first laser distance measurements were obtained 50 years ago on October 31, 1964
at NASA Goddard Geophysical and Astronomical Observatory, merely four years af-
ter constructing the first ruby laser (i.e., the first functioning laser). The first successful
laser ranging measurements have carried out to BEACON EXPLORER-B (Seeber, 2003),
launched on October 10, 1964 with the primary mission of studying ionosphere. Nowa-
days, this satellite still orbits the Earth, because of the relative high altitude (1000 km
over Earth surface), but it is not observed by the SLR network for more than 30 years.
On August 20, 1969 the first laser range observations were obtained to the lunar reflector
deployed within the mission Apollo 11, defining the beginning of LLR (Seeber, 2003).

The first SLR observations had the accuracy of several meters (Seeber, 2003). The
precision of SLR observations was increased by a factor of ten every ten years until mid
’80s. Nowadays, the SLR precision is at a level of a few millimeters for best performing
stations (Otsubo, 2012).

2.5.1 Observation Principle

In SLR the basic observable is the ground-twice time of flight of a laser pulse between a
ground station and a satellite. The time of flight can be transformed into a direct distance
by multiplying the time of flight of a laser pulse by the velocity of light. Many corrections
of measured range have to be taken into account, i.e., due to atmospheric delay, general
relativistic effects, satellite center-of-mass corrections, laser system offsets, etc., in order
to achieve the highest accuracy of SLR-derived parameters.

In an SLR ground station the same electronic time interval counter registers the moment
of the emission of a laser pulse and the moment of the reception of the pulse after the
reflection at a satellite. Thus, the SLR observations are free from satellite and receiver
clock synchronization error. The basic observation for two-way ranging equation can be
expressed by:

∆tsr =
2

c
(dsr + δtro + δrel) +

1

c
δsys + εstr, (2.47)

where ∆tsr is an observed time interval between transmission and reception of the laser
pulse, dsr is the one-way distance between a receiver and a satellite at the reflection time,
c is velocity of light, δtro is the troposphere signal delay, δrel is the relativistic correction,
δsys is the signal delay in the laser system, and εstr - interval measurement error.
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Figure 2.6: Zimmerwald Observatory during SLR observations. The observatory is oper-
ated by the Astronomical Institute of the University of Bern and swisstopo.
Courtesy: P. Schlatter.

∆tsr corresponds to a sum of two time intervals: ∆t1 related to the travel time of a laser
pulse from an SLR station rr to a satellite rs and ∆t2 from a satellite to an SLR station.
Thus, the time travel of a laser impulse can be expressed as:

∆tsr = ∆t1 + ∆t2 =
1

c
(|rs(ts)− rr(t

s −∆t1)|+ |rs(ts)− rr(t
s + ∆t2)|). (2.48)

Both position vectors of the SLR station rr for ts−∆t1 and ts+∆t2 can be approximated
by (neglecting the terms of second and higher orders of the Taylor series expansion):

rr(t
s −∆t1) ≈ rr(t

s − 1

2
∆tsr), rr(t

s + ∆t2) ≈ rr(t
s +

1

2
∆tsr). (2.49)

Thus, the relation between the double time travel of a laser impulse and the position
of an SLR station and the satellite can be expressed by a simple formula as:
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Figure 2.7: Space segment of SLR cannonball geodetic satellites.

∆tsr =
2

c
|rs(ts)− rr(t

s)| . (2.50)

In order to perform the two-way ranging observation, the laser pulse has to be reflected
by a satellite. The laser pulse can be reflected by different types of reflecting areas, i.e.:

• corner cube reflectors embedded in the satellite (e.g., LAGEOS, AJISAI, Starlette),

• corner cube reflectors forming flat retroreflector arrays (e.g., GLONASS, GPS) or
multi-directional retroreflector arrays (e.g., TerraSAR-X, Jason-2, GOCE),

• spherical glass retroreflector (BLITS, METEOR-3M),

• hollow retroreflector (STPSat-2),

• curved mirrors (AJISAI),
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• satellite or space debris surface (e.g., the Zimmerwald-Graz bistatic experiment
using Envisat).

The first three types of retroreflectors were designed to reflect laser pulses and they
allow it to achieve the highest accuracy of SLR measurements, whereas the latter two are
still in an experimental stage. The curved mirrors embedded on AJISAI satellite were
used for time transfer using kHz laser systems (Otsubo et al., 2006). The Zimmerwald-
Graz bistatic experiment5 6 shows that the laser pulses can be successfully reflected by a
satellite surface and received by an SLR station not transmitting any signal.

Besides the two-way ranging, the SLR technique allows measuring one-way travel time
of a laser pulse. The one-way ranging is used, e.g., for the Lunar Reconnaissance Orbiter
(LRO) - a satellite orbiting around the Earth’s Moon. For such a type of measurement
the precise clock synchronization between the ground station and a satellite is required,
because two different clocks register the moment of transmission and reception of a laser
pulse. On the other hand, when the distance between a satellite and an SLR station is
well known the synchronization of the clocks with the sub-ns accuracy is possible. The
clock synchronization using one-way SLR measurements is efficiently used, e.g., in Beidou
(formerly named COMPASS) - the Chinese Global Navigation System (Zhongping et al.,
2012).

2.5.2 Space Segment

The space segment of SLR consists of different types of satellites equipped with retroreflec-
tors for range measurements. In general the retroreflectors can be classified as (Degnan,
2012):

• hollow corner cubes,

• back-coated solid corner cubes,

• uncoated solid total internal reflection corner cubes.

The solid corner cubes are commonly used for many satellites. They are much heavier
with respect to the hollow corner cubes, but they have a wide far field pattern. The
uncoated corner cubes were installed, e.g., in the arrays of the GPS satellites, some of re-
cently launched GLONASS satellites, LAGEOS-1, LAGEOS-2, AJISAI, and for APOLLO
reflectors. Almost all LEO satellites are, on the other hand, equipped with coated corner
cubes.

Also other types of retroreflectors are sporadically used, e.g., METEOR-3M and BLITS
are not equipped with corner cubes, but they have (are) ball lenses made of two different
types of glass with aluminum reflective coating protected by a varnish layer. The hollow
corner cubes are currently used only for one satellite, i.e., STPSat-2.

5http://www.kommunikation.unibe.ch/content/medien/medienmitteilungen/news/2012/laser_

via_satellit/index_ger.html
6http://www.photonics.com/Article.aspx?AID=50942
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Table 2.2: List of selected satellite mission supported by the ILRS.

Satellite type/purpose Launch Decommission Altitude Inclination
Satellite name [year] [year] [km] [deg]
Geodetic
Starlette 1975 - 800-1100 49.84
LAGEOS-1 1976 - 5860 109.90
AJISAI 1986 - 1500 50.04
Etalon-1 1989 - 19140 65
Etalon-2 1989 - 19140 65
LAGEOS-2 1992 - 5620 52.67
Stella 1993 - 830 98.57
GFZ-1 1995 1999 398 51.6
Westpac-1 1998 2001 835 98.8
Larets 2003 - 691 98.2
BLITS 2009 2013 832 98.8
LARES 2012 - 1450 69.5
Gravity
CHAMP 2000 2010 474 87
GRACE-A, -B 2002 - 485 89
GOCE 2009 2013 255 96.7
Remote sensing
ERS-1 1991 2000 780 98
ERS-2 1995 2011 780 98
ENVISAT 2002 2012 780 98
ICESAT 2003 2010 600 94
TerraSAR-X 2007 - 514 97.4
TanDEM-X 2010 - 514 97.4
Cryosat-2 2010 - 720 92
Altimetry
TOPEX/Poseidon 1992 2005 1350 66
Jason-1 2001 2013 1336 66
Jason-2 2008 - 1336 66
Navigation
GPS-35, GPS-36 1993/1994 2011/2014 20200 55
GLONASS 1989 - 19140 65
Galileo/GIOVE 2005 - 23220 56
Beidou (COMPASS) 2007 - 42160/21530 55
QZSS 2010 - 32000-42000 45
Other scientific satellites
Beacon-C 1965 - 927 41
Gravity Probe B 2004 2006 650 90
ANDE P/C 2009 2010 350 51.6
PROBA-2 2010 2010 757 98.4
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Figure 2.8: LAGEOS-2 and Etalon-1 satellites (not to scale).

Satellites Equipped with SLR Retroreflectors

Since the advent of the era of space geodesy, many satellites have been equipped with
SLR-dedicated retroreflectors. Currently, about 58 satellites are recommended for routine
observations by the ILRS SLR stations. Amongst the satellite missions, we can distin-
guish six main groups of main purpose of the mission: geodetic, remote sensing, gravity,
altimetry, navigation and positioning, and other scientific satellites (see Table 2.2).

Figure 2.7 shows the cannonball geodetic satellites sorted by the satellite inclination an-
gles and altitudes. Two groups of satellites having similar inclinations can be considered:
satellites with the inclination about 50◦ incorporating: Starlette, AJISAI, LAGEOS-2,
and GFZ-1, and satellites with the inclination of about 98◦ incorporating: Stella, West-
pac, Lares, and BLITS. The satellite inclination angles of LAGEOS-1 and LARES are
quasi-symmetric w.r.t. the pole (inclination of LAGEOS-1 is 90◦+20◦ = 110◦, inclination
of LARES is almost 90◦ − 20◦ = 70◦).

LAGEOS-1, LAGEOS-2

LAGEOS (LAser GEOdynamics Satellite or LAser GEOdetic Satellite) was the first arti-
ficial satellite dedicated to high-precision laser ranging and provided the first opportunity
to obtain laser-ranging data not degraded by errors originating in the satellite array or
satellite orbits due to the minimized area-to-mass ratio, and thus, minimized impact of
non-gravitational forces. LAGEOS (LAGEOS-1) was designed and launched by the Amer-
ican Space Agency NASA on May 4, 1976, whereas its twin−LAGEOS-2 was launched
on October 22, 1992 as a joint NASA-Italian project. The basic mission objectives are
determining the terrestrial reference frame and ERPs of a high accuracy, and improving
the gravity field models. The LAGEOS satellites are equipped with 422 uncoated corner
cubes made of fused silica and 4 germanium reflectors to obtain measurements in the
infrared for experimental studies (Seeber, 2003).
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Both LAGEOS satellites consist of a cylindric brass core covered by aluminum hemi-
spheres and retroreflectors embedded on its surface (see Figure 2.8). The diameters of
both LAGEOS are about 60 cm, and the masses 406.965 kg and 405.38 kg for LAGEOS-1
and LAGEOS-2, respectively. These parameters correspond to the area-to-mass ratio of
6.9·10−4 m2kg−1 and it was the smallest area-to-mass ratio of all artificial satellites until
the launch of LARES in 2012.

Etalon-1, Etalon-2

The Etalon satellites (see Figure 2.8) are identical Russian geodetic satellites dedicated
to SLR. Etalon-1 was launched on January 10, 1989 and Etalon-2 on May 31, 1989
together with GLONASS satellites. The mission objectives are to investigate the non-
gravitational forces perturbing satellite orbits, in order to improve the orbit determination
of GLONASS (Mironov et al., 1993). Therefore, the satellites have similar orbit param-
eters as GLONASS satellites - they are in near-circular orbits at a height of 19.120 km
above the Earth’s surface with an inclination of 65◦. Each satellite has a radius of 1.294 m,
a mass of 1415 kg, and is equipped with 2140 fused-quartz and 6 germanium aluminum
coated corner cube reflectors of the same dimension (Mironov et al., 1993). The distri-
bution of corner cubes over the satellite surface is not uniform for technological reasons,
because some space was needed for the holders and separation devices.

The other mission objectives of Etalon are similar to LAGEOS, i.e., to determine the
terrestrial reference frame and ERPs, and to improve the gravity field models. Etalon
satellites are used along with the LAGEOS satellites for the determination of the ITRF,
but due to sparse and few observations, the contribution of the Etalons to the combined
LAGEOS-Etalon solutions is very small (Thaller et al., 2014a).

AJISAI

AJISAI (also known as Experimental Geodetic Payload or Experimental Geodetic Satel-
lite, EGS) was launched on August 12, 1986 by the National Space Development Agency
(NASDA) currently reorganized as Japan Aerospace Exploration Agency (JAXA). Ob-
jective of the mission is the precise positioning of fiducial points on the Japanese Islands
and testing of NASDA’s two-stage launch vehicle (Otsubo et al., 1994). The satellite is
equipped with 1440 uncoated fused silica corner cube reflectors for SLR (see Figure 2.9),
arranged in the form of 15 rings around the symmetry axis (Kucharski et al., 2009b).
AJISAI is also equipped with 318 mirrors used for the optical/CCD observations. The
mirrors are used for photometric measurements of AJISAI’s spin period (Otsubo et al.,
2006), as well. The satellite orbits at the altitude of 1490 km and an inclination of 50◦.
The mass of the satellite is 685 kg and the diameter is 215 cm. The area-to-mass ratio of
AJISAI (58·10−4 m2kg−1) is less favorable than in case of other geodetic satellites. Thus,
AJISAI has a considerable sensitivity to non-gravitational forces perturbing its orbit. On
the other hand, the layers of aluminum nets and a partly hollow interior minimize the
magnetic torques affecting other geodetic satellites made of solid metal. AJISAI is the
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Figure 2.9: AJISAI and LARES satellites (not to scale).

fastest spinning object among the geodetic satellites (Kucharski et al., 2013). Its specific
construction prevents the Earth’s magnetic field from inducing eddy currents in the body,
hence minimizing the slowdown of its spin and stabilizing the orientation of the spacecraft.

LARES

LARES (LAser RElativity Satellite) was designed by the Scuola di Ingegneria Aerospaziale
at the University of Rome and manufactured by the Italian Space Agency (ASI). The
satellite was launched by the European Space Agency (ESA) on February 13, 2012 with
the maiden flight of the new ESA small launcher VEGA. LARES was placed in a circular
orbit at a height of 1450 km with the inclination 69.5◦.

This fully passive spherical satellite is made of a high density solid tungsten alloy and
equipped with 92 fused silica corner cube reflectors (see Figure 2.9). The corner cubes
are arranged in the form of 10 rings around the polar axis of the body (Kucharski et al.,
2012). As opposed to the other geodetic satellites, LARES consists only of one metal
layer without a specified inner core (Pavlis et al., 2012a). The mass of the satellite is
386.8 kg and the satellite radius is only 18 cm. Therefore, LARES has nowadays the
smallest area-to-mass ratio within all artificial satellites (2.9·10−4 m2kg−1, i.e., 2.5 times
smaller than LAGEOS), and moreover, LARES is the densest object in the Solar System
(Pavlis et al., 2012a).

The basic purpose of the satellite mission is to achieve important measurements in
gravitational physics, space geodesy, and geodynamics: in particular, together with the
LAGEOS-1 and LAGEOS-2 satellites and with the GRACE models, it will improve the
accuracy of the determination of Earth’s gravitomagnetic field, and of the Lense-Thirring
effect (Pavlis et al., 2012a). Besides, the satellite can be used for the gravity field determi-
nation of low-degree harmonics, estimation of ERPs, and defining the terrestrial reference
frame (Sośnica et al., 2014a).
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Figure 2.10: Starlette, Stella, and BLITS (not to scale).

Starlette, Stella

Starlette and Stella are twin French passive geodetic satellites, launched by the Centre
National d’Etudes Spatiales (CNES) in 1975 and 1993, respectively. Their cores consist of
Uranium 238 formed as icosahedrons with 20 triangular planes (Seeber, 2003). Each trian-
gle carries a spherical aluminum cap with three embedded retroreflectors (see Figure 2.10).
The diameter of each satellite is 24 cm, and the masses are 47 kg and 48 kg for Starlette
and Stella, respectively. It corresponds to the area-to-mass ratios of 9.6·10−4 m2kg−1 and
9.4·10−4 m2kg−1, i.e., about 36% more than for the LAGEOS satellites. Both Stella and
Starlette are equipped with 60 identical corner cube retroreflectors.

The Starlette’s inclination angle of about 50◦, high orbital eccentricity, and low altitude
(800 km in perigee) allow determining the spherical harmonics of the Earth gravity field,
especially the zonal terms due to the large drift of the ascending node and large variations
of the orbital eccentricity excitation vector (see Section 5.6.2).

Stella was launch into a near-circular sun-synchronous orbit with the inclination of 98.6◦

and the altitude of 800 km over Earth’s surface. Due to the Stella’s orbit inclination angle,
different from the Starlette’s inclination angle, a decorrelation of some parameters in
combined Starlette-Stella solutions is possible (e.g., C20 and Length-of-Day). Stella, along
with Starlette, is mostly used for gravity field recovery, determination of the frequency
dependent tidal responses of the solid Earth, and the long wavelengths of the ocean tides,
due to strong orbit resonances with tidal forces (Rutkowska and Jagoda, 2012).

BLITS

The BLITS (Ball Lens In The Space) satellite was designed by the Federal State Unitary
Enterprise - Institute for Precision Instrument Engineering (FSUE-IPIE) in Russia, and
launched on September 17, 2009. The main purpose of this satellite was the experimental
verification of the Luneburg lens satellite concept (Burmistrov et al., 2004). The satellite
has a radius of 85.16 mm and mass 7.53 kg. The uncertainty of the reflection center
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Figure 2.11: GFZ-1, Westpac-1, Larets (not to scale).

relative to the center-of-mass position is less than 0.1 mm, i.e, best defined within all
current geodetic satellites (Burmistrov et al., 2004). Moreover, the retroreflector is free
from the polarization effects, and the Earth magnetic field does not affect the satellite
orbit and spin parameters (Kucharski et al., 2011). Due to the virtually nonexistent target
error, the RMS of the laser range residuals to BLITS are almost at the same level as the
ground targets.

BLITS consists of two concentric outer hemispheres (see Figure 2.10): the outer made
of a low-refraction-index glass, and an inner ball lens made of a high-refraction-index
glass. One hemisphere of external surface is aluminum coated and protected by a varnish
layer. Therefore, BLITS demonstrates a new concept for geodetic satellites, which is an
alternative for the classical structure of a spherical body equipped with glass corner cube
reflectors.

BLITS was launched into a sun-synchronous near-circular orbit with a mean altitude of
832 km and an inclination of 98.8◦. On January 22, 2013, BLITS was probably hit by a
space debris fragment7, hence the satellite and its orbit were seriously affected, disabling
BLITS from the further SLR observations.

GFZ-1, Westpac-1, Larets

GFZ-1, Westpac-1, and Larets (see Figure 2.11) are small passive geodetic satellites at low
orbits with the purpose of gravity field determination and testing new concepts of SLR
retroreflectors. They are spherical brass bodies with corner cube reflectors embedded on
their surfaces.

GeoForschungsZentrum (GFZ)-1 was a satellite mission designed and funded by the
GeoForschungsZentrum Potsdam, Germany. The satellite’s diameter was 21.5 cm and
a mass of 20.6 kg. GFZ-1 was equipped with 60 retroreflectors and jettisoned from the
Russian MIR space station on April 19, 1995, into a low orbit with the altitude of 398 km

7http://www.space.com/20138-russian-satellite-chinese-space-junk.html
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and the inclination of 51.6◦. On June 23, 1999 the satellite burned in the atmosphere at
an altitude of 230 km (Seeber, 2003). GFZ-1 allowed determining mean wavelengths of
the Earth gravity field prior to the CHAMP mission, and studying the air density in the
ionosphere.

Westpac-1 (Western Pacific Laser Tracking Network Satellite) was founded by the Rus-
sian Space Agency and Communications Research Laboratory (CRL) and the Japanese
Ministry of Posts and Telecommunications. The satellite was launched on July 10, 1998,
into a sun-synchronous circular orbit of 835 km altitude and the inclination of 98◦. The
satellite has a diameter of 24 cm, a mass of 23 kg and carries 60 corner cube reflectors
with external baffles (Burmistrov et al., 2004), which allow the laser reflection only from
one corner cube. Westpac-1 was designed in particular to provide a high ranging accu-
racy and for the continuation of study of the Fizeau effect (Burmistrov et al., 2004). The
center-of-mass correction is defined within 0.5 mm accuracy. Despite the satellite still
orbits around the Earth, the ILRS decided in 2001 to exclude it from the list of observed
objects.

Larets is a passive geodetic satellite founded by the Russian Space Agency and launched
on September 27, 2003 to the sun-synchronous orbit with the altitude of 691 km and
inclination of 98.2◦. The satellite is equipped with 60 corner cube retroreflectors. The
mass of the satellite is 23.4 kg, and the diameter is 21 cm. The retroreflectors are recessed
in the brass body to limit the single retroreflector field of view (instead of using external
baffles, as on Westpac-1). Thus, the dead spaces between the bursts of return signals,
typical for Westpac-1, are eliminated (Burmistrov et al., 2004). The main purpose of the
mission is the investigation of the low-target error laser satellite design optimization. The
target error of Larets is about 1.5 mm.

Future Geodetic Satellites

Nowadays, the concepts of BLITS-2 (Sadovnikov et al., 2012) and LARES-2 are dis-
cussed. However, the orbital parameters as well as the launch dates are not yet defined
(Sadovnikov et al., 2012). For many years the concept of LAGEOS-3 was considered
(Ciufolini, 1994), but currently no progress is made in that direction.

2.5.3 Lunar Reflectors

The Lunar Laser Ranging (LLR) uses a similar observation principle as SLR with the
exception that the laser arrays are placed on the surface of Earth’s Moon. Some of the
SLR stations, namely McDonald, Apollo, Matera, Grasse, and Heleakala measure the two-
way ranges between the lunar rover retroreflector arrays and the stations (Müller, 2012).
There are three U.S. lunar retroreflector arrays: Apollo 11, Apollo 14, and Apollo 15
with 100-200 corner cubes and two USSR arrays: Luna 17 and Luna 27 with 14 corner
cubes. The first retroreflector, i.e., Apollo 11 was deployed on July 21, 1969. Thus, LLR
has today a 40-year history of continuous and precise laser observations. The Luna 17
reflector could not be reached for many years, but it was re-discovered in April 2010
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(Müller, 2012).
Throughout many years of ranging the Moon (Müller, 2012), the LLR observations

allowed scientists to:

• verify of Einstein’s theory of relativity (the equivalence principle, temporal variation
of the gravitational constant, the strong equivalence principle),

• determine low harmonics of the lunar gravity field,

• define the scale with the highest relative accuracy (the accuracy of 10−2 m for the
distance of 3.564 · 108 m),

• determine LoD and UT1-UTC,

• find the Moon’s receding from Earth at a rate of about 38 mm per year due to Earth
solid and ocean tides,

• investigate the Moon’s interior and its liquid core.

2.5.4 Ground Segment

The ground segment of the SLR network consists of about 50 stations observing artificial
satellites and the lunar retroreflectors. Almost all SLR stations are unique and developed
in an individual way, therefore, operating different devices installed and managed by
different software. Following Pearlman et al. (2002), an SLR station consist of:

• high energy ultra-short pulsed laser,

• precise timer, and optionally an ultra-stable clocks,

• photo detector and narrowband filters,

• well-mounted telescope,

• safety systems (optionally).

Laser

The core element of a laser ranging system is the high energy laser (Light Amplification
by Stimulated Emission of Radiation). The laser is characterized by the high coherence,
high degree of collimation of the beam, and the high power density. Therefore, these very
high-energy, sharply defined pulses can be transported over large distances. Nowadays,
only laser systems of third generation are in use (Seeber, 2003).

Most of the SLR stations (e.g., Grasse, Borówiec, MOBLAS stations (McGarry and
Zagwodzki, 2005)) use Nd:Yag 10 Hz laser systems with pulse energies of 20-100 mJ and
widths of 50-100 ps. 10 Hz laser systems are used, e.g., in Yarragadee, Hartebeesthoek,
Greenbelt, Monument Peak, McDonald, and Tahiti. The primary frequency is doubled
and, with a wavelength of 532 nm (green), instead of 1064 nm (infrared), produces better
conditions for the reception of return pulses (Degnan and Pavlis, 1994).
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Graz, Herstmonceux, and Changchun stations use the solid-state Nd:Van lasers shooting
approximately 10 ps wide with energies of ∼0.4 mJ, at 2 kHz rates. The kHz laser systems
have greater single-shot precision due to the narrower pulses used, and larger normal
point precision due to the increased number of observations, but the noise-to-signal ratio
is increased and further data processing is required to extract the satellite signals from
the background noise (Kirchner et al., 2012).

In Herstmonceux two laser systems are used: 2 kHz (Nd:Van) or 14 Hz (Nd:Yag), as
dictated by target and conditions. The 14 Hz laser is used for the observations of the LRO
or for some low-signal targets when sky conditions are poor, or during daylight tracking8.
For the targets with a better noise-to-signal ratio the kHz laser is used.

In Zimmerwald a 100 Hz Nd:Yag laser system is used with maximum energy of 10 mJ for
a secondary wavelength and 60 ps pulse width. Before 2008, two-color SLR observations
were performed (Gurtner et al., 2006) using in parallel a primary wavelength (red, 846 nm)
and secondary wavelength (blue, 423 nm) of the TI:Sapphire laser9. Similar studies using
double wavelengths are performed at the Concepción and Wettzell SLR stations.

Recently established Russian SLR stations: Badary, Baikonur, Altay, Arkhyz, Ze-
lenchuksaya, Svetloe10, use Nd:Yag laser systems operating with 300 Hz repetition rate,
and 300 ps pulse width with 5 mJ maximum energy.

In Graz the first successful experiments with 10 kHz and 20 kHz laser systems were
performed (Kirchner et al., 2012). However, the high repetition rate causes serious prob-
lems with noise ratio and overlapping of transmitted and received pulses. Some of the
SLR stations, e.g., Graz and Borówiec, are equipped with a high-energy lasers, which are
used for space debris tracking. However, due to much lower precision, the high-energy
lasers cannot be used for the precise geodetic purposes.

Timers

The state-of-the-art timers are essential for the SLR technique, since the laser pulses
travel with the speed of light, and thus, the error of 1 ns (=1000 ps) would imply an error
of 300 mm by means of double travel time.

Two timing methods are currently in use: the interval counter and the event timer.
Time interval counters measure the time-of-flight of the laser pulse, whereas event timers
calculate this value by differencing the laser fire epoch and the pulse reception epoch.
Interval timers have the resolution up to 10 ps11, but with the advent of kHz laser systems
the event timers are largely used due to the need to handle multiple laser shots in flight.
Event Timers have nowadays the resolution even of 0.5 ps with 3 ps jitters and 12 kHz
repetition rates (Artyukh et al., 2012) (3 ps corresponds to 0.9 mm by means of light
travel or to 0.45 mm for two-way ranging).

8ftp://cddis.gsfc.nasa.gov/pub/reports/slrmail/2010//slrmail.1835
9http://ilrs.gsfc.nasa.gov/network/stations/active/ZIML_sitelog.html

10http://ilrs.gsfc.nasa.gov/network/stations/active/SVEL_sitelog.html
11http://www.edi.lv/media/uploads/UserFiles/event_timing/Publication/A013a.pdf
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Some of the SLR stations are equipped with ultra-stable clocks, e.g., active or passive
Hydrogen Masers or Cesium Fountain frequency sources supplying frequencies stable at
about 1·10−15 s per second.

The CNES/OCA Time Transfer by Laser Link (T2L2) project on board Jason-2 showed
a capability of SLR in time transfer. T2L2 is an optical experiment that showed the ability
of temporal link between remote clocks with the accuracy of 100 ps (Samain et al., 2006).

Detectors

To detect a return signal of a few or single photons from satellites, stations use either
a micro-channel plate (MCP) or an avalanche diode, typically a single photon avalanche
diode (SPAD, Prochazka et al., 2012).

MCP detectors have jitter levels at around 100 ps with far less dark noise than SPAD
of around 30-300 Hz and the efficiency level reaching 40%.

The SPAD detectors are effective and widely used. The SPAD detectors exhibit an
error dependence on incident signal intensity, termed ’time-walk’. The latest SPAD is
designed for kHz operations and has the ’dark’ noise at the level of 200-300 kHz and
the ability to detect single photon events (Prochazka et al., 2012). The typical SPAD
detectors have detection fall times of less than 200 ps, quantum efficiencies of >20% and
detection jitter of 20-100 ps.

In order to perform daytime SLR observations, sophisticated bandwidth filters are re-
quired to handle the large noise ratios. Optics with laser wavelength specific transmission
bands of typically 0.3 nm are introduced with a ’blocking filter’ in front of the detector.
Some filters are oven controlled and tuned to the desired wavelength.

Safety Systems

Safety systems are required, because many aircrafts cross the sky over the SLR stations,
and the currently operating SLR stations are not ’eye safe’. Typically, stations use a
tracking RADAR following the laser beam around the sky and shutting off the laser
power automatically if an aircraft approaches the beam. E.g., in the Zimmerwald station
a direct information from Bern-Belp air-traffic control is used to monitor aircraft positions
(Ploner et al., 2012).

2.5.5 SLR normal points

Normal point (also called quick-look data) is the basic SLR data product. Normal points
replaced on-site sampled data and later full-rate data as the primary station data product.
Forming normal points decreases the noise of observations, reduces the size of observation
files, and reduces the number of observations, which are typically strongly correlated and
thus do not introduce any further important information for most of the SLR applications.
Full-rate data are also used for special purposes, e.g., for the studies concerning the
satellite’s spin period (Kucharski et al., 2012).
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For a normal point formation, a minimum data requirement has been established, i.e.,
a certain number of individual measurements to a target in a defined interval, which are
combined in one normal point. The minimum data requirement for SLR normal points
includes: 6 data points (single shots) for daytime observations, and 3 data points for
nighttime observations for single photoelectrons systems with high data yield. Fewer
data points would be acceptable on lower satellites (e.g., GOCE and GRACE with 5-
second normal points) for those ranging systems with lower pulse repetition rates, where
these minimum requirements are not practical. The kHz stations typically have more
stringent criteria.

The so-called restated Herstmonceux algorithm is nowadays used for the normal point
formulation. The algorithm consists of two main steps:

• Formation of range residuals from a trend function (represented by a polynomial of
low degree or Keplerian elements), and data screening,

• Actual normal point formation.

In the first step the prediction residuals are generated as differences between actual ob-
servations and their predictions. Then, the fit residuals are formed as differences between
prediction residuals and a trend function, which corresponds to the prediction error during
the short interval. The process of residual fitting and generating trend functions iterates
until reaching the convergence. Large outliers are eliminated in the iteration steps. In
the latter step the accepted observations are subdivided into fixed intervals (bins) start-
ing from 0h UTC, and the actual normal points are computed taking the observations,
whose observation epochs are nearest to the mean epochs of the accepted fit residuals in
particular bins. Finally, the RMS of the accepted fit residuals is computed for each bin.
A detailed description of the normal point formulation is available at the ILRS website12.

Two data formats of normal points are currently in use:

• Consolidated Range Data (CRD) format,

• CSTG Normal Point Data format (until May 2012).

Both formats contain the information about the station name, satellite number, time
of observation, time system, laser system used, calibration, time system, two-way time-of-
flight, air pressure, temperature, and humidity at the station, number of raw observations,
and RMS of calibration. Both formats contain also a revision index, which is increased
after every resubmission of a normal point.

The Herstmonceux normal point definition specifies a standard normal point interval for
different satellites based on altitude. The normal points formed from the SLR observations
to low orbiting satellites have short 5 s lengths (GRACE, GOCE, CHAMP, TerraSAR-
X, TanDEM-X) or 15 s lengths (Jason-1, Jason-2, Cryosat-2). Low orbiting geodetic
satellites have typically normal points formed out of 30 s of laser observations (AJISAI,

12http://ilrs.gsfc.nasa.gov/data_and_products/data/npt/npt_algorithm.html
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Figure 2.12: ILRS network in 2013, original version: http://ilrs.gsfc.nasa.gov/.

LARES, Larets, Stella, Starlette, BLITS). Normal points for LAGEOS-1 and LAGEOS-2
are 120 s long, whereas for high satellites (GPS, GLONASS, Etalon, Galileo, Beidou) -
300 s long. The maximum intervals are coming from the assumption of linearity of the
measurements w.r.t. their predictions.

2.5.6 International Laser Ranging Service (ILRS)

The International Laser Ranging Service (ILRS) is a space geodetic service of the Inter-
national Association of Geodesy (IAG) and the IERS. It was established in September
1998 to support geophysical research and to participate in the maintenance of an accu-
rate ITRF (Pearlman et al., 2002). Nowadays ILRS supports in addition the activities of
GGOS. The ILRS collects, archives, analyses, and distributes SLR and LLR observations
from a global tracking network of about 50 stations (see Figure 2.12 and Table 2.3). The
products based on LAGEOS and Etalon SLR observations are generated and combined by
the ILRS Analysis Centers13 (ILRS ACs) and their combination centers. The ILRS ACs
products are the 7-day SLR reference frame realizations consisting of a set of parameters:

• coordinates and velocities of the tracking stations,

• Earth rotation parameters (ERP, i.e., pole coordinates and LoD).

In addition, the ILRS develops SLR-related standards and specifications, data correc-
tion and handling files, and promotes an adoption of these standards in the international

13http://ilrs.gsfc.nasa.gov/science/analysisCenters/index.html
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Table 2.3: List of SLR stations in 2014 and the co-locations with other techniques

Station ID Code Site DOMES GNSS VLBI DORIS

1824 GLSL Golosiv, Ukraine 12356S001 X
1831 LVIL Lwów, Ukraine 12368S001 X
1863 MAID Maidanak 2, Uzbekistan 12340S001
1864 MAIL Maidanak 1, Uzbekistan 12340S002
1868 KOML Komsomolsk, Russia 12341S001
1870 MDVL Mendeleevo, Russia 12309S001 X
1873 SIML Simeiz, Crimea 12337S003 X X
1874 MDVS Mendeleevo 2, Russia 12309S003 X
1879 ALTL Altay, Russia -
1884 RIGL Riga, Latvia 12302S002 X
1886 ARKL Arkhyz, Russia -
1887 BAIL Baikonur, Kazakhstan -
1888 SVEL Svetloe, Russia 12350S002 X X
1889 ZELL Zelenchukskya, Russia 12351S002 X X
1890 BADL Badary, Russia 12338S004 X X X
1893 KTZL Katzively, Crimea 12337S006
7080 MDOL McDonald Observatory, Texas 40442M006 X
7090 YARL Yarragadee, Australia 50107M001 X X
7105 GODL Greenbelt, Maryland 40451M105 X X X
7110 MONL Monument Peak, California 40497M001 X
7119 HA4T Haleakala, Hawaii 40445M004 X
7124 THTL Tahiti, French Polynesia 92201M007 X X
7125 GO1L Greenbelt NG SLR, Maryland 40451M114 X X X
7231 WUHL Wuhan, China 21602S004 X X
7237 CHAL Changchun, China 21611S001 X
7249 BEIL Beijing, China 21601S004 X
7308 KOGC Koganei, Japan(CRL) 21704S002 X X
7358 GMSL Tanegashima, Japan 21749S001 X
7359 DAEK Daedeok, Korea 23902S002 X
7403 AREL Arequipa, Peru 42202M003 X X
7405 CONL Concepción, Chile 41719M001 X X
7406 SJUL San Juan, Argentina -
7501 HARL Hartebeesthoek, South Africa 30302M003 X X X
7806 METL Metsahovi, Finland 10503S014 X X X
7810 ZIML Zimmerwald, Switzerland 14001S007 X
7811 BORL Borówiec, Poland 12205S001 X
7820 KUNL Kunming, China 21609S002 X
7821 SHA2 Shanghai, China 21605S010 X X
7824 SFEL San Fernando, Spain 13402S007 X
7825 STL3 Mt Stromlo, Australia 50119S003 X X
7829 GRAF Grasse, France (FTLRS) 10002S017 X
7831 HLWL Helwan, Egypt 30101S001
7832 RIYL Riyadh, Saudi Arabia 20101S001 X
7838 SISL Simosato, Japan 21726S001
7839 GRZL Graz, Austria 11001S002 X
7840 HERL Herstmonceux, UK 13212S001 X
7841 POT3 Potsdam, Germany 14106S011 X
7845 GRSM Grasse, France (LLR) 10002S002 X
7941 MATM Matera, Italy (MLRO) 12734S008 X X
8834 WETL Wettzell, Germany (WLRS) 14201S018 X X
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scientific community. The ILRS website14 provides detailed information on the ILRS, its
organization, products, technologies, and supported satellite missions.

2.5.7 SLR Data Modeling

The extended formula of SLR observations containing the corrections applied to the mea-
sured ranges reads as:

d(tr) =
1

2
c∆tsr + δrel + δrot + δr − δRB + δCoM + δZmf + ε, (2.51)

with:

• d(tr) - one-way range between the observatory and the satellite at time tr,

• tr - time epoch of the observation (reception) tied to universal time UTC,

• c - speed of light,

• ∆tsr - light time travel,

• δrel - relativistic correction,

• δrot - correction due to Earth’s rotation and satellite motion in the inertial system,

• δr - correction due to the station eccentricity w.r.t. the reference point,

• δRB - station range bias,

• δCoM - satellite Center-of-Mass correction or satellite laser array offset,

• δZmf - tropospheric signal delay in the zenith direction multiplied by the corre-
sponding mapping function,

• ε - remaining systematic or random system errors.

The term δrel contains all relativistic corrections concerning the influence of the Earth’s
gravity field, e.g., the effect of general relativity affecting the signal propagation (Shapiro
effect) or a periodic general relativity correction due to C20.

The one-way range d(tr) must be corrected by the relative satellite-station motion in
the inertial reference frame δrot for the time interval ∆tsr, due to the Earth rotation ω
and the satellite motion ṙ:

δrot =
ṙ− ω × r

c
· (rr − r), (2.52)

where rr and r denote the geocentric position of the satellite and the SLR station, re-
spectively.

14http://ilrs.gsfc.nasa.gov/
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Figure 2.13: Dependence (correlations) between the station heights and range biases in
SLR observations, adopted version based on Rothacher (2003).

The term δr corresponds to the eccentricity vector between the SLR measurement point
and the telescope reference point, i.e., the intersection of the telescope’s vertical axis with
the horizontal axis.

Station-dependent range biases δRB may exist, which are (hopefully) constant over
a satellite pass or for longer periods of time. They may be caused by instrumental
problems (e.g., ranging electronics) or incorrect calibration measurements. In general,
the estimation of range biases should be avoided, wherever it is possible, because range
biases introduce an additional degree of freedom to the solution and they are correlated
with the station heights for poor observation geometries (see Figure 2.13). The biases of
known origin and constant over long periods are handled in the ILRS SINEX files15 with
data handling recommendations. The data handling file contains the information about
the recommended range biases to be applied, Stanford event counter biases, time biases,
and a list of SLR stations, for which range or time biases should be estimated.

The δCoM corrections are necessary to refer the registered range to the center-of-mass of
the satellite, because the satellite orbits are referred to that point. The δCoM is represented
by a single value for symmetric geodetic satellites, or by a vector of three components for
satellite laser arrays, when the orientation of satellite is known (e.g., GPS, GLONASS,
Galileo, GOCE). Satellite- and station-specific center-of-mass corrections are sophisticated
functions depending on the satellite signature (e.g., type, coating, and mount of retro-
reflectors), on the detection mode of the laser system, on the edit level of normal point
formation, and on the pulse width and number of detected photons (Otsubo and Appleby,
2003).

The δZmf accounts for the atmospheric (tropospheric) delay for optical wavelengths.
The formerly recommended delay model, derived by Marini and Murray (1973), includes
the zenith path delay and implicitly also the mapping function to project the zenith delay
to a given elevation angle. The currently recommended refraction model, developed by

15http://ilrs.dgfi.badw.de/data_handling/ILRS_Data_Handling_File.snx
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Mendes and Pavlis (2004), consists of the formulas for hydrostatic and non-hydrostatic
zenith delay components and a common mapping function FCULa (due to the small con-
tribution of water vapor to atmospheric refraction). The maximum correction due to the
non-hydrostatic zenith path delay yields 6 mm, thus is a factor of 70 times smaller than
for microwave observations. The zenith delay models have overall RMS errors for the total
zenith delay below 1 mm across the whole frequency spectrum above the elevation angle
of 3◦ (Mendes and Pavlis, 2004). The troposphere is dispersive for laser observations,
implying that the total delay can be derived from the simultaneous laser observations at
two different frequencies (two-color ranges). However, the troposphere propagation delay
models still achieve a better accuracy of the delays than the direct two-color SLR obser-
vations (Wijaya and Brunner, 2011). The ionosphere signal delay for laser observations
does not exceed 1.0 ·10−7 m, therefore it is neglected in SLR data analyses (Seeber, 2003).

Random walk and systematic time errors ε due to epoch registration can cause station-
and pass-specific time and range biases. Scale biases may occur due to frequency errors
of the event timer. The errors in the temperature or the air pressure readings cause
troposphere biases. All kinds of aforementioned biases are very difficult to isolate from
range biases. A detailed discussion of SLR systematic errors can be found in, e.g., Degnan
and Pavlis (1994).

2.5.8 Standard SLR Solution in the Bernese GNSS Software

The development version of the Bernese GNSS Software (BSW), established at the Astro-
nomical Institute, University of Bern (AIUB), is used within this thesis. BSW has been
primary developed for processing GPS microwave data (Gurtner et al., 1985); subse-
quently its processing ability has been extended to processing GLONASS data (Habrich,
1999), to validating GNSS orbits using SLR data (Springer, 2000), to processing SLR
observations of LAGEOS and Etalon satellites (Thaller et al., 2012), and finally to pro-
cessing SLR observations to all spherical geodetic satellites (Sośnica et al., 2014b). The
capabilities of SLR data processing in BSW have been developed in a common project
between AIUB and Bundesamt für Kartographie und Geodäsie (BKG).

In Chapters 3−4 and in Sections 1−2 of Chapter 5 the Bernese GPS Software v. 5.1
is used with the IERS 2003 Conventions applied, whereas for the experiments from the
Chapter 5 Sections 3−6 the Bernese GNSS Software v. 5.3 with the IERS 2010 Conven-
tions, and the capability of processing data to low orbiting geodetic satellites, is utilized.

BSW meets the highest requirements established by the ILRS Analysis Working Group
for SLR data processing. In 2010 the software passed the ILRS benchmark test. BSW
is used by one of the ILRS Analysis Centers (ILRS AC), namely BKG for the routine
LAGEOS/Etalon solutions, as well as by the ILRS Associate Analysis Center, i.e., the
Center for Orbit Determination in Europe (CODE) for the residual analysis of GPS and
GLONASS orbits and generation of orbit predictions of GOCE, GLONASS, and GPS
satellites for SLR stations.
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Orbit Definition in BSW (in General)

The satellite orbits in BSW are defined by a set of six osculating elements referring to the
initial epoch of the arc, dynamical orbit parameters (in sun-oriented system for GNSS
satellites and RSW-system for geodetic satellites), and by pseudo-stochastic pulses (Beut-
ler et al., 1994). The pseudo-stochastic pulses shall compensate deficiencies in modeling
of non-gravitational forces. The pseudo-stochastic pulses are used in CODE not only for
the determination of GNSS satellite orbits (Dach et al., 2009), but also in the form of
pseudo-stochastic accelerations for the determination of LEO orbits (Jäggi, 2007), e.g.,
CHAMP (Prange et al., 2010), GRACE (Beutler et al., 2010b), GOCE (Bock et al., 2011),
TerraSAR-X and TanDEM-X (Jäggi et al., 2012).

LAGEOS Orbit Solutions

The standard ILRS AC’s solution was an initial point for most of the experiments under-
lying this thesis, thus the parameterization of the LAGEOS solutions follows in general
the ILRS AC standards. There are, however, several modifications, improvements, and
additional parameters w.r.t. the standard ILRS AC solutions, in some experiments, e.g.,
geocenter coordinates and gravity field parameters. All differences in modeling are indi-
cated when they are introduced.

In the LAGEOS-1/2 7-day solutions the following parameters are typically estimated:

• unconstrained six osculating elements (one set per 7-day arc),

• constant (S0) and OPR sine and cosine accelerations (SS/SC) in the along-track
direction (one set per 7-day arc),

• OPR sine and cosine accelerations (WS/WC) in the out-of-plane direction (one set
per 7-day arc),

• station coordinates (one set per 7-day arc),

• geocenter coordinates (one set per 7-day arc),

• range biases (only for selected stations, as recomended by the ILRS, one set per
7-day arc, see Table 2.6),

• piece-wise-linear (PWL) or piece-wise-constant (PWC) pole coordinates with a daily
resolution,

• piece-wise-linear (PWL) or piece-wise-constant (PWC) UT1-UTC (expressed in its
integrated form as excess LoD) with a daily resolution,

• (alternatively - only for selected solutions, when combining with LEO) gravity field
coefficients up to degree/order: 4/4 (one set per 7-day arc) instead of WS/WC .
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Table 2.4: Orbit characteristic orbits of SLR geodetic and gravity LEO satellites.

AJISAI Starlette/Stella LAGEOS-1/2 GRACE-A/B CHAMP

Diameter [m] 2.15 0.24 0.60 - -
Mass [kg] 685 47/48 407/405 432 400
Area-to-mass [m2kg−1] 58.0e-4 9.6e-4/9.4e-4 6.9e-4/7.0e-4 - -
Radiation coeff. CR 1.03 1.134/1.131 1.13 - -
Semi-major axis [km] 7.866 7.335/7.176 12.274/12.158 6’863 6’872
Orbit altitude [km] 1.500 800-1.100/830 5.860/5.620 485 474
Eccentricity 0.0016 0.0205/0.0010 0.0039/0.0137 0.0029 0.0039
Inclination [deg] 50.04 49.84/98.57 109.90/52.67 88.99 87.29
Drift of node [days] 116.77 90.97/364.7 1050.1/569.5 2620 968
Drift of perigee [days] 141.1 108.7/122 1680.3/822.7 92.5 93.3
Draconitic year [days] 89 72.8/182 560/222 320.6 266
S2 alias period [days] 44.5 36.5/91 280/111 160.3 133
A priori CoM corr. 1010 mm 78 mm CoM1 - -
1 station-specific CoM (Appleby et al. 2012)

LEO Orbit Solutions

The parameterization of the solutions incorporating low orbiting SLR satellites suppose to
be as consistent as possible with the LAGEOS solutions, in order to enable a generation of
a combined multi-SLR solution. Thus, the parameterization in both solutions must follow
the same processing standards. Different orbit modeling of low orbiting SLR satellites is
tested in Chapter 5 in order to find a solution that is maximally consistent with external
sources (IERS-08-C04 series, SLRF2008 reference frame) by using minimum number of
estimated dynamical and stochastic orbit parameters.

In the Starlette, Stella, and AJISAI (LEO) 7-day solutions the atmospheric drag
NRLMSISE-00 model (Picone et al., 2002) is applied and the following parameters are
estimated in a standard solution:

• unconstrained six osculating elements (one set per 7-day arc),

• constant (S0) and OPR sine and cosine accelerations (SS/SC) in the along-track
direction (7 sets per 7-day arc),

• OPR sine and cosine accelerations (WS/WC) in the out-of-plane direction (7 sets
per 7-day arc),

• pseudo-stochastic pulses in along-track (every revolution period),

• station coordinates (one set per 7-day arc),

• geocenter coordinates (one set per 7-day arc),

• range biases (for all satellites and all stations, one set per 7-day arc),
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• gravity field coefficients up to degree/order 4/4 (one set per 7-day arc),

• Piece Wise Linear (PWL) pole coordinates and LoD (one set at the daily boundary).

The 7-day arc LEO solutions are derived by stacking 1-day consecutive normal equations
containing all parameters. An approach described by Beutler et al. (1996) is applied for
stacking osculating elements.

The constant and OPR dynamical parameters together with pseudo-stochastic pulses
account for large orbit perturbations due to variations of the air density in the high
atmosphere. In analogy to LAGEOS satellites, the dynamical parameters absorb the
mismodelled forces due to: direct solar radiation pressure, indirect radiation pressure
(albedo), and thermal effects.

Background Models

The models used to generate SLR solutions are given in Table 2.5. In general, all models
used are in a very good agreement with the solutions derived by ILRS Analysis Centers16

with some modifications, e.g., the use of station- and satellite-specific Center-of-Mass
corrections (CoM) following the latest pilot project of the ILRS Analysis Working Group
(Appleby et al., 2012)17 and the use of the atmospheric tidal loading (Ray and Ponte,
2003). The a priori terrestrial reference frame used is: SLRF200518 for experiments in
Chapter 3.2, and SLRF200819 for remaining experiments in the thesis. The ocean tide
model CSR4.0A (Eanes, 2004) up to degree/order 8/8 is applied for the validation of
different Earth gravity field models, whereas the EGM2008 (Pavlis et al., 2012b) up to
degree/order 30 is applied for the validation of ocean tide models in Chapter 3.

Earth Rotation Parameters (ERP)

In Chapter 3 and in Sections 1−2 of Chapter 4 the PWC parameterization of pole coor-
dinates and LoD is applied (as in the ILRS ACs standard solutions20), whereas the PWL
parameterization is used in remaining tests. In PWL the polar motion and UT1-UTC
are represented by polygons (see Figure 2.14), and therefore, they do not imply discon-
tinuities at the daily boundaries (Thaller et al., 2014a). The UT1-UTC is fixed to the a
priori IERS C04 series at the day boundary between the third and fourth day, in order to
avoid the correlations with the drifts of satellites’ ascending nodes. Table 2.4 shows the
satellites’ and satellite orbits’ characteristic with revolution periods of orbital elements.

16ftp://cddis.gsfc.nasa.gov/pub/slr/products/ac/bkg.dsc
17http://ilrs.gsfc.nasa.gov/docs/LAGEOS_CoM_Table_081023.pdf
18http://ilrs.gsfc.nasa.gov/docs/2007/AWG_GRASSE_24.09.2007.pdf
19ftp://cddis.gsfc.nasa.gov/pub/slr/products/resource/SLRF2008_110913.txt
20ftp://cddis.gsfc.nasa.gov/pub/slr/products/ac/bkg.dsc
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Table 2.5: Models used for initial SLR solutions in BSW. Models denoted ’not applied’
are used only for special test purposes within the thesis.

Type of model Description
Length of arc 7 days
Data editing 2.5 sigma editing, maximum overall sigma: 25 mm,

minimum 10 normal points per week
Satellite center of mass Station- and satellite-specific (Appleby et al., 2012)
Troposphere delay Mendes-Pavlis delay model with FCULa

mapping function (Mendes and Pavlis, 2004)
Cut-off angle 3 degrees, no elevation-dependent weighting
Relativity (propagation) Shapiro effect acc. to IERS Conventions 2003

(McCarthy and Petit, 2004)
Relativity (orbit) Schwarzschild term, IERS 2010 (Petit and Luzum, 2011)

Lense-Thirring effect: not applied
de Sitter effect: not applied

Third-body Earth’s Moon, Sun, Venus, Mars, Jupiter
Ephemeris: JPL DE405 (Folkner et al., 1994)

Subdaily pole model IERS Conv. 2003 (McCarthy and Petit, 2004)
Tidal forces Solid Earth tide model: IERS Conventions 2003

(McCarthy and Petit, 2004)
Pole tide model: IERS Conv 2003 (McCarthy and Petit, 2004)
Ocean pole tide: IERS Conv 2010 (Petit and Luzum, 2011)
Love numbers for ocean tides - FES2004 (Lyard et al., 2006)

Nutation model IAU2000 without VLBI-derived corrections
for free-core nutation (Mathews et al., 2002)

Loading corrections Ocean tidal loading: FES2004 (Lyard et al., 2006)
Ocean non-tidal loading: not applied
Atmospheric tidal loading: Ray and Ponte (2003)
Atmospheric non-tidal loading: not applied

Solar radiation pressure Direct radiation: applied with a fix radiation
pressure coefficient CR = 1.13
Earth’s albedo reflectivity: not applied
Earth’s albedo emissivity: not applied
Yarkovsky and Yarkovsky-Schach effects: not applied

Numerical integration Interval: 2 minutes, polynomial degree: 12, collocation
method (Beutler, 2005)

Earth orientation parameters IERS08-C04 series (a priori)
(Bizouard and Gambis, 2011)

Reference frame SLRF2005, SLRF2008
GM fixed at 398.6004415 m3 s−2

Earth radius (ae) 6 378.137 m
A priori range biases provided with SLRF2008 (see Table 2.6)
A priori core stations provided with SLRF2008 (see Table 2.6)
Earth gravity field EGM2008 (for standard solutions)
Ocean tide model CSR4.0A (for standard solutions)
De-aliasing Products Atmosphere+Ocean RL05 (Flechtner, 2007): not applied
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Figure 2.14: Parameterizations of daily ERPs used in weekly SLR analysis.
Top: PWC for polar motion; Center: PWC for UT1-UTC/LoD;
Bottom: PWL for UT1-UTC (in case of polar motion the 4th offset is not
fixed to the a priori series), after Thaller et al. (2014a).

Data Screening

In general, LAGEOS data screening process follows the standards adopted for the ILRS
contribution to the ITRF2008 definition21. Stations with fewer than 10 observations to
both LAGEOS satellites are not considered for the weekly LAGEOS solutions or stations
with fewer than 8 observations per day to three LEO satellites are also omitted. The
2.5 sigma editing is applied, with the maximum overall sigma of 25 mm (RMS w.r.t.
estimated value) and the threshold for residuals v amounting 50 mm for LAGEOS and
150 mm for LEO (difference w.r.t. a priori value). If a difference of satellites’ semi-major
axes between a priori orbits and estimated orbits exceeds 10 mm for LAGEOS or 30 mm
for LEO, another iteration step of screening is performed, using the estimated orbit from
previous step as an a priori orbit. The iteration process is preferable, because the least
squares adjustment method for non-linear functions requires a priori parameters of a good
quality. Two iteration steps are usually needed when the a priori orbits are transformed
from the Inter-Range Vector (IRV) prediction format. Otherwise one iteration step is
typically sufficient, when the predicted orbits from a previous week are used as the a

21http://ilrs.gsfc.nasa.gov/docs/ILRS_contribution_to_ITRF2008.pdf
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priori orbit for a following week.

Core stations with position differences exceeding 30 mm after applying the Helmert
transformation are excluded from the list of core stations for a particular week. The
stations observing fewer than three passes of one satellite or fewer than two passes in
total of two different satellites are are excluded from the list of core stations, as well. The
elevation cut-off angle is set to 3◦. In LAGEOS solutions on average 5.3% of data was
rejected due to both the minimum number of observations criterion and the maximum
residual criterion, whereas in LEO solutions 5.7% of data was rejected.

Datum Definition

No-Net-Rotation and No-Net-Translation minimum constraints are applied for the veri-
fied core stations (see Table 2.6) in each final weekly solution, instead of the 1 m loose
constraints as in the ILRS AC solutions (Thaller et al., 2014a). The normal equation
system in a free-network solution has a rank deficiency and thus additional conditions
have to be applied. The No-Net-Rotation condition is needed, because the satellite orbits
are simultaneously estimated with ERPs and station coordinates, whereas the No-Net-
Translation condition is needed, when the geocenter coordinates are estimated, in order to
keep the barycenter of SLR network unaffected. Therefore, the orbit determination frame
has its origin at the Earth’s center-of-mass, whereas the coordinate origin is the barycenter
(center-of-network) defined by the well-defined coordinates of SLR core stations.

Number of Observations

SLR normal points are downloaded from both ILRS data centers, namely the EUROLAS
Data Center (EDC) and the Crustal Dynamics Data Information System (CDDIS) and
merged, because of inconsistencies and missing data found in both centers (Sośnica et al.,
2012b).

On average about 5500 observations to LEO satellites and on average 3060 observa-
tions to LAGEOS-1/2 are available in 7-day solutions in the time span 1999-2011 (see
Figures 2.15 and 2.16). Therefore, in a combined LAGEOS-LEO solution the number of
observations (8560) is almost three times larger than in the LAGEOS-1/2 solutions. The
largest number of observations was collected in 2006-2007. Apart from this period, the
number of observations is similar for all years, with a characteristic annual signal and
visible minima in winters.

Amongst the LEO satellites the observations to AJISAI are dominant (on average 3010
observations per week). Almost twice fewer observations were collected to Starlette (1677),
and four times fewer to Stella (813 observations). However, the number of parameters is
larger in the LEO solution, due to a different orbit parameterization and due to estimation
of range biases for all stations. Therefore, the number of estimated parameters is 150, 540,
and 580 in LAGEOS-1/2, LEO, and combined LAGEOS-LEO solutions, respectively. The
difference of number of parameters between the LEO and combined solutions is only 40,
because only LAGEOS orbit parameters and LAGEOS range biases are added, whereas
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2 Satellite Geodesy

Table 2.6: SLR core stations and stations with estimated range biases to LAGEOS.

Station ID Station Names DOMES From To

SLR core stations
7080 McDonald Observatory, Texas 40442M006 1988 -
7090 Yarragadee, Australia 50107M001 1979 -
7105 Greenbelt, Maryland 40451M105 1981 -
7109 Quincy, California 40433M002 1981 1997
7110 Monument Peak, California 40497M001 1981 2008
7210 Haleakala, Hawaii 40445M001 1994 2004
7403 Arequipa, Peru 42202M003 1990 2000
7501 Hartebeesthoek, South Africa 30302M003 2000 -
7810 Zimmerwald, Switzerland 14001S007 1998 -
7825 Mt Stromlo, Australia 50119S003 2004 -
7832 Riyadh, Saudi Arabia 20101S001 2001 2012
7834 Wettzell, Germany 14201S002 1976 1991
7835 Grasse, France 10002S001 1988 2005
7836 Potsdam, Germany 14106S009 1993 2004
7837 Shanghai, China 21605S001 1997 2005
7839 Graz, Austria 11001S002 1996 -
7840 Herstmonceux, United Kingdom 13212S001 1983 -
7849 Mt Stromlo, Australia 50119S001 1998 2003
7907 Arequipa, Peru 42202S001 1976 1992
7941 Matera, Italy (MLRO) 12734S008 2001 -
8834 Wettzell, Germany 14201S018 1996 -

SLR stations with estimated range biases to LAGEOS
1864 Maidanak 1, Uzbekistan 12340S002 - 2008
1868 Komsomolsk, Russia 12341S001 - -
1953 Santiago, Cuba 40701S001 - 2000
7548 Cagliari, Italy 12725S013 - 2002
7308 Koganei, Japan 21704S002 - -
7403 Arequipa, Peru 42202M003 1993 1993
7403 Arequipa, Peru 42202M003 2010 -
7810 Zimmerwald, Switzerland 14001S007 1996 2008
7820 Kunming, China 21609S002 2014 -
7845 Grasse, France (LLR) 10002S002 - -
8834 Wettzell, Germany 14201S018 2009 -

all other parameters are common in both solutions. On average 19.8, 21.1, and 22.4 SLR
stations are included (after screening) in LAGEOS, LEO, and the combined LAGEOS-
LEO solutions, respectively. Therefore, in the combined solution the number of SLR
stations is larger by about 10% w.r.t. LAGEOS-only solution.
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2.5 Satellite Laser Ranging

Figure 2.15: Number of SLR normal points to LAGEOS-1 and LAGEOS-2 collected by
the most productive SLR stations in 1999-2012.

Figure 2.16: Left: Number of SLR normal points in 7-day LEO, LAGEOS, and combined
solutions (after screening). Right: Number of SLR stations in 7-day LEO,
LAGEOS, and combined solutions.
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3 Gravitational Forces Acting on Geodetic
Satellites

The forces perturbing orbits of artificial satellites can be classified as gravitational and
non-gravitational (see Chapter 2.2). Within the scope of this chapter the impact of the
gravitational forces is discussed, whereas Chapter 4 is devoted to the non-gravitational
forces.

The appropriate modeling of perturbing forces is crucial for the quality of SLR-derived
parameters (e.g., station coordinates, ERPs, low-degree geopotential parameters). Thus,
a detail quality assessment of background applied models with their differences and limi-
tations is essential for high-quality SLR solutions. The dynamical orbit parameters can,
to some extent, absorb the gravitational and non-gravitational perturbing forces. The
study which parameters can be simultaneously estimated and which cannot because of
strong correlations is, thus, necessary.

The conclusions from tests in Chapter 3 and 4 are subsequently applied in Chapter 5
for a state-of-the-art multi-SLR solution.

The most important gravitational forces perturbing the orbits of artificial satellites
comprise:

• Earth’s gravity field,

• gravitational attraction of the Earth’s Moon, the Sun, and the planets of the Solar
system,

• solid Earth tides,

• ocean tides,

• solid and ocean pole tides,

• atmosphere-, ocean-, and hydrology-induced tidal and non-tidal gravity variations.

In this chapter different Earth gravity field and ocean tide models are validated and
their impact on the LAGEOS orbits is assessed. We also investigate the sensitivity of
LAGEOS orbits to the maximum degree and order of the expansion of gravity field and
ocean tide models, as well as the sensitivity of LAGEOS orbits to the maximum size of
the tidal waves. A summary of the results from Section 3.2 may also be found in Sośnica
et al. (2012c).
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3 Gravitational Forces Acting on Geodetic Satellites

Figure 3.1: Number of SLR normal points of LAGEOS-1/2 in 2008 by SLR stations.

3.1 Solution Description

In this chapter different gravity field models and different ocean tide models are validated
by investigating:

• RMS of observation residuals,

• orbit comparison between predicted and estimated orbits,

• empirical orbit parameters,

• direct comparison of the orbits derived using different models.

The RMS of the observation residuals from the weekly solutions is used as an indicator
of the quality of the underlying gravity field models, provided that the same set of models,
data, and unconstrained parameters are used. The RMS characterizes the precision of
fitting the observations if the sets of adjusted parameters are identical.

3.1.1 Estimated Orbital Parameters

The satellite orbits can be described by the list of background models which are ap-
plied and three kinds of parameters: osculating elements, empirical orbit parameters, and
stochastic parameters (see Chapter 2.2).

In the 7-day LAGEOS solutions a collocation method (Beutler, 2005) of 2 minute inter-
vals and polynomial degree of 12 is adopted for the numerical integration. We estimate
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3.1 Solution Description

the full set of six osculating orbital parameters together with a certain set of empirical
parameters. No pseudo-stochastic parameters are estimated for LAGEOS.

The set of applied empirical orbit parameters can be described as:

• In along track: aS = S0 + SS sin(u) + SC cos(u),

• In out-of-plane: aW = WS sin(u) +WC cos(u),

where S0 is a constant acceleration in along-track, SS and SC are once-per-revolution
sine and cosine accelerations in along-track, respectively, and WS and WC are once-per-
revolution sine and cosine accelerations in the out-of-plane direction, respectively, u is
the argument of latitude of the satellite. No empirical accelerations are estimated in the
radial direction R (for details see Section 2.5.8).

Additionally estimated parameters in the LAGEOS solutions are: station coordinates,
range biases for selected stations - one set of parameters per week, and ERP (i.e., pole
coordinates and LoD) - parameterized as daily PWC function.

3.1.2 Data and Solution Set-up

Data of the year 2008 are adopted for the comparison of Earth gravity field models and
ocean tide models. In total 139,000 SLR normal points are available in this year from
33 SLR stations. The number per week varies between 1932 and 3804. Although most
of the SLR stations are located in the northern hemisphere, the number of normal point
observations from both hemispheres is comparable due to the high productivity of the
Yarragadee, San Juan, Mt. Stromlo, and Concepción. In the northern hemisphere the
largest amount of data is collected by Zimmerwald and Herstmonceux, both European
stations (see Figure 3.1).

59



3 Gravitational Forces Acting on Geodetic Satellites

3.2 LAGEOS Sensitivity to Earth Gravity Field Models

Many new Earth gravity field models were developed in the first decade of the 21st century.
After the launch of the CHAllenging Minisatellite Payload (CHAMP) mission (Reigber
et al., 1998) the accuracy of the gravity field models could be significantly improved w.r.t.
the models from the pre-CHAMP era. Current gravity field missions, such as the Gravity
Recovery And Climate Experiment (GRACE, Tapley et al., 2004) and the Gravity field
and steady-state Ocean Circulation Explorer (GOCE, Drinkwater et al., 2006), allow
determining the gravity field with an improved accuracy and resolution.

Earth gravity field models may be validated by analyzing degree difference variances
of gravity field recoveries w.r.t. superior Earth gravity field models, if available (see, e.g.,
Jäggi et al., 2011b) or by comparing the coefficients of different gravity field models
(ICGEM, 2012). The external quality assessment ensures the independent evaluation
of gravity field models. The orbits of spherical satellites are sensitive to the models
used, because of the dynamic orbit representation with only a small number of empirical
parameters estimated. The LAGEOS observations are, e.g., accurate at the sub cm-level,
and therefore, well suited for comparing the long-wavelength part of gravity field models.
Lejba and Schillak (2012) performed the validation of five Earth gravity field models using
the RMS of observation residuals for LAGEOS, AJISAI, Stella, and Starlette and found
that the most of the latest gravity field models lead to the smallest RMS of residuals,
with an exception of the ITG-GRACE2010S model. Lejba and Schillak (2012) claim that
the ITG-GRACE2010S model should not be used for the orbit determination of geodetic
satellites, because of a worse performance as compared to other models.

3.2.1 Maximum Degree and Order

EGM2008 (Pavlis et al., 2012b) was selected for the sensitivity analysis of LAGEOS
orbits, i.e., the appropriate maximum degree/order (d/o) of the gravity field model to be
used for precise orbit determination of LAGEOS satellites. This model is widely used for
precise orbit determination of different satellites and it is also recommended by the IERS
Conventions 2010 (Petit and Luzum, 2011).

Table 3.1 shows the mean values of RMS of observation residuals, as well as mean values
from the Helmert comparisons between the estimated orbits from weekly data batches
and predicted orbits based on the observations from the previous respective weeks. The
LAGEOS orbits are very sensitive to the gravity field coefficients up to about d/o 14.
The RMS of observation residuals in the solutions related to the degrees 8, 12, and 14,
is very large, amounting 39.35, 18.19, 7.73 mm, respectively. Small differences between
the orbit solutions for maximum d/o 14, 16, 18 and 20 are visible as well, but they are
only at a level of 0.5 mm or below. The difference in the RMS values for solutions up to
d/o 20 and 30 is only of the order of 0.01 mm. Increasing the d/o of gravity field above
30 has no impact on the resulting RMS of observation residuals or the orbit predictions.
In order to avoid the loss of any gravity information and not to degrade the quality of
the estimated orbits, it is recommended that the a priori gravity field up to d/o 30 be
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3.2 LAGEOS Sensitivity to Earth Gravity Field Models

Table 3.1: Sensitivity of LAGEOS orbits to the maximum d/o used for the Earth gravity
field model EGM2008 (mean values for 2008).

Gravity field RMS of observation Comparison of estimated and predicted orbits
model up to d/o residuals [mm] RMS RMS RMS

radial [mm] along-track [mm] out-of-plane [mm]
140 7.13 29.7 398.0 199.2
70 7.13 29.7 398.0 199.2
30 7.13 29.7 398.0 199.2
20 7.14 29.7 399.2 199.6
16 7.16 29.9 411.0 205.0
14 7.73 31.0 448.8 222.4
12 18.19 41.6 1522.1 769.8
8 39.35 142.2 2485.7 1634.1

used for LAGEOS solutions, although the recommended value by the IERS Conventions
2010 is 20 (Petit and Luzum, 2011), which seems to be insufficient for orbit predictions
of LAGEOS satellites.

3.2.2 Validation of Earth Gravity Field Models

Eleven gravity field models are hereinafter compared (see Table 3.2), namely

• models from the pre-CHAMP era: JGM3 (Tapley et al., 1996) and EGM96 (Lemoine
et al., 1998) based on SLR, terrestrial, altimeter data, GPS, DORIS, doppler, and
optical observations of artificial satellites,

• AIUB-CHAMP03S (Prange, 2011), based uniquely on GPS measurements made by
CHAMP, and AIUB-SST-only (Jäggi et al., 2010b), based on GPS observations
made by CHAMP and GOCE,

• AIUB-GRACE03S (Jäggi et al., 2011a) and ITG-GRACE2010S (Mayer-Gürr et al.,
2011), based on GRACE data,

• combined gravity field models based on different measurement techniques, such as:
EGM2008 (Pavlis et al., 2012b), EIGEN-GL04C (Förste et al., 2005), EIGEN51C
(Förste et al., 2008), GOCO02S (Goiginger et al., 2011), GO-CONS-2-DIR-R2 (Bru-
insma et al., 2010).

Most gravity field models are available at the International Centre for Global Earth Models
(ICGEM, 2012). The geopotential parameters C21 and S21 are not taken from particular
models, but they are handled according to the IERS Conventions 2003, reflecting the
motion of the mean pole with corresponding corrections due to the solid Earth and the
ocean pole tide.
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3 Gravitational Forces Acting on Geodetic Satellites

Table 3.2: Characteristics of gravity field models used in the comparisons. (X) denotes a
priori constraints applied on low-degree gravity field parameters derived from
GRACE solutions.

Gravity field model Year Max. Drift Data type included
deg. coeff. SLR CHAMP GRACE GOCE Ground

JGM3 1994 70 C20 X X
EGM96 1996 360 C20 X X
EIGEN-GL04C 2006 360 4 X X X
EGM2008 2008 2190 - X X
EIGEN51C 2010 359 4 X X X X
ITG-GRACE2010 2010 180 - X
AIUB-CHAMP03S 2010 100 - X
AIUB-GRACE03S 2011 160 30 X
GO-CONS-2-DIR-R2 2011 240 - (X) X
GOCO02S 2011 250 - X X X X
AIUB-SST-only - 120 - X X

All compared models were derived using the same value of gravity constant, but with
a different value of the mean Earth radius (ae). In the analysis the value of ae is taken
as for GRS-80 and all ITRF realizations. For gravity field models having different values
of ae, the total potential is rescaled correspondingly to the value referring to GRS-80.

3.2.3 RMS of Observation Residuals and Orbit Predictions

Table 3.3 shows the mean values of the RMS of the observation residuals for different
gravity field models. Although the solutions look similar at first sight, and most of the
differences are minor, the gravity field models may be associated with three groups.

The first group with a slightly higher RMS contains models from the pre-CHAMP era,
namely EGM96 and JGM3 with RMS values of 8.29 mm and 7.42 mm, respectively.

Special attention should be paid to ITG-GRACE2010S. Although this model is from
the post-CHAMP era, it attributes a relatively large RMS of 7.32 mm, which was also
found by Lejba and Schillak (2012). ITG-GRACE2010S is the only model with non-zero
values for the harmonic coefficients C11, S11, and C10, therefore, generates a constant shift
of about 14 mm of the orbit w.r.t. center-of-network. According to the IERS Conventions
2010 gravity field coefficients of d/o 1 should not be used for precise orbit determination.
Therefore, this model was used twice in our validation, once in the way as published,
and once with the coefficients C11, S11, and C10 set to zero (indicated as ITG-GRACE10
mod). The modification reduces the RMS from 7.32 mm to 7.18 mm (see Table 3.3).

In the second group there are gravity field models based on kinematic orbits of gravity
LEO missions estimated using continuous GPS observations. This group consists of AIUB-
CHAMP03S and of AIUB-SST-only model. The RMS values are 7.22 mm and 7.21 mm
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3.2 LAGEOS Sensitivity to Earth Gravity Field Models

Table 3.3: RMS of observation residuals and comparison between predicted and estimated
7-day LAGEOS orbits (mean values for 2008).

Gravity field model RMS of Comparison of estimated and predicted orbits
observation including Helmert transformation

residuals Scale RMS of
[mm] [ppb] radial along-track out-of-plane

[mm] [mm] [mm]
EGM96 8.29 -0.06 29.8 400.4 199.8
JGM3 7.42 -0.05 29.7 398.6 199.1

ITG-GRACE2010S 7.32 -0.03 29.9 396.8 198.6
AIUB-CHAMP03S 7.22 -0.04 29.7 398.0 199.2

AIUB SST-only 7.21 -0.04 29.7 397.9 199.1
GOCO02S 7.20 -0.04 29.6 397.5 198.8

ITG-GRACE10 mod 7.18 -0.04 29.7 398.0 199.2
EIGEN-GL04C 7.17 -0.04 29.7 397.6 198.9

EIGEN51C 7.16 -0.04 29.7 397.9 199.2
AIUB-GRACE03S 7.15 -0.04 29.7 397.8 198.9

GO-CONS-2-DIR-R2 7.14 -0.04 29.5 398.2 199.0
EGM2008 7.13 -0.03 29.7 398.0 199.2

for these models, respectively.

The last group contains the models based either on GRACE K-band observations or
on combined techniques with highly weighted GRACE contributions (GOCO02S, ITG-
GRACE10 mod, EIGEN-GL04C, EIGEN51C, AIUB-GRACE03S, GO-CONS-2-DIR-R2,
and EGM2008). These models show a very similar quality, with the smallest RMS for
EGM2008, i.e., 7.13 mm.

The estimated orbits are now compared with the prediction of the orbits from the
previous week by first applying the Helmert 7-parameter transformation. The RMS of
the orbit differences for orbit comparison is provided in Table 3.3. The RMS associated
with the R component is smallest due to the large radial sensitivity of SLR, due to none
empirical parameters estimated in R, and a strong dependence between R and the global
scale defined by GM . In the first approach the differences do not exceed 0.4 mm, 3.6 mm,
and 1.2 mm in R, S, and W , respectively. It indicates that the uncertainties in the static
gravity field models are not the limiting factor for the orbit predictions. More important
are the quality of, e.g., ocean tide models and time-variable gravity field (see Sections 3.3,
and 4.4).

3.2.4 Empirical Orbit Parameters

The empirical orbit parameters estimated using different gravity field models do not show
any significant differences in the S components (S0, SC , SS , not shown) and in the out-
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3 Gravitational Forces Acting on Geodetic Satellites

Figure 3.2: Empirical out-of-plane WS and WC parameters for LAGEOS-1 (left) and
LAGEOS-2 (right). Note the different scales.

Figure 3.3: Left: Normalized variations of C20 in 2008 derived from SLR observations
to LAGEOS-1/2, AJISAI, Starlette, and Stella as described in Chapter 5.6.
Right: Variations of C20 in 2008 transformed to the variations of WS for
LAGEOS-1 using Equation 3.1.
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3.2 LAGEOS Sensitivity to Earth Gravity Field Models

Table 3.4: C20 and its annual drift in different gravity field models. In case of ITG-
GRACE20010S and JGM3 the C20 is transformed from zero-tide to tide-free
system.

Model C20 + 0.0004841650 ∆C20/year
referred to 2008.5

GOCO02s −5.008E-10 -
JGM3 −3.742E-10 0.1162E-10

EGM96 −3.717E-10 0.1162E-10
AIUB-CHAMP03S −3.437E-10 -

AIUB-SST −3.437E-10 -
GO-CONS-2-DIR-R2 −3.106E-10 -

EIGEN-GL04C −1.747E-10 0.11628E-10
EGM2008 −1.437E-10 -

ITG-GRACE2010s −0.408E-10 -
EIGEN-51C −0.133E-10 0.11628E-10

AIUB-GRACE03S +8.616E-10 1.28258E-10

of-plane cosine (WC) term (see Figure 3.2, bottom). WC shows the variations related to
the ocean tides affecting LAGEOS orbits and will be addressed in Section 3.3.

Large differences are, however, remarkable in WS (see Figure 3.2, top). For AIUB-
GRACE03S, WS differs significantly from the other models. For LAGEOS-1 WS assumes
positive values, whereas negative values results for LAGEOS-2 (about +2 · 10−9 ms−2

for LAGEOS-1, and −3 · 10−9 ms−2 for LAGEOS-2), reflecting two different inclination
angles of the LAGEOS orbits.

The differences in WS correspond to the different values of the spherical harmonic C20

(see Table 3.4). There are large differences between the individual models, reflecting the
capability of observation analysis to recover C20. A particularly shaking example is AIUB-
GRACE03S, for which the harmonic coefficients and their drifts up to d/o 30 are derived
mostly from GRACE K-band observations without any regularizations. This may lead to
rather poor estimates of C20 and the drift of C20, which is reflected by large differences
w.r.t. other models (Meyer et al., 2012). Especially the drift of C20 for AIUB-GRACE03S
is of very poor quality, exceeding the values of the other models by about a factor of ten.

The perturbing accelerations caused by C20 in the R,S,W system can be expressed
according to Beutler (2005) by:

R
S
W

 =
3

2

GMa2
e∆C20

r4


1− 3

2 sin2 i+ 3
2 sin2 i sin2 u

sin2 i sin 2u
sin 2i sinu

 . (3.1)

The equation shows the relationship between the perturbing acceleration caused by C20

as a function of the argument of latitude u and inclination i (with G - gravity constant,
M - mass of Earth, ae - Earth radius, r - length of satellite state vector). It explicitly
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3 Gravitational Forces Acting on Geodetic Satellites

Figure 3.4: RMS of observation residuals in the solutions using different gravity field mod-
els without estimating WC and WS .

shows the correlation between C20 and the sine term of the once-per-revolution out-of-
plane acceleration (WS). The equation attributes the signs for LAGEOS-1 and -2 and
the ratio of the numerical values to the inclination angles (110◦ and 53◦ for LAGEOS-1
and -2, respectively). Hence, a transformation of the temporal variations of C20 to the
temporal variations of WS is possible. Figure 3.3 (right) shows such a transformation for
LAGEOS−1, presenting a very good agreement with the estimated WS variations (see
Figure 3.2, top left). The above equation also shows that there is no direct correlation
between C20 and the argument of latitude u for the other terms of the estimated empir-
ical once-per-revolution accelerations (Colombo, 1989), as confirmed by this experiment.
However, there would be a correlation between the along-track twice-per-revolution sine
parameter and C20, if only such an empirical parameter was estimated.

The estimation of WS is responsible for the insensitivity of the LAGEOS solutions to the
quality of the C20 coefficient of the Earth’s gravity field. Moreover, WS and WC account
for a bad value of C20 coefficient and other perturbing accelerations in W of the periods
corresponding to the satellite’s revolution period. The other perturbing accelerations are,
however, less significant than the variations of C20. As a confirmation, an additional
experiment is conducted by computing solutions without estimating WC and WS . As
expected, Figure 3.4 and Table 3.5 show a significant degradation of the solution when
WS and WC are not set up. The RMS of the observation residuals for AIUB-GRACE03S
increases to 30.74 mm (compared to 7.15 mm when estimating WS and WC). The smallest
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3.2 LAGEOS Sensitivity to Earth Gravity Field Models

Table 3.5: RMS of observation residuals and comparison between predicted and estimated
7-day LAGEOS orbits without estimating WC and WS (mean values for 2008).

Gravity field model RMS of Comparison of estimated and predicted orbits
observation including Helmert transformation

residuals RMS of
[mm] radial along-track out-of-plane

prediction prediction prediction
[mm] [mm] [mm]

EGM96 14.33 32.7 413.1 319.6
JGM3 13.28 32.3 408.9 304.7

ITG-GRACE2010S 15.05 33.8 415.0 353.7
AIUB-CHAMP03S 10.51 33.8 415.0 353.7

AIUB-SST-only 10.52 30.1 394.5 231.6
GOCO02S 15.55 34.0 419.0 369.7

ITG-GRACE10 mod 15.01 33.6 416.5 354.4
EIGEN-GL04C 12.56 32.0 405.7 388.6

EIGEN51C 16.19 34.4 422.3 388.6
AIUB-GRACE03S 30.74 52.8 572.8 1011.2

GO-CONS-2-DIR-R2 16.20 34.4 422.3 388.6
EGM2008 13.40 32.6 409.1 312.5

RMS of observation residuals is achieved for the AIUB-CHAMP03S and AIUB SST-only
models i.e., 10.51 mm and 10.52 mm, respectively, but even these values are larger than
those of the solution with estimating WS and WC (7.22 mm and 7.21 mm). The orbit
predictions are also significantly degraded when neglecting the WS and WC parameters.
The mean RMS of prediction in W for AIUB-GRACE03S exceeds 1000 mm, whereas for
other models it is at the level of about 300 mm.

One cannot decide on the basis of RMS of observation residuals (Table 3.5), which grav-
ity field models stem from the pre-CHAMP era, or which models are based on CHAMP,
GRACE or GOCE data. It shows that LAGEOS solutions are extremely sensitive to C20.

Comparing Figure 3.2 and Figure 3.4 it can be seen that the models with values of WS

closest to zero also have the smallest values of the RMS of observation residuals when not
estimating WS and WC .

This comparison validates, however, mainly the quality of C20, because C20 causes the
strongest perturbations of all satellite orbits. WS and WC absorb, however, also other
perturbing forces, e.g., the perturbations due to the Lense-Thirring effect or geodetic
precession (Hugentobler, 2008). Thus, estimating of WS and WC is essential for precise
orbit determination when using a static gravity field model or when using the background
models of insufficient quality.

From the results in this section, we conclude that estimating neither C20 nor the out-
of-plane once-per-revolution orbit parameter may lead to substantially degraded solutions
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Table 3.6: Mean RMS of orbit differences for 2008 due to different gravity field models.
Units: mm. Differences exceeding 8 mm are marked in bold.

Gravity field EIGEN EGM EIGEN ITG- AIUB- AIUB- AIUB- ITG-
model GL04C 2008 51C GRA SST CHA GRA GRA

2010S 03S 03S 10 mod
JGM3 8.5 11.2 7.6 15.6 6.7 6.6 8.8 7.6

EIGEN-GL04C - 3.8 2.1 14.3 6.2 5.9 1.8 1.2
EGM2008 - - 5.6 15.3 9.8 9.5 3.7 4.3

EIGEN51C - - - 14.1 4.4 4.2 2.4 1.9
ITG-GR2010S - - - - 14.7 14.6 14.5 14.1

AIUB-SST - - - - - 0.6 6.6 5.8
AIUB-CHA03S - - - - - - 6.4 5.5
AIUB-GRA03S - - - - - - - 2.2

when using an a priori value of C20 of an insufficient quality. The time variability of C20

(see Figure 3.3) cannot be described with a sufficient accuracy by a static gravity field
or by a constant value and a drift of C20. Estimating either C20 or WS and WC or using
time-variable gravity field models (e.g., monthly solutions) is, therefore, necessary.
C20 exhibits large temporal variations and the models including observations of 2008

possibly have better estimates of this coefficient. The quality of monthly gravity field
models derived from GRACE, CHAMP, and SLR will be assessed in Section 5.6.

3.2.5 Orbit Comparison

Table 3.6 summarizes the comparison of the LAGEOS orbits based on different gravity
field models. LAGEOS orbits are directly compared without estimating the Helmert trans-
formation parameters. In general, the RMS of orbit differences is quite small, implying
that all models represent rather a comparable quality of low-degree spherical harmonics.

The RMS of orbit differences for the orbits based on the ITG-GRACE2010S model is
largest w.r.t. all other orbits (due to a 14 mm constant orbital shift). The models with the
second largest differences compared to the other models are JGM3 and EGM96 with values
above 6 mm. Orbits using AIUB-GRACE03S, ITG-GRACE10 mod, EIGEN-GL04C and
EIGEN51C models are comparable in quality (all GRACE-based). The smallest values
of RMS of orbit residuals are achieved between the AIUB-CHAMP03S and the AIUB-
SST-only models. EGM2008 differs slightly from GRACE-based models and significantly
from CHAMP-based models, despite it is mostly based on GRACE observations for the
long-wavelength part.
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3.3 LAGEOS Sensitivity to Ocean Tide Models

The tidal forces are caused almost uniquely by the gravitational attraction of the Moon
and the Sun. These forces are responsible for the solid Earth, atmosphere, and ocean
tides as a consequence of the mass redistribution and gravity changes.

Up to now, ocean tide models (OTM) were usually validated by computing monthly
tidal elevation differences between models (Wünsch et al., 2008), by comparing with global
tide gauge data sets (Ponchaut et al., 2001; Zahran et al., 2006), by comparing with the
sea level Topex/Poseidon (T/P) time series analysis (Shum et al., 1997), or by comparing
the simulations of tidal elevation differences at footpoints of GRACE (Wünsch et al.,
2008). The impact of the OTM on the orbit determination of the LAGEOS satellites is
investigated in this section.

The LAGEOS solution from this section is similar to that from Section 3.2 with mi-
nor modifications, i.e., using different a priori reference frame (SLRF2008 instead of
SLRF2005), different a priori ERPs (consistent with ITRF2008), using ATL displace-
ment corrections, and using the PWL ERP parameterization, instead of PWC.

3.3.1 Maximum Degree of OTM and Maximum Size of Tidal Wave

The truncation of OTM up to a particular d/o or to a minimum size of tidal wave is
important on one hand to minimize a computational time and on the other hand to
investigate the sensitivity of LAGEOS orbits to small tidal waves.

In order to study the impact of the maximum d/o of OTM on LAGEOS orbits, six
solutions were generated using CSR4.0A model up to maximum d/o 2, 4, 8, 12, 20 and
30. The RMS of the observation residuals and the comparison between estimated and pre-
dicted orbits are shown in Table 3.7. Using maximum d/o 2 or 4 is definitely insufficient,
because it gives a significant loss of accuracy of the solution (RMS: 569 mm and 10 mm,
respectively). LAGEOS satellites are very sensitive up to d/o 8 of OTM. Using OTM
up to d/o 30 may slightly improve RMS of observation residuals (difference of 0.01 mm),
and the orbit prediction, especially in the S direction (0.8 mm). Degree 8 is an absolute
minimum needed for LAGEOS solutions, but we recommend using OTM up to d/o 30 for
LAGEOS orbit determination for the sake of consistency with Earth gravity field models,
and in order to avoid orbit degradation due to the model truncation.

The sensitivity of LAGEOS solutions to amplitudes of ocean tides is analyzed by choos-
ing only the tides exceeding the particular threshold. Table 3.7 shows six different test
cases with the maximum considered size of the tides set to: 2000, 500, 50, 5, 0.5 mm,
and the approach, where regardless of the size, all waves are considered. Big values of
RMS residuals for maximum wave size of 2000 mm and 500 mm (9.63 mm and 7.91 mm,
respectively) indicate that taking into consideration smaller waves is obligatory when
processing LAGEOS data. Small differences are visible between the solutions based on
OTM maximum size of 50 mm and 5 mm. Waves smaller than 0.5 mm have no impact
on LAGEOS solutions. Therefore, taking into account at least all waves larger or equal
5 mm is highly recommended.

69
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Table 3.7: The sensitivity of LAGEOS orbits to maximum degree/order of OTM and the
size of tidal wave using CSR4.0A (mean values for 2008).

OTM Maximum RMS of Comparison of estimated and predicted orbits
up to d/o size of tidal residuals [mm] RMS of

waves [mm] radial along-track out-of-plane
prediction prediction prediction

[mm] [mm] [mm]
2 ∞ 568.94 - - -
4 ∞ 10.29 32.5 405.9 205.4
8 ∞ 7.42 29.9 399.1 200.6
12 ∞ 7.42 29.8 399.0 200.6
20 ∞ 7.41 29.8 398.9 200.6
30 ∞ 7.41 29.8 398.7 200.4
30 2000 9.63 30.3 404.7 203.8
30 500 7.91 29.9 397.0 199.9
30 50 7.45 29.9 398.3 200.2
30 5 7.42 29.8 398.9 200.4
30 0.5 7.41 29.8 398.7 200.4

The high sensitivity of LAGEOS orbits is striking, in particular because the uncertain-
ties of amplitudes (formal errors) of tidal waves in OTM may exceed 50 mm, i.e., two
orders of magnitude more than the sensitivity of LAGEOS orbits. This confirms that
using the LAGEOS satellites is suitable for validating the low-degree part of OTM.

3.3.2 Comparison of Different OTM

Different OTM are validated by comparing the quality of LAGEOS-1 and LAGEOS-2
orbits (see Table 3.8). Three hydrodynamic models based on tide gauge observations
(CSRC Schwiderski) or tide gauges and satellite altimetry (FES2004, GOT00.2) are com-
pared with the hydrological models based on satellite altimetry data (CSR3.0, CSR4.0A,
TOPEX4.0) and with one empirical model based on many satellite missions (EOT08A).
Most of the OTM are based on the analysis of satellite altimetry data stemming from
TOPEX/Poseidon (T/P) mission. Above and below latitude of 66◦N and 66◦S (given
by the T/P or Jason-1/2 satellite inclination), and for shallow see areas, the tidal waves
are of inferior quality. Moreover, some of the models contain missing water areas in the
model description (e.g., the Baltic Sea, Black Sea, and Red Sea).

FES2004 is the model recommended by the IERS Conventions 2010. Compared to the
CSR3.0,which was recommended by IERS Conventions 2003 (McCarthy and Petit, 2004),
FES2004 has the benefit that the treatment of the secondary waves is specified.
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Table 3.8: Ocean tide models validated using LAGEOS orbits.

Model Type Mainly based on Reference
CSR3.0 hydrological T/P Eanes and Bettadpur (1996)
CSR4.0A hydrological T/P, GRACE Eanes (2004)
TOPEX4.0 hydrological T/P Egbert et al. (1994)
EOT08A empirical T/P, ERS, Jason, etc. Savcenko and Bosch (2008)
FES2004 hydrodynamic tide gauges, T/P, ERS Lyard et al. (2006)
GOT00.2 hydrodynamic tide gauges, T/P, ERS Ray (1999)
CSRC Schwiderski hydrodynamic tide gauges Schwiderski (1980)

3.3.3 RMS of Observation Residuals and Orbit Predictions

Seven series of LAGEOS solutions are generated, each based on a different OTM. The
list of remaining applied models is consistent with the description from Section 3.1 and
Table 2.5.

Table 3.9 shows the mean values of the RMS of the observations residuals of LAGEOS
solutions. Although all solutions show RMS errors at a comparable level, an association
of the solutions with four groups is possible. The first group with the smallest RMS of
residuals contains those models which are based, to a great extent, on the T/P satel-
lite mission. It is CSR3.0, CSR4.0A, and TOPEX4.0 with the RMS value of 7.40 mm,
7.41 mm, and 7.44 mm, respectively. It seems that the models based on LEO altimetry
satellite missions may give a benefit to higher satellite like LAGEOS. EOT08A model has
an average RMS of observation residuals about 0.6 mm larger than the aforementioned
models and 0.4 mm smaller than FES2004 and GOT00.2. EOT08A is based on six dif-
ferent satellite missions and a long time series of observations. The third group contains
two hydrodynamic models with T/P observations, namely FES2004 and GOT00.2. The
RMS of residuals for these models yield 8.41 mm, i.e., it is about 1 mm (12%) worse than
for exclusively T/P based models (CSR3.0 and TOPEX4.0). The CSRC (Schwiderski)
hydrodynamic model is characterized by the largest RMS of the residuals of 8.72 mm.

Omitting completely gravity variations due to ocean tides causes a mean RMS of ob-
servation residuals of 570 mm for LAGEOS (see Table 3.7). The differences between
solutions using different OTM (max. 1.32 mm of RMS) are slightly larger than the dif-
ferences between solutions using different Earth gravity field models (max. 1.16 mm of
RMS). This implies that the modeling of ocean tides is one of the key factors influencing
the quality of satellite orbits.

Table 3.9 shows the result of the orbit comparisons between estimated and predicted
orbits when Helmert transformation parameters are estimated. A classification of all
models into three groups is possible on the basis of S and W components from Table 3.9:
First with RMS in S about 400 mm and inW about 200 mm, containing CSR3.0, CSR4.0A
and TOPEX4.0 i.e., corresponding to the first group when classifying the models according
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Figure 3.5: Comparison between predicted and estimated orbits using different OTM,
mean values for 2008, units: mm.

to RMS. Then, the second group with EOT08A having RMS about 500 mm in S and
260 mm in W . Finally, FES2004, GOT00.2 and the CSRC Schwiderski with the RMS of
S and W predictions at the level of 540 mm and 300 mm, respectively. The R component
does not show any significant differences between compared models.

Figure 3.5 shows the comparison between predicted and estimated orbits without es-
timating Helmert parameters. The direct comparison of orbits (without estimating ro-
tations, translation and a scale) shows even bigger RMS in the S component, implying
some difficulties in establishing the rotation parameters in weekly SLR solutions. On the
other hand, discrepancy of the W component is smaller than the discrepancy of the same
component from Table 3.9.

The largest differences in OTM are between the d/o 10 and 30. LAGEOS orbits are
mostly sensitive to OTM up to d/o 8. Therefore, the older class hydrological OTM
with a poorer spatial resolution as compared to the hydrodynamic models, may possibly
lead to better LAGEOS orbits, provided that they contain good estimates of the low
spherical harmonic coefficients. The larger RMS of residuals in LAGEOS solutions using
hydrodynamic models may be due to some deficiencies in the ”datum definition” of these
models. For lower satellites, e.g., for GRACE (Meyer et al., 2012) the best results can
be achieved using EOT08A and FES2004, due to the satellite orbit sensitivity to the all
tidal constituents, and not only to low degree of OTM.
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Figure 3.6: Empirical orbit parameters in the out-of-plane direction for selected OTM.
Eclipsing period are shaded.

Figure 3.7: Empirical orbit parameters in along-track for selected OTM. Differences w.r.t.
CSR3.0.
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Table 3.9: RMS of observation residuals and comparison between predicted and estimated
7-day LAGEOS orbits (mean values for 2008).

Ocean tide model RMS of Comparison of estimated and predicted orbits
observation including Helmert transformation

residuals Scale RMS of
[mm] [ppb] radial along-track out-of-plane

prediction prediction prediction
[mm] [mm] [mm]

CSR3.0 7.40 30.1 387.7 200.5 -0.10
CSR4.0A 7.41 29.8 398.7 200.4 -0.05

TOPEX 4.0 7.44 30.1 392.9 202.8 -0.10
EOT08A 8.02 30.8 497.2 257.9 0.04
FES2004 8.41 31.1 536.6 299.6 0.17
GOT00.2 8.41 31.2 542.7 303.3 0.15

CSRC Schwiderski 8.72 31.1 553.2 280.9 0.00

3.3.4 Empirical Orbit Parameters

Empirical parameters absorb, to a certain extent, deficiencies in modeling the gravitational
and non-gravitational forces acting on the LAGEOS satellites. Thus, the comparison of
these parameters estimated using different OTM allows us to study the magnitude of
errors still present in particular models.

Empirical Orbit Parameters in the Out-of-Plane Direction

Figure 3.6, top shows WS values in 2008 for LAGEOS-1 and LAGEOS-2. The average
value of WS for LAGEOS-1 is about 5 ·10−10 ms−2, whereas it is negative for LAGEOS−2
and yields about −7 · 10−10 ms−2. The WS series mainly corresponds to variations of C20

in 2008 (see Section 3.2). Figure 3.6 does not show any offsets for one or more OTM
w.r.t. other models, but different variations can easily be noticed between days 105 and
222. In this period, FES2004 and GOT00.2 show bigger amplitudes of variations in
the consecutive weeks than the other models. In case of the LAGEOS-1 satellite, these
variations could be associated with an eclipsing period. In 2008 there is one eclipsing
period for LAGEOS-1 lasting from 110 day till 203 day, which agrees with the periods of
large variations in the FES2004 and GOT00.2 solutions.

The cosine once-per-revolution out-of-plane term (WC , see Figure 3.6, bottom) is very
sensitive to OTM, as opposed to the different Earth gravity field models (cf. Figure 3.3).
The WC is especially sensitive to differences in odd zonal harmonics, e.g., C30, C50. The
differences of OTM are more apparent in case of WC than the WS , because WC is free from
the impact of the variations of C20. The CSR4.0A model shows the smallest amplitude
and a different phase in the WC series (see Figure 3.6, bottom), whereas FES2004 and
EOT08A show large variations in WC for consecutive weeks.
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Table 3.10: Perturbations of LAGEOS orbits due to the ocean tides for degree 2, after Iorio
(2001a). The periods related to the tidal constituents found in the spectral
analysis of empirical orbit parameters are indicated in bold.

Ω of LAGEOS-1 Ω of LAGEOS-2 ω of LAGEOS-2
Period Amplitude Period Amplitude Period Amplitude

Tide [days] [mas] [days] [mas] [days] [mas]
K1 1043.67 156.55 569.21 35.69 569.21 177.76
O1 1043.67 151.02 569.21 34.43 569.21 171.48
P1 221.35 11.49 138.26 3.00 138.26 14.95
Q1 788.90 24.67 690.88 9.03 690.88 44.98
K2 521.83 6.24 284.60 6.24 284.60 5.95
M2 521.83/14.02 75.59 284.60/13.03 75.65 284.60 72.12
S2 280.93 9.45 111.20 6.87 111.20 6.55
N2 449.30 12.93 312.00 16.49 312.00 15.72
T2 158.80 0.28 85.27 0.27 85.27 0.26
Mm 27.55 0.54 27.55 1.00 27.55 0.69
Sa 365.27 20.55 365.27 37.71 365.27 26.17
Mf 13.66 0.62 13.66 1.13 13.66 0.78
Ssa 182.62 5.98 182.62 10.98 182.62 7.62

The perturbing accelerations in the W direction influence the three orbital elements,
defining the orientation of the satellite orbit in the inertial frame: Ω, ω, and i. The
relationships between the Euler angles and the accelerations in W read as (Beutler, 2005):

di

dt
=

r cosu

na2
√

1− e2
Wa, (3.2)

dΩ
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r sinu
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=
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[
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]
− r sinu

na2
√

1− e2 tan i
Wa, (3.4)

where Wa, Ra, Sa denote the accelerations in W,R, S, respectively.
The three equations show that the right ascension of ascending node and the inclination

angle are solely perturbed by forces in W , whereas the argument of perigee is also sensitive
to perturbations in R and S.

Table 3.10 (after Iorio, 2001b) relates the impact of the major ocean tide constituents
to the perturbations of orbital elements: Ω of LAGEOS-1, Ω of LAGEOS-2, and ω of
LAGEOS-2. The ω of LAGEOS-1 is here neglected, because the orbit of LAGEOS-1 is
near-circular, and thus, ω cannot be well established.

The spectral analysis of 10-year LAGEOS solutions using FESS2004 and CSR4.0A
reveals periods clearly referring to the tidal constituents perturbing orbital elements.
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Figure 3.8 shows the amplitudes of Fourier analysis of the WC for LAGEOS-1 (top) and
LAGEOS-2 (bottom). The solution using FES2004 shows peaks around 14.1, 24.8, 28.2,
28.6 days, and the largest peak for 280 days for LAGEOS-1. For LAGEOS-2 the peaks are
for 15.1, 24.8, 26.3, 28.8, 33.5, 86, 111, 137, and 285 days. Most of the peaks refer to the
particular tidal constituents perturbing LAGEOS orbits. The periods of tidal constituents
found in the spectral analysis of WC or other empirical orbit parameters are indicated in
bold in Table 3.10.

The largest peaks in Figure 3.8 equal 280 days and 111 days for LAGEOS-1 and
LAGEOS-2, respectively can be explained by the resonance between the diurnal and
semi-diurnal tides and LAGEOS orbits.

Due to the drift of ascending node Ω̇, which is mainly due to the C20 coefficients, the
time interval between two consecutive passes (in the same direction) of the Sun through
the orbital plane (the so-called draconitic year) can be expressed for LAGEOS-1 (with a
prograde drift of Ω̇L1 = 1050 days) as:

360◦

360◦

365.25 −
360◦

Ω̇L1

days =
365.25 Ω̇L1

365.25− Ω̇L1

days = 560 days. (3.5)

In analogy for LAGEOS-2 (Ω̇L2 = 570 days, retrograde), the draconitic year is equal
222 days. For draconitic years of other geodetic satellites see Table 2.4. The diurnal
tidal constituent S1 imposes orbit perturbations having a period of the draconitic year,
whereas the semi-diurnal constituent S2 imposes orbit perturbations with a period of 1

2
of the draconitic year (the semi-draconitic year). The perturbations due to S2 have the
periods 280 days and 111 days for LAGEOS-1 and LAGEOS-2, respectively. This explains
the peaks found in Figure 3.8.

Figure 3.6 suggests as well that deficiencies in the S2 tide are the main quality limiting
factor for the LAGEOS solutions. This can be, both, due to the deficiencies in the S2

atmospheric tide, or due to the deficiencies in the S2 ocean tide. The atmospheric tides
are, however, much smaller as compared to ocean tides and thus, cannot solely explain
the large orbit perturbations. Atmospheric tides are discussed in detail in Chapter 5. The
differences between amplitudes of peaks in Figure 3.8 suggest that in particular FES2004
contains the S2 tide of inferior quality.

Most of the ocean tide models have largest residuals in the Polar Regions due to the
absence of TOPEX/Poseidon and Jason data. Figure 3.9 shows the residuals of EOT08A
for tidal constituent S2. In the Arctic See and near Antarctica the residuals exceed 5 cm,
whereas from the study in Section 3.3.1 we know that the LAGEOS orbits are sensitive
to the ocean tides larger than 5 mm.

For high-orbiting satellites the semi-draconitic year corresponds exactly to the eclipsing
periods of the satellite orbits (with an exception of satellites in sun-synchronous orbits).
This explains the relation between eclipsing periods and differences in empirical param-
eters found in Figure 3.6. In fact, the differences are not directly due to the eclipsing
seasons, but due to alias with S2 tide, which imposes the orbit perturbations of the same
period as the eclipsing seasons.
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Figure 3.8: Amplitudes of Fourier transform of WC empirical parameter from 10-year
LAGEOS solutions using FESS2004 and CSR4.0A.

Figure 3.9: Residuals of the ocean tide constituent S2 in EOT08A (Savcenko and Bosch,
2008).
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The Figure 3.8, top shows, in addition, a small peak around 285 days for LAGEOS-2
orbit. The residuals of K2 in the Polar Regions exceed 3 cm, whereas the residuals of
M2 are of the order of 5 cm, but only for the shelf areas (Savcenko and Bosch, 2008).
Therefore, the peak of 285 days can be associated with deficiencies in K2, rather than M2,
despite both tides impose the perturbations on LAGEOS satellites of the same period (see
Table 3.10). The uncertainties for these tidal waves significantly exceed the sub-millimeter
sensitivity of LAGEOS orbits to tidal waves found in Section 3.3.1. The perturbations
imposed on LAGEOS-1 orbits due to the K2 and M2 tides have a period of 521.8 days,
thus, an analysis of a longer time series is needed in order to detect these periods with a
sufficient accuracy.

The large peaks from Figure 3.9 of 14.1 and 15.1 days for LAGEOS-1 and LAGEOS-2,
respectively, can be explained by the imposition of the annual tidal signal Sa and the
groundtrack repeatability of satellites. The groundtrack repeatability of LAGEOS-1 is
grL1 = 7d 23h 45min and of LAGEOS-2 grL2 = 8d 22h 58min. The peaks close to 14
days can be explained by overlapping of the groundtrack repeatabilty, Sa, and generated
7-day arcs. The overlapping period for LAGEOS-1 reads as:

2
2π

2π
grL1

+ 7 2π
365.25

= 14.0 days, (3.6)

and for LAGEOS-2:

2
2π

2π
grL2

+ 7 2π
365.25

= 15.1 days. (3.7)

Lemoine et al. (2004) found that the amplitudes of some constituents in FES2004 are
underestimated as compared to those obtained from the LAGEOS multi-year solutions.
The differences in the amplitudes of 18.6-year tide and 9.3-year tide reach even 6000%
and the phases are shifted even by 140◦. Lemoine et al. (2004) found also large differences
in Sa and Ssa, but they can be explained in terms of the mass displacement in the system
Earth. All in all, some of the ocean tide constituents require a further improvement,
because of the large differences of their amplitudes in different OTMs.

In conclusion, the analysis of WC empirical parameter has revealed deficiencies in ocean
tide constituents and substantial differences between OTMs. The largest perturbations
correspond to the S2 tide and the resonance between the Sa tide and the groundtrack
repeatability of LAGEOS orbits. Smaller perturbations due to the K2 tide (alternatively
due to M2) have also been detected.

Empirical Orbit Parameters in the Along-Track Direction

Now the empirical forces in the along-track direction are discussed. The S0 reveals almost
no differences for most of OTM (not shown). The differences in S0 are at the 8·10−13 ms−2

level, therefore, it can be stated that S0 is not significantly affected by different OTM.
Tapley et al. (1993) claim that errors in the odd-degree diurnal and semi-diurnal ocean

tide coefficients determine variability in both the real and imaginary parts of eccentric-
ity excitation, while variability in the odd zonal harmonics causes variations with the
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Table 3.11: Mean RMS of orbit differences for 2008 due to different ocean tide models.
Differences exceeding 8 mm are shown in bold. Units: mm.

CSR40A TOPEX40 EOT08A FES2004 GOT00.2 CSRC
Schwiderski

CSR30 4.5 2.0 10.6 14.6 14.5 13.6
CSR40A - 4.5 8.4 12.2 12.0 12.7

TOPEX40 - - 10.3 14.1 14.1 13.6
EOT08A - - - 7.3 7.5 13.1
FES2004 - - - - 1.6 16.0
GOT00.2 - - - - - 15.8

same spectrum in the real part of the excitation of eccentricity vector. Therefore, bigger
variations in SC parameter are expected, which is related to real part of the excitation
of eccentricity vector. Figure 3.7 shows the series of SC and SS for LAGEOS-1. As
expected, SC demonstrates bigger differences between ocean tide models. Nevertheless,
these differences are more than one order of magnitude smaller than for WS and WC and
smaller than those reported by Tapley et al. (1993).

For the SS variations are smaller than for SC for all models. However, the OTM affect
the along-track empirical parameters only to a very small extent. The major impact of
OTM is reflected in the out-of-plane once-per-revolution parameters.

3.3.5 Orbit Comparison

The orbits based on one OTM are compared with orbits based on all other models. The re-
sults of the direct comparison without estimating the Helmert parameters are presented in
Table 3.11. The OTM based on analysis of satellite altimetry data (CSR3.0, CSR4.0A and
TOPEX4.0) agree very well. Especially, the RMS for the differences between TOPEX4.0
and CSR3.0 is very small i.e., 2.0 mm. There is also an excellent consistency (1.6 mm)
between FES2004 and GOT00.2 (both dynamical models with assimilation from observed
tidal altimeter data). Orbits based on EOT08A are quite similar to those based on
CSR4.0A, FES2004 and GOT00.2 (RMS of 8.4 mm, 7.3 mm, and 7.5 mm, respectively).
Good agreement between orbits based on dynamic OTM and satellite altimetry OTM is
only achieved for EOT08A, which is ’a link’ between these two types of OTM.

The agreement between satellite altimetry OTMs (CSR3.0, CSR4.0A and TOPEX4.0)
and dynamical OTMs (FES2004 and GOT00.2) is rather poor (the RMS is at the level
12-15 mm). The RMS of differences is largest when comparing orbits based on the CSRC
Schwiderski model with other models, i.e., the RMS of 13 mm to OTMs based on satellite
altimetry data, and to 16 mm for other dynamical OTMs.

Chapter 6 of IERS Conventions 2010 (Petit and Luzum, 2011) mentions about a 7 mm
3D-RMS difference of LAGEOS-1 orbits, when using FES2004 and CSR3.0. In this study
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it was found that the orbit difference is even 14.6 mm for 7-day LAGEOS-1 and -2 solu-
tions. However, such a difference strongly depends on the applied orbit parameterization
and the procedure used for orbit comparison, e.g., a direct comparison or a comparison
with the estimation of the Helmert transformation parameters.

3.4 Discussion and Conclusions

Altogether, eleven gravity field models and seven OTM were compared by analyzing the
quality of LAGEOS orbits.

Weekly LAGEOS orbits are sensitive up to d/o 30 of the gravity field model. The
smallest RMS of the SLR observation residuals is achieved with EGM2008, GO-CONS-
2-DIR-R2 and AIUB-GRACE03S when estimating WC/WS parameters. Orbits based
on JGM3 and EGM96 deviate w.r.t. orbits based on other models. A similar effect is
observed for ITG-GRACE2010S when the coefficients of d/o one are not set to zero.
Thus, ITG-GRACE2010S should always be used with S11 = C10 = C11 = 0 (as generally
recommended by the IERS Conventions). The largest RMS of observation residuals is
obtained for AIUB-GRACE03S, when WS and WC are not estimated due to a bad value
of C20. The smallest RMS is obtained for AIUB-CHAMP03S and AIUB-SST-only when
not estimating WS/WC .

The estimation of C20 and its drift based on GRACE K-band only may lead to unreliable
results. The spherical harmonic coefficient C20 and the WS are correlated, implying that
WS absorbs the uncertainty of the C20 value.

All Earth gravity field models from the post-CHAMP era allow generating LAGEOS
orbits of comparable quality. The results from this chapter show that differences between
LAGEOS orbits derived using modern gravity field models are at the mm-level. The
C20 and its variations are exclusively important for the LAGEOS orbits, whereas orbit
differences due to differences in other spherical harmonics are rather small.

In all kinds of tests, the most appropriate OTM for LAGEOS are those based on altime-
try observations from TOPEX/Poseidon (i.e., CSR3.0, TOPEX4.0), or models based on
T/P containing additional observations derived from GRACE and other gravity satellite
missions (i.e., CSR4.0A, EOT08A). Hydrological models supported by T/P (i.e., FES2004
and GOT00.2) show big discrepancies, and the hydrological model based almost uniquely
on coastal tide gauges (i.e., CSRC Schwiderski) shows the largest deviations in most cases.
Even though the differences in OTM are at sub cm-level, they can be detected by LA-
GEOS, because LAGEOS satellites are sensitive to tidal waves bigger than 5 mm, whereas
the errors of some tidal constituents exceed 50 mm in the current models.

The empirical orbit parameters show the smallest variations for CSR3.0, CSR4.0A,
TOPEX4.0 and EOT08A in WS parameter and for CSR4.0A in WC parameter. The
spectral analysis of WC and WS series reveals the deficiencies in the S2 constituent,
especially in the Polar Regions, due to the lack of altimetry data above 66◦N and below
66◦S, and some minor deficiencies in the annual Sa tide, as well.

The tests show that the current OTM have bigger impact on the LAGEOS orbits than
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the current Earth gravity field models (compare Figure 3.10 and Figure 3.11). The mean
differences between solutions using different OTM (max. 1.32 mm of RMS) are larger
than the mean differences between solutions using different Earth gravity field models
(max. 1.16 mm of RMS). Mismodeled values of C20 and other zonal coefficients of the
Earth gravity field of even degree are absorbed by WS to the greatest extent, whereas
deficiencies in amplitudes of tidal constituents are absorbed by WC and WS to the greatest
extent.

The background models have a crucial impact not only on LAGEOS orbits, but also on
all other SLR-derived parameters. In particular, UT1-UTC or LoD are very sensitive to
a priori gravity field and ocean tide models when not estimating WC/WS parameters (see
Figures 3.12 and 3.13). The results from a simultaneous estimation of LoD and gravity
field parameters are discussed in Section 5.5, whereas Section 5.6 is devoted to gravity
field determination using SLR data.

81



3 Gravitational Forces Acting on Geodetic Satellites

Figure 3.10: Differences of observation residuals w.r.t. the solution based on EGM2008.
Standard solution with estimating WC/WS parameters.

Figure 3.11: Differences of observation residuals w.r.t. the solution based on CSR3.0.
Standard solution with estimating WC/WS parameters.
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Figure 3.12: Accumulated value of UT1-UTC w.r.t. IERS-08-C04 series from the LA-
GEOS solution without estimating WC/WS parameters using different grav-
ity field models.

Figure 3.13: Accumulated value of UT1-UTC w.r.t. IERS-08-C04 series from the LA-
GEOS solution without estimating WC/WS parameters using different ocean
tide models.
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4 Non-gravitational Forces Acting on
Geodetic Satellites

Non-gravitational forces depend on the altitude of the satellite and properties of material
the satellite is made of. The accelerations caused by non-gravitational forces are usually
proportional to the area-to-mass ratio coefficient, which is the ratio of the satellite’s cross-
section and the mass of the satellite.

The most important non-gravitational forces acting on geodetic satellites can be divided
into four groups:

• radiation pressure:

– direct solar radiation pressure (see Section 2.2.3):

∗ direct radiation,

∗ umbra and penumbra radiations,

∗ light aberration,

– thermal satellite re-radiation forces (see Section 4.1):

∗ the Yarkovsky effect,

∗ the Yarkovsky-Schach effect,

– Earth radiation pressure (see Section 4.2):

∗ infrared emissivity radiation pressure,

∗ albedo reflectivity radiation pressure,

• atmospheric drag (see Section 4.3):

– drag due to the electrically neutral atmosphere,

– drag due to charged particles,

• thrust due to satellite asymmetricity,

• de-spinning due to interactions with the Earth’s magnetic field.

The forces of the atmospheric drag origin are dominating for satellites at low altitudes.
For satellites at altitude higher than about 2000 km the impact of atmospheric drag is
negligible and the direct solar radiation pressure yields the largest perturbations (see
Section 4.3).
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The thrust related to satellite asymmetricity are caused, e.g., by different materials of
retroreflectors. LAGEOS have four germanium reflectors and 422 reflectors made of fused
silica, having different thermal properties. Because three of four germanium retroreflectors
are situated on one hemisphere, the overall thermal properties are different for both
hemispheres, causing a thrust (Métris et al., 1997). This thrust is, however, very small
and does not play a key role as compared to other non-gravitational forces perturbing
LAGEOS orbits.

The interactions with Earth’s magnetic field cause de-spinning of geodetic satellites
made of metal materials due to the induction of the Lorentz-like forces (see Section 4.1.4,
Kucharski et al. (2007)).

The direct solar radiation pressure is relatively easy to model for spherical geodetic
satellites (see Section 2.2.3). In this Chapter we discuss the impact of the thermal satel-
lite re-radiation forces on LAGEOS’ orbits, the impact of the Earth radiation pressure
on LAGEOS’ orbits, and the impact of the atmospheric drag on low orbiting geodetic
satellites, e.g., Stella, Starlette, and AJISAI.

4.1 Thermal Effects

In 1980, just a few years after the launch of LAGEOS-1, Smith and Dunn (1980) discovered
a decay of the satellite’s semi-major axis of 1.1 mm/day (=40 cm/year). The origin of this
behavior was unknown. The authors originally associated the decay with the drag caused
by residual particles, but it turned out that at the altitude of LAGEOS the atmospheric
density is much lower and cannot evoke such a decay (Rubincam and Weiss, 1986). The
decay of the semi-major axis a is directly related to a force in S, and reads as a Gaussian
first-order perturbation (Beutler, 2005):

da

dt
=

√
p

GM

2a

1− e2

(
e sin vR0 +

p

r
S0

)
, (4.1)

with p - semi-latus rectum, GM - gravitational constant times Earth’s mass, e - orbital
eccentricity, v - true anomaly, r - length of the satellite’s state vector, R0 - perturb-
ing acceleration in the radial direction, S0 - perturbing acceleration in the along-track
direction.

Assuming that the orbit is close to circular (e = 0) the above equation can be simplified:

da

dt
=

2a
5
2

r
√
GM

S0 ≈
2

n
S0, (4.2)

showing that the origin of the decay of semi-major axis must lie in the negative S accel-
eration (n is the mean orbital motion).

In case of LAGEOS-1 the accelerations in the S direction turned out to be change-
able (Rubincam and Weiss, 1986), i.e., these accelerations are always negative outside
the eclipsing periods, but during the eclipses, when a satellite enters the Earth’s shadow,
the accelerations could also be positive. Several authors tried to explain this behavior
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of LAGEOS-1 by, e.g., albedo radiations, but finally the issue was solved in the series
of papers by Rubincam and Weiss (1986), Rubincam et al. (1987), Rubincam (1987),
Afonso (1989), Scharroo et al. (1991), Rubincam (1993), Vokrouhlicky and Farinella
(1995), Farinella et al. (1996), Métris et al. (1997), and Métris et al. (1999).

Today, we know that the decay of the semi-major axis is due to the Yarkovsky effect
(sometimes also called the Yarkovsky-Rubinncam effect) and the Yarkovsky-Schach effect.

In this section we discuss both effects on LAGEOS-1 and -2. The effects are caused
by a difference of the temperature between the hemispheres of the satellite. The thrust
acts always from the hotter hemisphere towards the colder hemisphere and explains the
orbital behavior, depending on the actual orientation of the satellite.

4.1.1 Yarkovsky Effect

The Yarkovsky effect is related to the Earth heating and the subsequent infrared (IR)
reradiation of the heat by the Earth’s surface (Rubincam, 1987). The IR heat is absorbed
by the satellite; therefore one hemisphere of the satellite becomes hotter than the other.
If we assume that the satellite is spinning rapidly around its axis and the rotational
period is much shorter than the revolution period, the distribution of the heat over the
satellite’s surface will differ for its latitude. The heat from the hotter part of the satellite
is reradiated, causing a force (and thus also an acceleration) acting along the spin axis.
The force acts from the hotter hemisphere towards the colder hemisphere of the satellite
(see Figure 4.1, top).

Assuming that there is no thermal inertia results in no net acceleration over one revo-
lution period, because of canceling out the opposite forces in contrary satellite positions
with respect to the Earth. However, the LAGEOS satellites do have thermal inertia.
Moreover, the thermal inertia is different for the aluminum coat of the satellite, for the
silica retro-reflectors, and for the germanium retro-reflectors. The metallic coat cools
down rapidly to the surrounding temperature. Therefore, the silica retro-reflectors are
mainly responsible for generating the thermal inertia, having a delay in the reradiation
of about 30-50 minutes (i.e., 13%-22% of the revolution period of LAGEOS, Rubincam
et al., 1987).

In a realistic case, when a satellite does possess a thermal inertia, the thermal thrust
force, acting upon a satellite, is minimized just after the change of the hemisphere which
is currently heated up, due to the satellite’s orbiting (Appleby, 1998). The force causing
a positive acceleration in S almost vanishes, remaining a negative acceleration acting like
a drag force (Rubincam, 1987).

4.1.2 Yarkovsky-Schach Effect

The Yarkovski-Schach effect is related to the heating of the satellite surface by the direct
solar radiation. When the satellite’s spin period is shorter than the revolution period, the
heat distribution is equal in longitude. But as opposed to the Yarkovsky effect, the same
hemisphere of the satellite is always heated, if we assume that the Sun-satellite direction
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4 Non-gravitational Forces Acting on Geodetic Satellites

Figure 4.1: General concept of the Yarkovsky effect (Top) and the Yarkovsky-Schach
effect (Bottom), adopted version based on Rubincam (1987).
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changes rather slowly w.r.t. the revolution period of the satellite (see Figure 4.1, bottom).
The solar radiation acting upon only one side of the satellite and the subsequent heat
reradiation from the satellite’s surface cause a thermal thrust force in the same direction
over the whole revolution period. This effect causes no-net-acceleration, but gives a
rise to once-per-revolution empirical accelerations. When the satellite enters the Earth’s
(or Moon’s) shadow, during the so-called eclipsing periods, the net-acceleration occurs,
as the source of the force (i.e., the solar heating) disappears. Moreover, if we assume
that satellite has the thermal inertia the temperature of satellite surface decreases after
entering the Earth’s shadow and increases after re-entering into sunlight. The maximum
time for an eclipse is about 40 minutes, which is comparable with the thermal inertia
of LAGEOS. The magnitude of the effect depends, however, on the actual duration of
the eclipse (Appleby, 1998). During short eclipses the satellite does not reradiate the
excessive heat and the effect can be even undetectable. All in all, a force with different
magnitude with respect to illuminated areas acting on the satellite in Earth’s shadow
implies a net-acceleration and gives rise, especially, to the S perturbations.

Whether Yarkovsky-Schach effect acts as a drag or as an accelerating force depends on
the orientation of the spin axis with respect to the Sun (Appleby, 1998).

4.1.3 Empirical Accelerations

In order to investigate the impact of thermal effects on LAGEOS-1 and -2, 17 years
of LAGEOS data were processed for the period 1994.0-2011.0. Figure 4.2 shows the
empirical along-track constant (S0) and once-per-revolution (SC and SS) accelerations
for LAGEOS-1. The eclipsing periods are indicated by red lines. Figure 4.2, top shows
the accelerations for the entire time series, whereas Figure 4.2, bottom shows the values
only for four years (1996.5-2000.5) when the spin period of both LAGEOS was still short,
and thus, the satellite was spinning rapidly.

When analyzing S0 in Figure 4.2, bottom a direct correlation between the sign of the
acceleration and the eclipsing periods is obvious. Outside the eclipsing periods the mean
acceleration in S0 for this period is about −5 · 10−12 ms−2, whereas during the eclipsing
period the acceleration reaches +6 · 10−12 ms−2. The negative acceleration outside the
eclipses proves the existence of the Yarkovsky effect, whereas the acceleration during
eclipses is caused by the Yarkovsky-Schach effect. The overall mean acceleration for the
period 1996.5-2000.5 is −3.1 · 10−12 ms−2, corresponding to a decay of semi-major axis of
34 cm/year (Equation 4.2).

Table 4.1 reveals that about 40% of all weeks contain eclipsing phases for one of the
LAGEOS satellites. During the eclipsing period each LAGEOS satellite enters the Earth’s
shadow six to seven times per day (see Figure 4.3). LAGEOS-1 spends up to 39.2 minutes
in the Earth’s shadow and LAGEOS-2 up to 38.2 minutes, so in total about 260 minutes
during the day, i.e., 18% of the whole day.

The eclipse occurrence of LAGEOS-1 repeats every 280 days after half of the draconitic
year. The eclipsing periods of LAGEOS-2 repeat about every 111 days.

Table 4.1 shows the differences of mean empirical accelerations for weekly solutions
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Figure 4.2: Empirical along-track accelerations of LAGEOS-1 in 1994.0-2011.0 (Top) and
in 1996.5-2000.5 (Bottom). Eclipsing periods are indicated by red lines.
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Table 4.1: Mean empirical along-track accelerations on LAGEOS-1 and LAGEOS-2 for
the time span 1994-2011.

LAGEOS-1 LAGEOS-2
During Outside Overall During Outside Overall
eclipses eclipses eclipses eclipses

Weeks 39% 61% 100% 40% 60% 100%
S0[10−12 ms−2] -0.99 -2.25 -1.75 -1.36 -2.27 -1.91
SS [10−12 ms−2] -2.08 -0.20 -0.94 14.10 -6.86 1.48
SC [10−12 ms−2] -9.69 1.63 -2.83 45.95 8.13 23.19

within the eclipsing periods and outside the eclipsing periods. The S0 accelerations dur-
ing eclipses are about twice smaller than the accelerations outside the eclipsing periods.
The differences for once-per-revolution terms (SS and SC) are even more prominent. It
implies that during the eclipsing periods the Yarkovsky-Schach effect cancels out the S0

accelerations associated with the decay of semi-major axis due to the Yarkovsky effect,
and therefore, during eclipsing periods the decay is smaller than outside the eclipsing
periods.

Figure 4.4, top and 4.4, bottom show the S empirical accelerations of LAGEOS-2
and the spectral analysis of these accelerations. The spectral analysis shows only one
dominating period in SS : the draconitic year of 222 days. Spectral analysis of SC shows
two main periods: the draconitic year and the annual signals. The periodogram of S0

shows five major periods:

• 309 days - drift of the ascending node w.r.t Sun and perigee (drift of the perigee in
ecliptical longitude),

• 222 days - draconitic year (drift of the node w.r.t. Sun),

• 142 days - fourth harmonic of the drift of ascending node (570 days),

• 111 days - eclipsing period (first harmonic of the draconitic year or S2 alias period),

• 15.1 days - related to the groundtrack repeatability of LAGEOS (see Section 3.3.4).

The dominating signal related to the draconitic year is, amongst others, due to the neglect
of the Yarkovsky and the Yarkovsky-Schach effect, due to the neglect of albedo modeling
(see Section 4.2) and due to variations of the solar radiation pressure coefficient CR. The
amplitudes of the 222 day signal are 0.12 · 10−10 ms−2 in SS and 0.10 · 10−10 ms−2 in SC .
The amplitude of annual signal in SC is about twice smaller than the draconitic signal
and yields 0.05 ·10−10 ms−2 in SC . The smaller variations of 309 days can be explained by
the Earth’s albedo (see Section 4.2). The variations in SC and SS are directly related to
the real part and imaginary part of the so-called eccentricity vector excitation Ψ (Deleflie
et al., 2012), which is used for the description of in-orbit satellite perturbations.
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Figure 4.3: Eclipsing periods of LAGEOS-1 and LAGEOS-2.

The SS and SC empirical accelerations of LAGEOS-2 (see Figure 4.4, top) show pure
sine-like variations before 2008. After 2008, the series seems to be much more scatty. A
similar pattern is observed for LAGEOS-1 after 1996 (see Figure 4.2, top). Such a behavior
is related to a spin period of LAGEOS satellites. When discussing the Yarkovsky and
the Yarkovsky-Schach effect, we assumed that the spin period of LAGEOS is sufficiently
short that the distribution of the heat over satellite’s hemispheres is equal. The LAGEOS
satellites are, however, mostly made of metal materials (aluminum shell and a brass
core), so the rotation of the satellite slows down due to the interactions with the Earth’s
magnetic field (Kucharski et al., 2007).

4.1.4 Spin Period

Kucharski et al. (2007) and Kucharski et al. (2009a) determined the spin period of the
LAGEOS satellites using the high-rate kHz SLR observations from the Graz SLR sta-
tion. According to the model described in Kucharski et al. (2009a), the spin period of
LAGEOS−1 was 7.5 min. in 1996 and 54 min. in 2002, thus, longer than the thermal
inertia of 30-50 min.. Nevertheless, neither the method of kHz observations nor the pho-
tometric method can be used after 1998 for the spin period determination of LAGEOS-1,
because of the uncertainty that greatly exceeds the value of the spin period (Kucharski
et al., 2009a).

The last spin period determined for LAGEOS-2 using kHz SLR observations is 721 s

92



4.1 Thermal Effects

Figure 4.4: Top: Empirical along-track accelerations of LAGEOS-2 for 1994.0-2011.0
(eclipsing periods are indicated by red lines).
Bottom: Spectral analysis (module of FFT) of empirical along-track accel-
erations of LAGEOS-2.
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Figure 4.5: Mean semi-major axis of LAGEOS-1 with a linear fit.

(12 min.) in 2007 (Kucharski et al., 2009a). It means that the slowdown of LAGEOS-2
is even rapider than in case of LAGEOS-1.

As already shown, the current description of the Yarkovsky and the Yarkovsky-Schach
effects is not valid for non-rotating satellites. The spin rate has also an impact on the
decay of semi-major axis, because the mean acceleration in along track (S0) changes along
with the slowdown of a satellite. The S0 in the period 1994-1999 has the mean value of
−2.93 · 10−12 ms−2, whereas in the period 2000-2011 the mean value is −1.21 · 10−12 ms−2

(see Figure 4.2, top). Because of the direct relation between the S0 and the decay of
semi-major axis (Equation 4.2), the change of a satellite’s spin rate is recognizable in
the time series analysis of the semi-major axis. LAGEOS-2 was launched 16 years after
LAGEOS-1, thus, the chaotic behavior related to the de-spining process occurred later
for LAGEOS-2 (compare Figure 4.2 and Figure 4.4).

Andrés et al. (2004) developed a LAGEOS Spin Axis Model (LOSSAM) for the evolu-
tion of the spin axis of LAGEOS and the related long-term semi-major axis and eccentric-
ity perturbations. The model takes into account the geomagnetic field, the Earth’s gravity
field and the difference in reflectivity between the satellite hemispheres. Nowadays, be-
cause of the lack of the information concerning the spin period of LAGEOS, LOSSAM can
serve for modeling of thermal effects using only the extrapolation of previously performed
spin observations.

4.1.5 Decay of LAGEOS Semi-Major Axis

Figure 4.5 shows the time series of the mean semi-major axis of LAGEOS-1 with secular
decay estimated as a linear trend. The mean semi-major axis of LAGEOS-1 was obtained
by integrating the osculating semi-major axis, with a 1 second step, over one revolution
period. For LAGEOS-2 a similar result is obtained (thus not shown here).

The estimated value of the secular drift of LAGEOS-1 for the period 1994-2011 is:

∆a1994−2011
L1 = −20.3± 3.5 cm/year, (4.3)
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and for LAGEOS-2:
∆a1994−2011

L2 = −23.9± 3.7 cm/year. (4.4)

Other studies by Rubincam and Weiss (1986), Rubincam (1987), Rubincam (1993),
Afonso (1989), Deleflie et al. (2012) report values of the decay amounting 1.1-1.4 mm/day
(40-51 cm/year). These values are clearly larger than the decay seen in the LAGEOS
solutions from this analysis. These studies assumed, however, the uniform longitudinally
distributed heat over the satellite’s surface as a result of a rapidly spinning satellite, which
is unreliable when studying LAGEOS orbit attitude in the recent years.

The secular decay of LAGEOS-1 for the period when the satellite was still spinning
around its axis is

∆a1994−1999
L1 = −34.1± 4.1 cm/year, (4.5)

whereas for the non-spinning period the derived decay is

∆a2000−2011
L1 = −14.2± 3.8 cm/year. (4.6)

The first value corresponds well to the decay of semi-major axis observed in ’70 and ’80
(40-51 cm/year).

The secular drift of LAGEOS-1 is different for different periods due to the variations of
the along-track accelerations. The accelerations in S0 for the period 2002-2006 oscillate
around zero (see Figure 4.2, top), and therefore, the estimated secular drift for that period
is only ∆a2002−2006

L1 = −3.0± 4.4 cm/year.
Beutler (2005) found that the light aberration may cause a decay of the semi-major

axis on the basis of the theoretical considerations of the solar radiation pressure as a
dissipative force (i.e., a force leading to a loss of energy and angular momentum of the
satellite). The decay of LAGEOS orbit due to the light aberration is ∆a = 0.8 cm/year.
Unfortunately, this effect has not been observed so far, because the orbit decay caused by
the thermal effects exceeds, almost by two orders of magnitude, the orbit decay caused
by the light aberration. Moreover, a distinction between the decay due to the Yarkovsky
effect from the decay due to the light aberration is not possible.

The other possible contributors to the decay of the LAGEOS semi-major axis is the
drag due to energetic charged particles within one of two or three Van Allen radiation
belts. The density of charged particles depends on the Solar and Earth magnetosphere
activity (Rubincam, 1982).

Assuming the constant deceleration in the along-track as in 1994-2011, it is possible to
predict the lifetime of LAGEOS-1 using the Equation 4.1. From this crude extrapolation
LAGEOS-1 will reach the upper atmosphere (1000 km) in 29 million years.
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4.2 Earth Radiation Pressure

The indirect solar radiation pressure reflected or emitted by the Earth’s surface is one of
the most important non-gravitational forces perturbing orbits of geodetic satellites. In
case of LAGEOS this acceleration may exceed 10% of the direct solar radiation pressure
Knocke et al. (1988).

Several years after the launch of LAGEOS-1, strange along-track perturbations of
LAGEOS-1 orbits were found. Initially, many authors associated these perturbations
with the isotropic (Rubincam and Weiss, 1986) and anisotropic Earth reflections (Rubin-
cam et al., 1987). In the one of the latest papers Martin and Rubincam (1996) developed
a sophisticated albedo model and they found that the isotropic Earth reflections can ex-
plain the perturbations of orbital eccentricity vector only to some extent, whereas the
anisotropic reflections have a very small impact on LAGEOS orbits, even in the extreme
case, when the Northern hemisphere consists only of lands and the Southern hemisphere
is fully covered by water.

So far, many publications have discussed the impact of Earth radiation pressure on
LAGEOS orbits. The impact on other SLR-derived parameters has, however, not been
addressed. Here, we analyze the impact of Earth radiation pressure on LAGEOS orbits,
as well as on the estimation of station coordinates, global scale, ERPs, and geocenter
coordinates. We consider independently two forces of different origins:

• Visible Earth radiation pressure, i.e. indirect solar radiation pressure reflected by
the Earth’s surface (hereinafter called albedo reflectivity),

• Infrared Earth radiation pressure, i.e., emission of the solar energy absorbed and
emitted by the Earth in the form of thermal radiation (hereinafter called emissivity).

The general concept of the impact of the Earth radiation pressure on LAGEOS is shown
in Figure 4.6.

A mathematical model of Earth radiation pressure is used as developed by Knocke
et al. (1988) and implemented by Rodriguez-Solano et al. (2012) for GNSS satellites.
This model considers the infrared emissivity and the albedo reflectivity as purely diffusive,
like a Lambertian sphere. The model assumes that the specular reflections have nearly
a negligible impact on satellite orbits, which was confirmed by Martin and Rubincam
(1996) for the LAGEOS satellites.

Three assumptions for Earth radiation pressure are considered (Rodriguez-Solano et al.,
2012):

1. the Earth has the same reflective properties as a Lambertian sphere (the specularity
from the oceans is neglected),

2. the radiation is reflected or emitted by the Earth’s surface or the surface of the
highest clouds,

3. all energy received by the Earth from the Sun has to leave it (i.e., there is a global
conservation of energy).
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Figure 4.6: General concept of the albedo reflectivity (Top) and the infrared emissivity
(Bottom) (not to scale).
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Figure 4.7: Left: Global map of mean albedo reflectivity in April from CERES.
Right: Global map of mean infrared emissivity in April from CERES in grids
of resolution 2.5◦ x 2.5◦.

We make use of the monthly global maps of the Earth albedo reflectivity and the
infrared emissivity from the Clouds and the Earth’s Radiant Energy System (CERES,
Wielicki et al., 1996). Figure 4.7 shows the example of monthly mean values of the albedo
reflectivity and the infrared emissivity in grids of resolution 2.5◦ x 2.5◦. The largest Earth
albedo reflectivity is found in the Polar Regions, whereas the largest infrared emissivity
can be found in the tropic areas. In total, more than 60% of Earth radiation pressure is
due to the infrared emissivity.

The total Earth radiation pressure acting upon a satellite is an integral over all surface
elements providing the irradiance. The irradiance of a single surface element depends
on the surface radiance properties, from the monthly albedo reflectivity and infrared
emissivity maps, and the solar irradiance energy received by a surface element. In this
study, we assume the geodetic satellites to be uniform cannonballs. The impact of Earth
radiation pressure on satellites is characterized by two parameters: the area-to-mass ratio
A
m and radiation pressure coefficient CR = 1+ 4

9δ, where δ is a diffusion coefficient (diffusely
reflected fractions). Both of them are proportional to the non-gravitational accelerations
acting upon a satellite. The acceleration acting on a satellite Aa reads then as:
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, (4.7)

with:

• au - astronomical unit,

• ro - distance between Earth and Sun,

• S - solar constant,

98



4.2 Earth Radiation Pressure

• c - speed of light,

• ae - mean Earth radius,

• r - geocentric position of a satellite,

• rs - geocentric position of a surface element,

• φ - latitude of a surface element,

• λ - longitude of a surface element,

• αv,φ,λ - coefficient of reflectivity of a surface element,

• αIR,φ,λ - coefficient of emissivity of a surface element,

• Co - coefficient characterizing illuminated surface area (Co = 1) or the surface area
in shadow (Co = 0),

• δv - satellite diffusion coefficient for the visible radiance,

• δIR - satellite diffusion coefficient for the infrared radiance,

• zo - zenith distance of the Sun w.r.t. surface element.

• σ - area of a surface element.

Here, we assume that the diffusion coefficient of the satellite has the same value for
direct solar radiation pressure, the albedo reflectivity, and the infrared emissivity, namely
for LAGEOS-1 and -2:

CR = 1 +
4

9
δv =

1

4
+

1

9
δIR = 1.13. (4.8)

4.2.1 Description of the Solutions

To evaluate the impact of Earth radiation pressure on LAGEOS solutions four years of
SLR data are processed (2008.0-2012.0). The modeling applied is identical to that from
Table 3.1 with the exception of the definition of indirect radiation pressure.

Four independent LAGEOS solutions are processed (see Table 4.2): without concerning
the Earth radiation pressure (solution 1), with the infrared emissivity (solution 2), with
the albedo reflectivity (solution 3), and with both effects (solution 4).

4.2.2 A Priori Accelerations - Theory

From the theoretical considerations of Earth radiation pressure, assuming circular satel-
lite orbits, the approximated perturbations due to the albedo reflectivity decomposed
into R,S,W system, derived analogously to (Beutler, 2005) for the direct solar radiation
pressure, read as:
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Table 4.2: List of Solutions processed for validating the Earth radiation pressure.

Infrared emissivity Albedo reflectivity
Solution 1 NO NO
Solution 2 YES NO
Solution 3 NO YES
Solution 4 YES YES

R
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where K =
√

cos2 βo sin2 ∆u+ sin2 βo. The approximated perturbations due to the in-
frared emissivity decomposed into R,S,W system read as:R
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where rsr = |r − rs| is a relative distance between surface element and a satellite, and
cos zs is a zenith distance of a satellite w.r.t. a surface element.

The variations of the distance between Sun and Earth are neglected here. The Equa-
tion 4.9 explains the maximum impact of the albedo reflectivity in the radial direction,
for which R and zo are almost parallel, whereas S and zo or W and zo are close to per-
pendicular vectors (in particular for high orbiting satellites). The impact of the infrared
emissivity does not depend on the actual position of the Sun and affects the circular orbits
only in R (see Equation 4.10).

4.2.3 A Priori Accelerations - Applied Corrections

The a priori applied accelerations on LAGEOS-2 are presented in Figure 4.8 and Figure 4.9
in the Sun-oriented reference frame (β0,∆u). The numerical values of Earth radiation
pressure accelerations were taken using the monthly CERES data to generate these figures.
Therefore, the values of close neighboring points may vary as the real acceleration depends
not only on the relative Sun-Earth-satellite configuration, but also on the time of the
year and the actual satellite along-track direction. Figure 4.8 and Figure 4.9 show the
accelerations of four calendar years, corresponding to 6.58 draconitic years of LAGEOS-2.

Figure 4.8, left shows the acceleration on LAGEOS-2 in R due to the albedo reflectivity.
The maximum value of acceleration is obtained when β0 and ∆u are close to zero. It
corresponds to the situation when the satellite is between Sun and Earth. Then, the
maximum solar energy is reflected by the Earth’s surface. When ∆u is smaller than
−90◦ or greater than +90◦ the acceleration due to reflectivity is smallest, because the
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4.2 Earth Radiation Pressure

Figure 4.8: Acceleration due to the albedo reflectivity (left) and the albedo reflectiv-
ity and emissivity (right) in the radial direction on LAGEOS-2 in the Sun-
oriented frame. Units: ms−2.

Figure 4.9: Acceleration due to the albedo reflectivity and the infrared emissivity in the
along-track (left) and out-of-plane (right) directions on LAGEOS-2 in the
Sun-oriented frame. Units: ms−2.

illuminated part of Earth’s surface cannot be seen from the satellite. The maximum
acceleration in the radial direction due to the reflectivity is 2.8 · 10−10 ms−2.

Figure 4.8, right shows the acceleration on LAGEOS-2 inR due to the albedo reflectivity
and emissivity. Figure 4.8, right shows similar pattern as Figure 4.8 left, but the acceler-
ation is more uniform. The acceleration due to both effects is 1.6 · 10−10 ms−2, whereas
the maximum acceleration is 4.4 · 10−10 ms−2. It suggests that the infrared emissivity
imposes a rather constant acceleration in R, regardless of the relative Sun-Earth-satellite
configuration. The Earth radiation pressure in R acts always as a positive acceleration,
even if the satellite remains in the Earth’s shadow, because the Earth’s surface emits the
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thermal irradiation regardless the direct solar illumination.
Figures 4.8, left and right agree well with the theoretical accelerations from the Equation

4.9, implying the maximum albedo accelerations in R for βo = ∆u = 0 and there are
almost no accelerations for βo = ±90◦.

The maximum acceleration due to the Earth radiation pressure inR, i.e., 4.4·10−10 ms−2,
corresponds to about 15% of the direct solar radiation, i.e., 32 · 10−10 ms−2. The mean
overall acceleration on LAGEOS is about 2.8 · 10−10 ms−2, i.e., 8.8% of the direct solar
radiation pressure.

Comparing the impact of Earth radiation pressure on LAGEOS with the impact on
GPS satellites we found that the acceleration on LAGEOS is five times smaller than on
GPS satellites: The acceleration in the radial direction ranges between 4.0 · 10−10 ms−2

and 22.0 · 10−10 ms−2 for GPS (Rodriguez-Solano et al., 2012). On one hand the cross-
section of GPS is much larger, especially due to solar panels, but on the other hand, the
altitude of LAGEOS is lower by more than factor of three.

The accelerations due to the Earth radiation pressure on LAGEOS-2 in S and W are
presented in Figure 4.9 left and right, respectively. Combined effects of reflectivity and
emissivity are only presented, since the constituent of the infrared emissivity contributes
solely to the perturbations in R.

The order of magnitude of the accelerations in S and W is a factor of about fourteen
smaller than in R. The acceleration may, however, be positive or negative and varies
between −0.3 · 10−10 ms−2 and +0.3 · 10−10 ms−2.

The acceleration in S has two extrema depending on ∆u: The minimum is for ∆u =
−70◦ and maximum for ∆u = +70◦. The satellite always revolves from the left hand
side of the figure to the right hand side. It means that the satellite faces a maximum
negative acceleration (deceleration) in S just before crossing the line joining the Sun
and the Earth. The maximum positive acceleration in S is 70◦ after crossing the line
Sun-Earth by a satellite. The value of the acceleration is similar for all β0 in the range
−60◦ < β0 < +60◦. Since the once-per-rev empirical orbit parameters are estimated in S,
the presented accelerations must have an essential impact on the sine and cosine empirical
parameters.

In W two extrema can also be found (see Figure 4.9, right), but depending on βo instead
of ∆u. The extremum is within the range −120◦ < ∆u < +120◦, suggesting an impact
on estimated once-per-rev terms in W . When βo is largest the deceleration is also largest,
whereas for maximum negative values of β0 the maximum values of positive accelerations
are obtained. Such a type of an acceleration gives rise to perturbations with period of
draconitic (or semi-draconitic) year.

The a priori accelerations is S and W are also well described by the Equation 4.9.
The accelerations in S depend on the ∆u, whereas the accelerations in W are almost
independent of ∆u. The lack of the perturbations for ∆u < −120◦ and ∆u > 120◦ can
be explained by the Co cos zo, which ’switches off’ the albedo reflectivity perturbations
when the illuminated side of the Earth is not seen from the satellite. Therefore, only
one maximum is visible in R, instead of two maxima, as the factor cosβo cos ∆u would
suggest.
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The Equation 4.9 shows that in R and S the short term perturbations due to ∆u are
expected, whereas in W the long-term perturbations due to βo should be dominating.

4.2.4 Empirical Orbit Parameters

The impact of Earth irradiance on empirical orbit parameters is hereinafter assessed.
Figure 4.10, top shows the differences of the empirical along-track parameters (S0, SC ,
and SS) due to the infrared emissivity (solution 2 − solution 1, magenta), the albedo
reflectivity (solution 3 − solution 1, blue), and the combined both effects (solution 4 −
solution 1, green). The dominating effect is due to the albedo reflectivity. The impact of
the infrared emissivity is about ten times smaller for S0 and SC and almost negligible for
SS .

Martin and Rubincam (1996) found that the maximum acceleration due to the albedo
in the along-track (S0) for LAGEOS satellites would have an amplitude of 0.5·10−12 ms−2.
Vokrouhlicky and Farinella (1995) found a maximum amplitude in S0 of 1.0 · 10−12 ms−2.
We found a value consistent with the results of Vokrouhlicky and Farinella (1995), even
though the authors associated this acceleration with the specularly reflected radiation on
the oceans that is neglected in our study, because we consider only diffuse reflection.

The amplitude of empirical acceleration differences in SC and SS are about 5.0 ·
10−11 ms−2, i.e., 50 times larger than in S0, and about twice the a priori accelerations in
S. It implies that other accelerations must amplify the estimated empirical accelerations
in S. E.g., the largest impact of the Earth irradiance is in R, but no empirical accelera-
tions are estimated in R. Therefore, some part of the force can be accumulated by other
parameters.

The periods of differences in empirical along-track parameters are different despite all
parameters describe accelerations in the same direction. Figure 4.10, bottom shows the
spectral analysis of absolute accelerations in S0, SC , and SS for solutions 1−4. In S0 the
peak around the period of 300 days is remarkably reduced, by about 2

3 of initial value,
when applying the albedo reflectivity. The period of 309 days corresponds to an ecliptical
longitude revolution period of LAGEOS-2 perigee.

The spectral analysis of SS reveals one dominating period of 222 days, corresponding to
a drift of ascending node w.r.t. the Sun (draconitic year of LAGEOS-2), whereas SC shows
two periods: of 222 days (draconitic year) and 365 days (tropic year). The amplitudes of
all dominating signals are reduced by about 20-25% in solutions 3 and 4, mostly due to
modeling of the albedo reflectivity.

Martin and Rubincam (1996) found that the albedo may explain about 20% of anoma-
lous behavior in eccentricity excitation vector and thus, also with SS and SC , which is
consistent with our findings. Métris et al. (1997) associates the reduction of the eccen-
tricity excitations solely with the asymmetric albedo reflectance of Earth’s hemispheres.
The remaining signals are due to the neglected thermal effects, i.e., the Yarkovsky and
the Yarkovsky-Schach effects (see Chapter 4.1) and due to differences in the a priori
value of the solar radiation pressure coefficient CR. The remaining signals seem to
be still large, thus, the CR values were calculated in a separate solution, As a result,
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Figure 4.10: Top: Differences of empirical orbit parameters in along-track from solu-
tions 2−4 w.r.t. solution 1 for LAGEOS-2. For LAGEOS-1 a similar figure
was obtained.
Bottom: Spectral analysis of absolute values of empirical orbit parameters
in along-track from solution 1−4 for LAGEOS-2.
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Figure 4.11: Differences of empirical orbit parameters in out-of-plane from solutions 2−4
w.r.t. solution 1 for LAGEOS-2.

we found a significant difference between a priori and calculated CR for LAGEOS-2
(CL2

R = 1.094± 0.012), whereas for LAGEOS-1 the calculated CR agrees with the a priori
value (CR L1 = 1.125 ± 0.015). Two LAGEOS satellites have, thus, different reflection
properties. For details see Appendix B.

The empirical once-per-rev accelerations in W due to the Earth radiation pressure are
much smaller, as compared to accelerations of the gravitational origin (see Figure 4.11).
The differences are 4.0 · 10−11 ms−2 and 1.0 · 10−11 ms−2 at maximum for WS and WC ,
respectively, and thus they have a comparable order of magnitude to the albedo-induced
variations in SS and SC . The estimated accelerations are in good agreement with the
a priori accelerations. The accelerations in WS due to C20 reach 3.0 · 10−9 ms−2 (see
Chapter 3.2.4). Therefore, albedo is responsible of about 1% of overall accelerations in
WS .

The spectral analysis of differences of WS/WC shows a dominating period of 111 days.
This period corresponds to the half of draconitic year of LAGEOS-2, to a mean eclipsing
period of LAGEOS-2, and to the alias period of LAGEOS-2 with the S2 tide. It confirms
the theoretical assumptions from Section 4.2.3.

4.2.5 Orbital Elements

From theoretical assumptions we know that Earth radiation pressure introduces a positive
acceleration in the radial direction. We know that the satellites are subject to the third
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Kepler’s law of motion, reading n2a3 = GM (Beutler, 2005), where n is a mean motion
of a satellite.

In our solution the gravitational constant (GM) is fixed and the mean motion of the
satellite n is defined by the fixed epochs of SLR observations. Following the theoretical
assumptions of Hugentobler (2008), a reduction of the semi-major axis ∆a by a radial
accelerations is associated with a change in GM :

n2a′3 = GM ′, with a′ = a+ ∆a. (4.11)

The acceleration in the radial direction is equivalent to a change in GM . Following
Hugentobler (2008), the total acceleration r̈tot which determines the orbital motion of the
satellite, expressed as a sum of the gravitational acceleration of the Earth GM

a2
and the

additional acceleration in the radial direction R0, reads as:

|r̈tot| =
GM

a2
−R0 =

GM ′

a2
, (4.12)

which corresponds to a reduction of the semi-major axis a of (Hugentobler, 2008):

∆a =

(
3

√
1− a2R0

GM
− 1

)
a ≈ −1

3

a3R0

GM
. (4.13)

Indeed, Figure 4.12 shows a reduction of the osculating semi-major axis due to the
modeling of infrared emissivity of 1 mm, and due to the modeling of albedo reflectivity
from 0 mm to 1 mm (0.5 mm on average). In total, orbits of both LAGEOS are lowered
due to the Earth radiation pressure by about 1.5 mm. It should be noted that, as opposed
to empirical orbit parameters, the perturbations due to the infrared emissivity dominate
for the semi-major axis.

However, according to Equation 4.13, a mean radial acceleration of 2.8 · 10−10 ms−2,
i.e., a mean impact of the Earth radiation pressure on LAGEOS, causes a difference in
semi-major axis of 0.4 mm. The empirically derived value of this difference is four times
larger. In Equation 4.11 it was assumed (as followed by Hugentobler, 2008) that the
mean motion is not affected. Actually both perturbations, in the radial and in the along-
track directions, have an impact on the mean motion of a satellite according to first-order
perturbation theory (Beutler, 2005):

nc = n+
1− e2

nae

[(
cos v − 2e

r

p

)
R0 −

(
1− r

p

)
sin vS0

]
, (4.14)

with n - the unperturbed mean motion, nc - the perturbed mean motion, p - semi-latus
rectum, and v - true anomaly.

Assuming that e = 0 and r = a and considering only the dominating albedo perturba-
tions in the radial direction, we may simplify the Equation 4.14:

nc = n− 2

na
R0. (4.15)
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Taking the partial derivatives of the Kepler’s third law to get the effect a change of the
mean motion n and the semi-major axis a, we obtain:

∆n

n
= −3

2

∆a

a
. (4.16)

Considering that both n and a are changed due to a radial acceleration and assuming
that ∆n = 2

naR0, the final change in a reads as:

∆a = −4

3

a3R0

GM
. (4.17)

This equation entirely explains the observed change in the LAGEOS semi-major axis.
Assuming a radial acceleration of 2.8 · 10−10 ms−2 the resulting ∆a is −1.6 mm, which
agrees very well with the observed differences. The only difference w.r.t. Equation 4.13 is
for the constant factor, i.e., 4 instead of 1.

Hugentobler (2008) derived Equation 4.13 when studying the impact of relativity effects
on satellite orbits, claiming, e.g., that the reduction of the semi-major axis of all satellites
due to the Schwarzschild term is 4.4 mm. However, the reduction is a factor of 4 larger,
i.e., 17.7 mm when fixing the scale and not estimating empirical accelerations in R0. The
impact of the Lense-Thirring and the geodetic precession are as well underestimated by
a factor of 4 in Hugentobler (2008) for typical SLR and GNSS solutions (for details see
Appendix A). These underestimated quantities were repeated by, e.g., Combrinck (2013)
and in Chapter 10.3 of the IERS Conventions 2010 (Petit and Luzum, 2011).

In our solutions the value of GM is fixed to the value recommended by the IERS
Conventions. Thus, the impact of a radial acceleration R0 affects a and n. Now, assuming
that the value GM is estimated, its value would be changed by:

∆GM = −a2R0. (4.18)

Nowadays, the most accurate value of GM is derived from analyses of LAGEOS orbits
(Dunn et al., 1999). When estimating GM , the constant acceleration in the radial direc-
tion of 4.4 · 10−10 ms−2 (see Chapter 4.2.3) has an impact on GM of 2.7 · 105 m3s−2, so it
is of the same order as the accuracy of currently adopted value in the IERS Conventions
2010 (8.0 · 105 m3s−2). It implies that the Earth radiation pressure should be carefully
handled if GM is to be derived from the SLR observations.

The remaining osculating orbital parameters show insignificant differences. The varia-
tions of the mean motion affect the argument of latitude, whose the dominating period
of variations corresponds to the dominating period found in the empirical parameter S0,
i.e., 309 days.

4.2.6 Orbit Comparison

Comparing the orbits derived in solutions 1−4 we found that the mean orbit difference due
to the infrared emissivity and the albedo reflectivity is 1.2 mm and 2.8 mm, respectively.
Both forces cause the orbit translations up to 1 mm in X, Y, and Z. Earth radiation
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Table 4.3: RMS of observation residuals and the comparison between estimated and pre-
duicted orbits. Units: mm.

RMS of obs. Comparison between predicted
residuals and estimated orbits

Radial Along-track Out-of-plane
Solution 1 10.724 43.4 835.5 597.7
Solution 2 10.726 43.4 835.7 597.9
Solution 3 10.716 42.8 834.0 595.5
Solution 4 10.721 42.8 834.5 595.8

pressure also implies orbit rotations around the Z axis of the amplitude up to 0.5 mas.
The orbit rotations around X and Y axis do not exceed 0.02 mas, so they are negligible.

The comparison between predicted end estimated orbits (see Table 4.3) shows a small
improvement due to the albedo reflectivity amounting to 0.6 mm, 1.5 mm, and 2.2 mm
in the R, S, and W directions, respectively, and a minor degradation of the prediction
due to the infrared emissivity of 0.2 mm in S and W . The emissivity has no impact on
the predictions in R.

4.2.7 RMS of Residuals

Table 4.3 shows the mean value of RMS of observation residuals for solutions 1−4. The
differences of the RMS are at the level of hundredths of a millimeter, suggesting a minor
and statistically insignificant impact of the Earth radiation pressure modeling on obser-
vation residuals. However, applying the albedo reflectivity slightly reduces the value of a
mean RMS (solution 3 and solution 4), whereas the infrared emissivity can insignificantly
increase the RMS (solution 2).

4.2.8 Impact on Station Coordinates

Figure 4.13, top shows the differences in time series of SLR station coordinates. The
station height, North, and East components for Mount Stromlo in Australia are presented
as an example of the SLR fiducial stations, for which no range bias is estimated.

Figure 4.13, bottom shows a minor impact of the Earth radiation pressure on the
horizontal components. The differences are within the range of ±0.2 mm. It is much
less than in case of GPS solutions, where the differences due to the modeling of the
Earth radiation pressure reach −1.0 mm in the North component for stations in the
Antarctica (Rodriguez-Solano et al., 2012). The impact is evident for the station heights:
the up component is systematically shifted by −0.2 mm due to the infrared emissivity
and −0.4 mm due to the albedo reflectivity. The total shift of the height component is on
average −0.6 mm for SLR stations in the tropic areas. For SLR stations located in the
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Figure 4.12: Differences of the LAGEOS-2 semi-major axis due to the Earth radiation
pressure. The same effect was obtained for LAGEOS-1 (not shown here).

middle latitudes, e.g., for European SLR stations, the total shift of the height component
is slightly smaller, i.e., −0.4 mm on average.

The mean reduction of the station heights corresponds approximately to a half of the
value of the LAGEOS-1/2 semi-major axes’ lowering (−1.5 mm), which is related to
the ratio between the Earth radius (6.378 km) and the semi-major axis of LAGEOS
(∼12.158 km). This relation is not, however, straightforward, because the largest reduc-
tion of the semi-major axis is due to the infrared emissivity (−1.0 mm), whereas the
emissivity causes the reduction of station heights only of −0.2 mm. The reduction of the
semi-major axis due to the albedo reflectivity is twice smaller than the emissivity, whereas
the reduction of the station heights is twice larger. It implies that the emissivity has to
be absorbed by other parameters and not solely by the station height component.

Figure 4.13, bottom shows the differences of station coordinate time series for Wettzell
in Germany. The horizontal components do not show any systematic differences in the
solutions 1−4, whereas the height component shows a systematic shift, similar to Mount
Stromlo, due to the infrared emissivity and the albedo reflectivity, but only untill January
2009. After January 2009 the systematic differences between solutions are not distinguish-
able, but the scatter of the height component is significantly increased. It related to the
estimation of the range bias. Before January 2009 no range bias is estimated for Wettzell,
whereas after January 2009 one weekly range bias for each LAGEOS is solved for. The
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Figure 4.13: Time series of differences of station coordinates between solution 1 and
solutions 2−4 for Top: Mount Stromlo (Australia) Bottom: Wettzell
(Germany).
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impact of the Earth radiation pressure on station coordinates is accumulated in the weekly
time series of estimated range biases (see Figure 4.14), whereas the height component re-
mains almost unaffected. The estimation of range biases, thus, accounts for the neglected
Earth radiation pressure modeling.

4.2.9 Impact on Scale

The global scale can be assessed in two ways:

• dynamic scale - defined as GM (e.g., derived from SLR observations to LAGEOS),

• geometric scale - defined as a parameter from the Helmert similarity transformation
of the network of ground stations (e.g., derived from the ILRS network).

The concept of the geometric scale is usually considered when discussing the scale of the
reference frame. The theoretical impact of the Earth radiation pressure on the dynamic
scale was already discussed in Section 4.2.5. Now, the differences of the geometric scale
are addressed.

Figure 4.15 shows the difference between the geometric scale in the solution without
applying the Earth radiation pressure and solutions with the models applied. The infrared
emissivity imposes a scale difference of 0.05 ppb, whereas the albedo reflectivity imposes
an additional scale difference of 0.02 ppb. The total difference of 0.07 ppb corresponds to
a reduction of network size of 0.5 mm w.r.t. the Earth’s radius. Taking into account also
sub-mm effects is necessary in order to achieve the GGOS’s aim of 1 mm network stability.
The disagreement between SLR and VLBI-derived scale in ITRF2008 is at the level of
8 mm, thus, neglecting the modeling of the Earth radiation pressure may be responsible
for 6% of the total SLR-VLBI scale differences.

Rodriguez-Solano et al. (2012) found that the impact of the Earth radiation pressure
on the scale derived from the GPS network is 0.14 ppb, corresponding to a uniform height
shift of 0.9 mm. It shows that the scale derived from SLR observations of LAGEOS is
twice less affected by a neglect of the Earth radiation pressure than the GPS-derived
scale. This can be explained by five times larger impact on GPS satellites, due to a larger
area-to-mass ratio (see Section 4.2.3), and on the other hand, by much higher altitude of
GPS satellites as compared to LAGEOS.

4.2.10 Impact on ERPs

Table 4.4 shows the mean biases and mean weighted RMS of the pole coordinates and LoD
w.r.t. IERS-08-C04 series for 12:00h UTC of every day. The differences in weighted RMS
are far below 1 µas and 1 µs for the polar motion and LoD, respectively. Only the mean
bias in Y pole coordinate is slightly reduced by 1.7 µas in the solution 2 (with the infrared
emissivity) w.r.t. solution 1 (without the Earth radiation pressure). The neglect of the
Earth radiation pressure does not necessarily degrade the SLR-derived ERPs, because of
the small area-to-mass ratio of LAGEOS satellites. In GPS solutions, the neglect of the
Earth radiation pressure causes the variations in LoD with the amplitude of 10 µs and
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Figure 4.14: Differences of the range biases from solution 1 and solutions 2−4 for Wettzell.

Figure 4.15: Differences of the geometric scale derived from solutions 2-4 w.r.t. solution 1.
All SLR stations are udes for the Helmert transformation.

Figure 4.16: Differences of the geocenter coordinates derived from solutions 2-4 w.r.t.
solution 1.
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Table 4.4: Impact of the Earth radiation pressure modeling on Earth rotation parameters.

Mean bias Weighted RMS
X pole Y pole LoD X pole Y pole LoD
[µas] [µas] [µs] [µas] [µas] [µs]

Comparison with IERS-08-C04
Solution 1 29.9 22.2 0.85 190.7 209.5 38.69
Solution 2 29.2 20.5 0.80 190.5 209.3 38.71
Solution 3 30.1 22.6 0.80 190.7 209.6 38.69
Solution 4 29.2 21.2 0.75 190.5 209.4 38.70

Comparison between different solutions
Sol1-Sol2 -0.3 -0.2 -0.04 4.7 5.4 0.39
Sol1-Sol3 0.6 0.5 0.05 4.7 5.3 0.38
Sol1-Sol4 0.1 0.4 -0.01 2.9 3.1 0.29

a period of 350 days, corresponding to a draconitic year of GPS satellites (Rodriguez-
Solano et al., 2012). In case of LAGEOS-derived ERPs, the variations of LoD do not
exceed 0.4 µs and they do not show a relation to the draconitic years of LAGEOS-1 or
LAGEOS-2.

The differences of ERPs derived from solutions with both effect applied and without
modeling of Earth radiation pressure (sol1-sol4) are smaller than the differences between
solution 1 and with only one effect applied, i.e., solution 2 or solution 3. This implies
that the albedo reflectivity and infrared emissivity have somehow opposite impacts on the
EPRs estimates.

4.2.11 Impact on Geocenter Coordinates

The forces due to the Earth radiation have an impact on the estimation of geocenter
coordinates, because they impose a systematic shift in the height station component
and most of the SLR stations are located in the northern hemisphere. Figure 4.16 shows,
however, only a minor impact. The x and y geocenter coordinates are affected by 0.1 mm,
whereas the z coordinate shows maximum variations of about 0.5 mm. The differences in
the z geocenter coordinate between solution 4 and solution 1 are usually positive, which
implies a small systematic shift of the geocenter. In total, the amplitude of annual signal
of z geocenter coordinate is reduced by only 0.08 mm. However, even a small systematic
shift in SLR-derived geocenter coordinates has an essential impact on the origin of ITRF.

The GPS-derived geocenter coordinates show variations due to the different Earth ra-
diation pressure modeling up to 1.5 mm (Rodriguez-Solano et al., 2012), namely, a factor
of three larger than in case of LAGEOS satellites.
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4.3 Atmospheric Drag

The drag due to the neutral and charged atmosphere particles is a dominating dissipative
force for low orbiting satellites. The atmospheric drag leads to a loss of energy in essence
represented by a reduction of the satellite’s semi-major axis a.

The upper atmosphere consists of the thermosphere beginning at the altitude of 95-
120 km and the exosphere beginning at the altitude of 500-1000 km. The boundaries
between the layers vary depending on solar activity, but in general, the low geodetic
satellites orbit in the exosphere for the most of time. The main gases in the Earth’s
upper atmosphere are the lightest atmospheric gases, mainly: hydrogen, helium, and
atomic oxygen. In the exosphere there are negligible atomic and molecular collisions
between the particles and the constituent atoms are on purely ballistic trajectories.

Assuming the laminar air currents, and that the atmosphere is co-rotating with the
Earth, and neglecting thermal motion of molecules, the acceleration due to the atmo-
spheric drag can be expressed as (Beutler, 2005):

aD = −CD
2
ρ(h,T,λ,φ,F10.7,Ap)

A

m
ṙ′2

ṙ′

|ṙ′|
, (4.19)

where:

• CD - scaling factor (CD=2 for spherical satellites and unbiased atmospheric density
models),

• ρ(h,T,λ,φ,F10.7,Ap) - density of the atmosphere,

• A
m - area-to-mass (cross-section-to-mass) ratio,

• ṙ′ - a relative velocity of the satellite with respect to the rotating atmosphere.

The density of the atmosphere ρ is a complex function of many constituents. E.g.,
the MSISe-90 (Mass Spectrometer and Incoherent Scatter extended) model (Hedin, 1991)
and its successor NRLMSIS-00 (Picone et al., 2002), the empirical atmospheric density
models, allow estimating the atmospheric density as a function of:

• r - the height over the Earth’s surface,

• T - time of the day (solar time) and the day of the year,

• λ, φ - geographical longitude and latitude,

• F10.7 - solar flux (penticton 2800 MHz corresponding to 10.7 cm),

• Ap - geomagnetic index.

Figure 4.17, left shows the atmospheric density as a function of the solar flux index F10.7

for the orbit altitudes of Stella and AJISAI from the NRLMSIS-00 model. The solar flux
index F10.7 depends on the phase of the 11-year cycle of solar activity. The figure shows
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Figure 4.17: Left: Atmospheric density as a function of solar flux index F10.7 for the al-
titude of Stella and AJISAI according to the NRLMSIS-00 model.
Right: Relation between the atmospheric density and the satellite alti-
tude for low solar activity (F10.7=80 and Ap=15) and high solar activity
(F10.7=250 and Ap=40) according to the NRLMSIS-00 model.

that the difference of atmospheric density, only due to the solar activity, varies within
two orders of magnitude for Stella’s altitude. During the periods of low solar activity the
density is about 2 · 10−15 kg m−3, whereas during the high solar activity the density is
2 · 10−13 kg m−3 for Stella’s altitude. The variations of air density for AJISAI’s altitude
are smaller, yielding one order of magnitude.

Figure 4.17, right shows the relationship between the atmospheric density from the
NRLMSIS-00 model and the altitude of a satellite for the low and high solar activities.
The figure shows that the density at the altitude 900 km is about 10−14 kg m−3 during
high solar activities. For the area-to-mass ratio (Am) of Starlette or Stella, the acceleration
due to the atmospheric drag at this altitude would be 6 ·10−10 ms−2 it is about five times
smaller than the acceleration due to the direct solar radiation pressure. But at the altitude
of 800 km the impact of both non-gravitational forces are comparable, because the induced
acceleration yields 34 · 10−10 ms−2. From Section 4.1 we know that the Yarkovsky effect
imposes an acceleration on LAGEOS of about 5 · 10−12 ms−2. A similar acceleration due
to atmospheric drag would be at an altitude of 2500-4000 km depending on the solar
activity. At the altitude of LAGEOS, the drag is mostly due to the interactions with the
Van Allen belt particles. High and low orbiting geodetic satellites pass through Van Allen
radiation belts, which are layers of energetic charged particles that is held in place around
the Earth by its magnetic field. Spherical satellites absorb the van Allen belt particles
that pass through, and change their momentum as a result. The interactions with charged
particles cause a small drag-like force even at the LAGEOS altitudes (Rubincam, 1982).
It should be noted that the atmospheric density is almost independent of solar activity
below the altitude of 150 km and above 5000 km. The maximum variations of density are
at the altitudes of about 800 km, where most of the geodetic SLR satellites are orbiting,
e.g., Starlette, Stella, Westpack, Larets, BLITS.
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4 Non-gravitational Forces Acting on Geodetic Satellites

Figure 4.18: Top: Time series of the solar flux F10.7 and Geomagnetic indices Ap.
Bottom: Atmospheric density as a function of the solar flux index F10.7 and
geomagnetic index Ap for the orbit altitude of AJISAI. Units: kg m−3.
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Figure 4.18, top shows the time series of a priori F10.7 and Ap indices. The values of
F10.7 reach their maximum during the high solar activity periods (2000-2004 and after
2011), whereas the geomagnetic Ap index shows a small delay with respect to the solar
activity.

The F10.7 and Ap indices are scaling factors of the atmospheric density models. They
are, however, non-linear scaling factors as shown in the Figures 4.17, right and 4.18,
bottom. Figure 4.18, bottom also shows the dominating impact of the F10.7 index on the
estimated air density. The variations of the air density due to Ap are much smaller and
they do not exceed 10% of the impact of the F10.7 index.

4.3.1 Impact on Satellite Orbits

Figure 4.19, top shows the estimated acceleration on Stella, Starlette, and AJISAI due
to the atmospheric drag for one day, as a function of solar time. In case of Starlette,
having large orbital eccentricity, the maximum accelerations are during the periods when
the altitude of the satellite is minimum (812 km). In Starlette’s apogee (1120 km) the
acceleration is one order of magnitude smaller than in the perigee.

For satellites having almost circular orbits (AJISAI and Stella) there is no direct rela-
tionship between the altitude and the acceleration due to the atmospheric density. The
variations of the accelerations are much smaller for these satellites as compared to Star-
lette. In case of AJISAI the acceleration depends on the solar time. In case of Stella
the acceleration is more a function of the actual geographical position and the relative
velocity w.r.t. the rotating atmosphere. The acceleration on Stella is similar to the max-
imum acceleration on Starlette in the perigee. The acceleration on Starlette in apogee is,
however, even smaller than the minimum acceleration on AJISAI, despite much higher
altitude of AJISAI. It is because of the larger area-to-mass ratio of AJISAI, which makes
this satellite very sensitive to non-gravitational forces.

Figure 4.19, bottom shows the relation between the solar time and the accelerations in S
and W for AJISAI for one day (note different scales for the X and Y axes). The maximum
(negative) acceleration in S and maximum positive acceleration in W is between 12h and
14h of the solar time. The minimum acceleration in S is around 2h, whereas the maximum
negative acceleration in the W at about 21h. The figure shows that the relations between
the accelerations in different orbit directions are not straightforward.

If a satellite’s velocity vector was always perpendicular to the layers formed by non-
rotating atmospheric particles, the drag force would affect only the tangential (∼along-
track) orbit direction. Because the atmosphere co-rotates with the Earth and the satellites
have different orbit inclination angles (and thus different directions of velocity vectors
w.r.t. the atmosphere), the atmospheric drag affects not only the S orbital direction, but
also W and R.

Figures 4.20, top and 4.20, bottom show the accelerations in S and W due to the
atmospheric drag for Starlette projected on the Earth’s surface. The acceleration in
S is always negative. The acceleration in W is about twenty times smaller than the
acceleration in S and it may assume positive or negative values. The accelerations in R
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Figure 4.19: Top: Total acceleration acting on low geodetic satellites due to atmospheric
drag. Units: ms−2.
Bottom: Acceleration acting on AJISAI due to atmospheric drag in the
along-track and out-of-plane directions as a function of solar time. Units of
the colorbar: hours. Note different scales for X- and Y axes.
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4.3 Atmospheric Drag

Figure 4.20: Acceleration acting on Starlette due to atmospheric drag for the Top: along-
track, and Bottom: out-of-plane directions. Units: ms−2.
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Figure 4.21: Secular decay of mean semi-major axis of AJISAI, Starlette, and Stella.

are of the order of 10−13 ms−2, and therefore they are negligible.

In Figures 4.20, top and 4.20, bottom the dependency between the acceleration on as-
cending satellites (moving towards north-east) and descending satellites (moving towards
south-east) is apparent. The dependency in S can be explained by the Starlette’s or-
bital eccentricity, whereas the dependency in W can be explained by the relative velocity
between the satellite and the rotating atmosphere.

The relative velocity depends on the inclination angle and the altitude of a satellite’s
orbit. For satellites with the orbit inclination angle 0◦ < i < 90◦ the angle between the
relative velocity vector and the normal vector to orbital plane W is above 90◦ when a
satellite is ascending. This implies negative accelerations in W due to atmospheric drag
for ascending satellites. On the other hand, during the satellite’s descending period, the
angle between the relative velocity and the normal to the orbital plane is small, implying
that the large positive accelerations occur in the out-of-plane direction.

4.3.2 Mean Orbital Elements

To study the impact of the atmospheric drag on low orbiting satellites, we processed 10
years of SLR data of Starlette, Stella, and AJISAI for the time span 2002.0-2012.0, and
then we transformed the derived osculating elements to the mean orbital elements (see
Chapter 2.2.4).

Figure 4.21 shows the mean semi-major axes of AJISAI, Starlette, and Stella, respec-
tively, with fitted polynomial of third degree. The mean secular decays of semi-major
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axes are:

• ∆a = −12 m/year for AJISAI,

• ∆a = −14 m/year for Starlette,

• ∆a = −30 m/year for Stella.

Despite the much higher altitude of AJISAI, the secular decay due to the atmospheric
drag is comparable to the secular decay of Starlette, because of different area-to-mas
ratios.

The decay strongly depends on the solar activity. In 2002-2005 and in 2011 the decays
of semi-major axes are maximum, which is in particular remarkable for Starlette and
Stella. Comparing the similar secular decays of AJISAI and Starlette, it turns out that
the mean decay during the low solar activity (2005-2010) for AJISAI is larger (−9 m/year)
than for Starlette (−7 m/year). It means that the decay of AJISAI is less dependent on
the solar activity and it is more linear in time. The mean decay of Starlette is larger than
the decay of AJISAI during the high solar activity periods, but lower during the low solar
activity.

The theoretical decay of the semi-major axis derived by Beutler (2005) yields:

∆a/year = −31557600 n CD
A

m
a2ρ(h,T,λ,φ,F10.7,Ap) (4.20)

However, the large variations of the air density do not allow deriving an exact value
using just the theoretical considerations. Beutler (2005) derived also an approximated
relation between the drift of a satellite eccentricity and semi-major axis, which reads as:

∆e(t) ≈ ∆a(t)

a
. (4.21)

Indeed, besides the periodic variations (see Figure 4.22), the orbital eccentricity exhibits
a secular drift, and thus, the orbits become more ’circular’. The secular drift of orbital
eccentricity is 1.8 · 10−6/year, 2.2 · 10−6/year, and 2.1 · 10−6/year, for AJISAI, Starlette,
and Stella, respectively. Therefore, the estimated secular drift of eccentricity agrees very
well with the theory for AJISAI and Starlette. For Stella the estimated drift is 2.5
times smaller than the drift according to the approximated equation. It shows that the
approximation is not useful for nearly-circular orbits.

4.4 Discussion and Conclusions

4.4.1 Non-gravitational Forces

We have shown that the appropriate modeling of non-gravitational forces is essential for
the orbit determination of low orbiting satellites. The atmospheric drag is a dominating
perturbing force for satellites at low altitudes (up to about 700-1000 km). For medium
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Figure 4.22: Time series of mean orbital eccentricity and the secular decay of the orbital
eccentricity for AJISAI.

and high Earth orbit satellites the solar radiation pressure yields the main source of
non-gravitational orbit perturbations. The atmospheric drag causes a secular decay of
the semi-major axis of low satellites, whereas the Yarkovsky and the Yarkovsky-Schach
effects are the cause of the secular decay of LAGEOS-1 and LAGEOS-2.

The thermal forces due to the Yarkovsky and the Yarkovsky-Schach effect considerably
influence the LAGEOS orbits, especially in the S direction. The along-track once-per-
revolution orbit parameters exhibit the periodic variations of the annual signal and the
signal related to the draconitic year of the satellites, when the satellite is spinning rapidly
around its axis. The spin period of LAGEOS increases exponentially due to the inter-
actions between the satellite made of metal and geomagnetic currents (Kucharski et al.,
2009a).

The actual decay of the semi-major axis of LAGEOS-1 is smaller than the decay re-
ported in many papers due to the satellite’s de-spinning effect. The decay is ∆aL1 =
−20.3± 3.5 cm/year for LAGEOS-1 and ∆aL2 = −23.9± 3.7 cm/year for LAGEOS-2 for
the 1994-2011 time span.

Tapley et al. (1993) claim that errors in the odd-degree diurnal and semi-diurnal ocean
tide term cause variability in the real and imaginary parts of eccentricity vector excita-
tion (related to SC and SS , respectively), whereas variability in the odd zonal harmonics
cause variations in the real part of eccentricity vector excitation (related to SC). How-
ever, the analyses of LAGEOS orbits (Martin and Rubincam, 1996) and Etalon orbits
(Appleby, 1998) show that the eccentricity vector excitation are rather related to the
non-gravitational forces, i.e., the Earth’s albedo and thermal effects. This is also con-
firmed by this study: the differences in ocean tide models do not introduce significant
differences in SS and SC (see Section 3.2), whereas about 30% of the annual and dra-
conitic signal can be explained by the albedo reflectivity (see Section 4.2). The remaining
part is mostly due to the Yarkovsky and the Yarkovsky-Schach effects or variations of the
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solar radiation pressure coefficient CR.
The Earth infrared emissivity acts like a constant acceleration in R. The modeling

of infrared emissivity lowers the semi-major axis of LAGEOS by 1 mm. The albedo
reflectivity depends on the visible irradiance of the illuminated Earth’s surface as seen
from the satellite. Thus, the reflectivity yields an irregular force perturbing satellite orbits
in R, S, and W . The acceleration due to reflectivity is maximum in R when a satellite
crosses the line joining the Sun and the Earth. The total reduction of the semi-major axis
due to both effects is 1.5 mm.

The albedo reflectivity is responsible for the accelerations in S0 of a period of 309 days
(ωL2 w.r.t. ΩL2−Sun i.e., drift of the perigee in ecliptical longitude) and for SS and SC of
a period of 222 days (draconitic year of LAGEOS-2) and 365 days (annual signal). For
LAGEOS-1 differences are less evident, because LAGEOS-1 did not rotate rapidly in the
time span 2008-2012.

Applying the albedo reflectivity improves the consistency of predicted and estimated
LAGEOS orbits by about 0.2%. However, when applying the infrared emissivity a minor
degradation of the orbit predictions of 0.02% is found, which can be related to fact that
the currently used value of GM was derived without concerning this force (Dunn et al.,
1999). The Earth radiation pressure has a small impact on the geocenter coordinates with
maximum of variations 0.5 mm for the z component. The impact on pole coordinates and
LoD is nearly negligible.

The Earth radiation pressure affects the height component of station coordinates. The
station heights are shifted up to −0.2 mm due to the infrared emissivity and −0.5 mm
due to the albedo reflectivity. When estimating a range bias for an SLR station, the shift
of the height component is entirely absorbed by the range bias resulting in no impact on
the estimated station coordinates.

The Earth radiation pressure influences both dynamical (GM) and geometrical global
scales. The geometrical scale exhibits a shift of 0.07 ppb, corresponding to a shift of
0.5 mm in the reference frame w.r.t. Earth radius. Therefore, the modeling of the Earth
radiation pressure should be carefully handled if the appropriate value of the global scale
is to be derived, since the SLR observations of LAGEOS deliver the most reliable value
of the dynamical scale and one of the most reliable values of the geometrical scales of the
terrestrial reference frame along with VLBI.

Atmospheric drag causes the semi-major axis decays of low orbiting satellites, amount-
ing about ∆a = −12 m/year, ∆a = −14 m/year, and ∆a = −30 m/year for AJISAI,
Starlette, and Stella, respectively. The density of the upper atmosphere strongly depends
on the solar and geomagnetic activity. The atmospheric drag affects the S orbit compo-
nent to the largest extent, and the W to a small extent. The R component is unaffected
by the atmospheric drag.

We can conclude that the non-gravitational forces cause the largest perturbations in
S. The S orbital component is affected by all non-gravitational forces: the direct solar
radiation pressure (Beutler, 2005), the albedo reflectivity, Earth infrared emissivity, ther-
mal re-radiation effects, and atmospheric drag. From the Chapter 3 we know that the W
component is mostly affected by gravitational forces, in particular by C20.
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Table 4.5: Perturbing accelerations acting on geodetic satellites. Units: ms−2.

Perturbing accel. Accel. on Accel. on Accel. on Accel. on
LAGEOS AJISAI LARES Stella

Gravitational perturbations:

· Earth’s monopole 2.7 6.4 6.5 7.7

· Earth’s oblateness C2 0 1.0 · 10−3 6.2 · 10−3 6.3 · 10−3 8.8 · 10−3

· Low-order grav. C2 2 6.0 · 10−6 3.6 · 10−5 3.7 · 10−5 5.1 · 10−5

· Low-order grav. C6 6 8.6 · 10−8 3.1 · 10−6 3.2 · 10−6 6.3 · 10−6

· Mid-order grav. C20 20 8.1 · 10−13 1.5 · 10−8 1.6 · 10−8 1.1 · 10−7

· Grav. attr. of Moon 2.1 · 10−6 1.4 · 10−6 1.4 · 10−6 1.3 · 10−6

· Grav. attr. of Sun 9.6 · 10−7 6.4 · 10−7 6.5 · 10−7 5.7 · 10−7

· Grav. attr. of Venus 1.3 · 10−10 8.5 · 10−11 8.5 · 10−11 7.8 · 10−11

· Solid Earth tides 3.7 · 10−6 2.0 · 10−5 2.0 · 10−5 2.9 · 10−5

· Ocean tides 3.7 · 10−7 1.9 · 10−6 2.0 · 10−6 3.0 · 10−6

General relativity:

· Schwarzschild effect 2.8 · 10−9 1.1 · 10−8 1.1 · 10−8 1.4 · 10−8

· Lense-Thirring effect 2.7 · 10−11 1.3 · 10−10 1.4 · 10−10 1.8 · 10−10

· Geodetic precession 3.4 · 10−11 4.2 · 10−11 4.2 · 10−11 4.3 · 10−11

Non-gravitational perturbations:

· Solar radiation pressure 3.5 · 10−9 2.5 · 10−8 1.1 · 10−9 4.4 · 10−9

· Earth radiation pressure 4.4 · 10−10 8.6 · 10−9 3.9 · 10−10 1.8 · 10−9

· Thermal re-radiation 5.0 · 10−11 4.1 · 10−10 1.9 · 10−11 6.9 · 10−11

· Light aberration 1.1 · 10−13 1.1 · 10−12 5.1 · 10−14 2.0 · 10−13

· Atmospheric drag (∼ min) 0.8 · 10−14 3.0 · 10−11 2.6 · 10−12 5.0 · 10−11

· Atmospheric drag (∼ max) 2.0 · 10−13 5.9 · 10−10 4.8 · 10−11 5.0 · 10−8

4.4.2 Summary of Perturbing Forces

Table 4.5 summarizes the forces acting on five geodetic satellites with different altitudes
and different area-to-mass ratios. The impact of gravitational forces strongly depends on
the satellite’s altitude. The impact of Earth’s oblateness term C20 on LAGEOS is only
9 times smaller than the impact of the same term on Starlette, whereas the impact of
C20 20 (tesseral harmonic of degree= 20 and order= 20) on LAGEOS is already about
1000 smaller than on Starlette. Thus, using the satellites of different altitudes allows
discriminating of different coefficients when determining the geopotential parameters.
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Comparing LARES and AJISAI, namely two satellites of similar altitudes, the impact
of gravitational forces is nearly the same, whereas the impact of non-gravitational forces is
about 22 times smaller for LARES than for AJISAI. The impact of non-gravitational forces
strongly depends on the area-to-mass ratio (58.0 ·10−4 for AJISAI and 2.6 ·10−4 m2 kg−1

for LARES). The impact of non-gravitational forces on LAGEOS and Starlette/Stella is,
thus, similar, because of comparable area-to-mass ratios (see, e.g., Table 2.4), despite a
totally different impact of the Earth’s gravity field. For Stella and Starlette the variations
of the atmospheric drag can reach even four orders of magnitudes.

Besides the thermal effects and atmospheric drag, geodetic satellites are affected by the
light aberration effect, causing a secular decay of satellites’ semi-major axes of the order
of 8 mm/year and 7 mm/year for LAGEOS and Starlette, respectively (Beutler, 2005).
The light aberration effect is, however, much smaller than the thermal and atmospheric
drags, and thus, it has never been directly observed, so far.

125



4 Non-gravitational Forces Acting on Geodetic Satellites

126



5 Improving SLR Solutions

The impact of advanced modeling on the SLR solutions as well as on the consistency
between SLR and GNSS solutions is addressed in this chapter. The Blue-Sky effect is
assessed for all SLR stations in Section 5.2 and the impact of the atmospheric tidal
loading (ATL), atmospheric non-tidal loading (ANTL), and ocean tidal loading (OTL)
on the SLR stations and the SLR-derived parameters is examined in Section 5.1. A
general introduction to the pressure loading deformations of the Earth crust are given in
Section 2.1.2. Here, the influence of the loading deformations on SLR-derived products
and the consistency between SLR and GNSS solutions is addressed.

Section 5.3 further investigates the most favorable orbit parameterization for low or-
biting geodetic satellites (AJISAI, Starlette, and Stella) by studying the length of arc,
empirical orbit parameters, stochastic orbit parameters. Solutions with different multi-
satellite combinations are studied in Sections 5.3 and 5.4 in order to assess the impact of
different satellites on the combined solutions.

Finally, all orbit optimizations from Chapters 3-5 are applied in order to deliver the
state-of-the-art multi-satellite solution using SLR data to LAGEOS-1, LAGEOS-2, AJI-
SAI, Starlette, and Stella by simultaneously estimating satellite orbits, station coordi-
nates, geocenter coordinates, ERP, and low degree coefficients of the Earth’s gravity field
in Section 5.5. The results are compared with GNSS, CHAMP, and GRACE solutions in
Section 5.6.

This chapter is thus devoted to three main pillars of satellite geodesy and describes
a possible improvement of SLR-derived parameters. Sections 5.1-5.4 describe a possible
improvement of SLR station coordinates by applying loading displacement corrections
or combining LAGEOS data with data from low orbiting SLR satellites (pillar: geome-
try). Sections 5.3-5.5 describe a possible improvement of ERP estimates by different orbit
parameterization, different intervals, and simultaneous estimation of gravity field param-
eters (pillar: rotation). Sections 5.5-5.6 describe and validate the SLR-derived gravity
field parameters (pillar: gravity).

A summary of this chapter can be found in Sośnica et al. (2012a), Sośnica et al. (2013),
and Sośnica et al. (2014b).

5.1 Impact of Loading Corrections on SLR Solutions

5.1.1 Research Status

In recent years many studies assessed the impact of loading corrections on GNSS and
VLBI stations. Urschl et al. (2005) investigated the impact of OTL on GPS stations.
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Tregoning and van Dam (2005) and Steigenberger et al. (2009) studied the impact of
ANTL corrections on GPS stations. Dach et al. (2011b) compared the differences of
GPS-derived parameters when applying ANTL corrections at the observation level and
in post-processing. van Dam and Herring (1994), Petrov and Boy (2004), Böhm et al.
(2009) studied the impact of ANTL on VLBI solutions. Only few studies evaluated the
impact of ANTL on SLR solutions (Otsubo et al., 2004), (Bock et al., 2005). ANTL plays,
however, an important role in SLR solutions.

Bock et al. (2005) use ANTL corrections derived from regression factors between time
series of local pressure and the vertical site displacements. This way of considering the
impact of ANTL displacements is, however, less effective than corrections including the
pressure information from the surrounding areas (Dach et al., 2011a). Otsubo et al. (2004)
estimate the impact of the Blue-Sky effect for selected SLR stations, using the regression
factors, as well. Otsubo et al. (2004) study the co-located SLR-GPS stations and find
the maximum impact of Blue-Sky effect of 1.3 mm for the German fundamental station
in Wettzell.

The consistency between different space-geodetic techniques is of crucial importance. So
far many studies on the impact of ANTL had the focus on individual technique solutions
only or the loading corrections were applied in post-processing analysis (Collilieux et al.,
2009). Only few studies answer the question whether ANTL corrections can improve the
consistency between space geodetic techniques. In the framework of GGOS the goal of
the position consistency between different geodetic techniques is 1 mm (Rothacher et al.,
2011).

The loading corrections at the observation level are herein applied. We show the impact
of loading corrections on SLR stations and SLR-derived parameters. We evaluate the
magnitude of the Blue-Sky effect on SLR. Eventually, we answer the question: Is the
consistency between SLR and GNSS solutions improved by applying APL corrections?

5.1.2 SLR Solutions

Four time series are established using observations to LAGEOS-1 and -2 for the time
span 1999.0−2011.0 in order to assess the impact of atmospheric loading corrections on
SLR-derived parameters. On average 2800 observations per 7-day solution are available
in this period. The orbit modeling is described in Chapter 3.

The impact of APL corrections is compared with the impact of OTL corrections in
order to study the magnitude of different loading corrections. In solution 1 none of the
ocean and atmospheric loading corrections are applied (see Table 5.1). In solution 2
we apply the OTL corrections generated on the basis of the EOT11a ocean tide model
(Savcenko and Bosch, 2011) with the corresponding Center-of-Mass corrections1 (CMC)
for orbit determination. The OTL EOT11a was provided by Scherneck (2012). Solution 3
in addition includes the ATL (Ray and Ponte, 2003) corrections (S1 and S2 constituents)
with the corresponding CMC. Modeling in solution 3 is thus most consistent with the

1In this thesis the abbreviation ’CMC’ always refers to (Geo)Center-of-Mass Corrections of orbit origin
due to OTL/ATL, whereas the abbreviation ’COM’ refers to satellite Center-of-Mass Corrections.

128



5.1 Impact of Loading Corrections on SLR Solutions

Table 5.1: List of solutions processed for validating loading displacements.

Solution OTL ATL ANTL RMS of
resid.(mm)

1 - - - 8.40
2 EOT11a - - 6.97
3 EOT11a Ray Ponte - 6.96
4 EOT11a Ray Ponte Vienna 6.89

Figure 5.1: Left: Summed amplitudes of OTL and (Right:) ATL vertical corrections
for SLR stations (units: mm). The area of the dot is proportional to the
magnitude of the loading corrections.

IERS Conventions 2010. In solution 4 the ANTL corrections are additionally applied: the
Vienna ANTL model based on European Centre for Medium-Range Weather Forecasts
(ECMWF) was used which is given in grids with a spatial resolution of 1◦ and a temporal
resolution of 6 hours (Wijaya et al., 2011). Station displacement corrections are applied
to the vertical as well as to the horizontal components.

The Vienna ANTL model is applied in these studies. There are also other providers
of ANTL models, e.g., Petrov and Boy (2004)2 or the Global Geophysical Fluids Center3

(van Dam and Herring, 1994).

All loading corrections are applied at the observation level, because this type of correc-
tions provides the best repeatability of station coordinates for other geodetic techniques,
e.g., for GNSS (Dach et al., 2011a) and VLBI (Böhm et al., 2009).
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Figure 5.2: Left: Standard deviation of the ANTL corrections over 12 years for the ver-
tical component.
Right: Amplitudes of annual signals in geocenter coordinates with one-sigma
error bars (units: mm).

5.1.3 Loading Corrections at SLR Sites

As opposed to microwave data analyses, no troposphere parameters have to be estimated
in SLR analyses, because the troposphere delay for optical measurements is one order
of magnitude smaller due to the shorter wavelength. The troposphere zenith path delay
and the corresponding mapping function according to Mendes and Pavlis (2004) are well-
established for laser observations, allowing us to model the impact of the troposphere
delay at the 1 mm-level for observations above 20◦ (see Section 2.5.7).

Moreover, the stability of the vertical components of the best performing SLR sta-
tions (about 3 mm) is better than for GNSS stations (about 4 mm), because in SLR
the direct ranges are measured, whereas in the GNSS solutions double differences of mi-
crowave observations are typically used (or alternatively, zero-difference solutions with
the estimation of clock offsets). The largest variations of the loading corrections are in
the vertical direction. Therefore, SLR is well suited for validating the impact of loading
displacements.

Figure 5.1 shows the maximum vertical site displacements due to OTL and ATL, re-
spectively, computed from the EOT11a ocean tide model and the S1 - S2 constituents of
ATL model from Ray and Ponte (2003) by summing up the vertical amplitudes of the
main constituents for each SLR station. The resulting vertical site displacements induced
by OTL are of the order of 15 mm in continental regions and they reach up to 60 mm close
to the coasts. The magnitudes of vertical ATL corrections are 0.4 mm for SLR stations
in high latitudes, and reach up to 1.5 mm for stations close to the equator. The impact of
OTL is, thus, approximately 40 times larger than ATL. In reality, taking into account dif-

2http://gemini.gsfc.nasa.gov/aplo/aplo.html#chapter_2
3http://geophy.uni.lu/

130



5.1 Impact of Loading Corrections on SLR Solutions

ferent phase relationships, the maximum site displacements induced by OTL are smaller,
because adding up the amplitudes of the constituents results in an overestimate of the
effect (Urschl et al., 2005).

Figure 5.2, left shows the variation of the ANTL vertical corrections for the SLR stations
in the 12-year period analysed here. The ANTL corrections are small for coastal stations
(1 mm) and large for inland stations (up to 6 mm in central Asia). In global GNSS
networks there are many inland stations strongly affected by the ANTL effect with the
maximum APL effect reaching 10 mm (Dach et al., 2011a). Most of the SLR stations
are located close to the ocean, where the influence of APL is compensated by the inverse
barometer effect. Currently, there are no inland SLR stations in North and South America
and the observations collected by SLR stations in Central and North Asia are rather
sparse (with insufficient number of observations in winter time). The horizontal ANTL
corrections (not shown here) are approximately a factor of five smaller than for the vertical
component. A rather sparse SLR network and the uneven distribution of observations
can cause a network effect, because an ignored ANTL effect shifts the entire network in
conjunction with horizontal deformations. For the SLR network the effect is similar to
the VLBI network (Böhm et al., 2009).

5.1.4 RMS of Residuals

The mean value of the RMS of observation residuals per 7-day arc of both LAGEOS
satellites is shown in Table 5.1. The omission of OTL displacement corrections (solu-
tion 1) obviously leads to solutions of inferior quality and large RMS of residuals. The
impact of ATL on the RMS is small, as expected by the small corrections for the SLR
stations. Solution 4 (including OTL, ATL and ANTL) has the smallest RMS of obser-
vation residuals, indicating a small positive impact of atmospheric loading corrections on
SLR solutions. The differences between the RMS of observation residuals indicate that
ATL and even ANTL corrections might be ignored without a significant degradation of
the RMS of observation residuals. The situation might look different for some of the
estimated parameters (see Sections 5.1.5-5.1.8)

5.1.5 Station Coordinates

Figure 5.3 illustrates the estimated annual and semiannual signals of the vertical compo-
nents for SLR stations observing minimum for three years. The general reduction of the
amplitude of the annual signal for the vertical component of all SLR sites due to OTL is
20-30% and due to ANTL 10% w.r.t. the corresponding solution without corrections.

As expected, the loading displacement corrections reduce the amplitudes of the annual
and semiannual signals of SLR station coordinates, in particular in the vertical component
(see Figure 5.3). ANTL corrections reduce the amplitudes for inland stations (e.g. from
19.3 mm to 11.3 mm for Altay in Russia, from 4.8 mm to 1.6 mm for Riyadh in Saudi
Arabia, from 5.2 mm to 3.5 mm for Beijing in China), whereas the impact of OTL
corrections is mainly visible for coastal stations. The impact of ATL corrections is barely
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Table 5.2: 3D repeatability of SLR station coordinates and improvement of repeatability
due to different loading corrections for SLR stations with minimum 25, 150
and 400 weekly solutions.

Sol1 Sol2 Sol3 Sol4 Impr. due Impr. due Impr. due
(mm) (mm) (mm) (mm) to OTL to ATL to ANTL

(%) (%) (%)

min. 25 weeks 17.86 15.40 15.42 15.14 18.7 −0.1 2.4
min. 150 weeks 15.53 13.23 13.17 12.97 19.4 0.4 2.3
min. 400 weeks 10.74 9.09 9.07 8.85 19.5 0.2 3.3

recognizable. Small differences between the amplitudes of the annual signal of station
coordinate time series in solutions 2 and 3 occur only for Tahiti in French Polynesia
(amounting to 0.5 mm). Land hydrology loading and oceanic non-tidal loading effects
are neglected in this study. They may, however, be out-of-phase w.r.t. the atmospheric
contribution, which is why the analysis of the annual amplitude is not solely conclusive.

Even though loading displacement corrections have the largest effect on the vertical
station component, there is also an impact on the horizontal components. In the North
component, for stations providing at least 25 weekly solutions during the 12-year period,
the estimated amplitudes of the annual signal are 2.6 mm, 2.4 mm, 2.3 mm, and 2.1 mm
for solution 1, 2, 3, and solution 4, respectively, whereas in the East component the
amplitudes of the annual signal are 2.5 mm, 2.0 mm, 2.0 mm, 1.7 mm, corresponding to
an amplitude reduction of 25% due to OTL and 15% due to ANTL, whereas ATL has
no significant impact on the horizontal component. The larger improvement in the East
component than in the North component due to ANTL was expected, because many of
the SLR sites are located at North-South coast lines, where an East-West ANTL effect is
dominating.

One of the best performing inland stations to study ANTL is Riyadh in Saudi Arabia.
Figure 5.4 shows the annual and semiannual signals and the mean offsets w.r.t. SLRF2008
fitted to the 12-year series of weekly coordinate solutions. The estimated amplitude of
the annual signal for the vertical component is 4.8 mm, 4.4 mm, 4.4 mm, and 1.6 mm
for solutions 1, 2, 3, and 4, respectively. The amplitude of the semiannual signal is re-
duced from 2.0 mm in solution 1 to 0.7 mm in solution 4. Minor improvements are in the
horizontal components (see Figure 5.4) as expected from small horizontal a priori correc-
tions. As the background models in solution 2 are very close to the models underlying
SLRF2008, the mean offset of station coordinates is minimum for this solution (−0.7 mm
for the vertical component). Including ATL and ANTL corrections leads to a small in-
crease of the mean offset (−1.0 mm for the vertical component). ANTL corrections do,
however, clearly reduce the amplitude of the annual signal in the vertical component for
this station.
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There are big differences in SLR station stability within the ILRS network. SLR normal
points significantly differ in quality and quantity between the stations. Moreover, some
of the SLR stations carry out observations on a regular basis, whereas others deliver data
occasionally (Sośnica et al., 2012b). As this might have an impact on the repeatability
of station coordinates, Table 5.2 groups the stations in three categories for the mean
coordinate repeatability.

Figure 5.5 shows the mean 3D repeatability of SLR stations with at least 150 weekly
solutions. The general improvement of repeatability for the best performing SLR stations
is 3.3% due to ANTL, 19.5% due to OTL, and only 0.2% due to ATL. The overall repeata-
bility improvement due to ANTL is smaller for SLR stations than that found for GNSS
stations: 20% (Dach et al., 2011a). This fact may be explained by the irregular distribu-
tion of the SLR sites and with the location of most of the well-performing SLR sites close
to an ocean. Moreover, the aforementioned large differences in the technical capabilities of
SLR stations are not irrelevant. The 3D repeatability of Changchung in China is 19 mm,
whereas the 3D repeatability for Yarragadee, Herstmonceux, Zimmerwald, Greenbelt, and
Graz is approximately 6 mm (see Figure 5.5).

5.1.6 Geocenter Coordinates

SLR solutions based on the observations of LAGEOS result in very reliable geocenter time
series (Meindl et al., 2013) thanks to the stable LAGEOS orbit and satellite characteris-
tics, i.e., the favorable area-to-mass ratio. A reduction of the annual signal in geocenter
coordinates due to ANTL is expected, because loading corrections compensate the mass
redistribution inside the Earth, and thus, reduce the difference between center-of-mass
w.r.t. center of figure. Figure 5.2, right shows that ANTL reduces the amplitude of the
annual signal in the X, Y, and Z geocenter coordinates by 0.2 mm, 0.4 mm, and 0.8 mm,
respectively (solution 4 - solution 3). The amplitude in the X-component increases from
solution 1 to 4, but the differences in all four solutions are well within the two-sigma,
indicating that these differences are not significant. The theoretical impact due to ANTL
on the geocenter coordinates according to Crétaux et al. (2002) is 0.4 mm, 1.3 mm, and
0.7 mm for X, Y, and Z, respectively. Therefore, the reduction of the amplitudes of the
annual signal of the geocenter coordinates agrees very well for the Z component and is
substantially smaller for the X and Y components. The differences in the X and Y com-
ponents show that the loading corrections applied at the observation level have an impact
on other SLR-derived parameters and not only on stations and geocenter coordinates.

From Figure 5.2, right we state that ATL corrections even slightly increase the ampli-
tudes of annual signals, but the obtained differences are not significant. Amplitudes of
the semiannual signals are of the order of 0.2 mm only (not shown) for all solutions and
all components. Thus, the differences between the solutions are marginal.

Table 5.3 shows the comparisons of the estimated annual and semiannual signals of
the geocenter coordinates with other LAGEOS solutions (Gourine, 2012; Altamimi et al.,
2011; Angermann et al., 2002; Cheng et al., 1999; Moore and Wang, 2003). There is a good
agreement between solution 4 and the other solutions for the X and Y components with
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Figure 5.3: Annual and semiannual signals of the vertical components of SLR station
coordinates in solution 1 (red), solution 2 (magenta), solution 3 (blue) and
solution 4 (green). Solid lines denote a continuously observing station, dotted
lines denote a station with sparse observations. Scale of the plot is the same
as in Figure 5.4.
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Figure 5.4: Annual and semiannual signals and mean offsets w.r.t. SLRF2008 for hor-
izontal and vertical components of the 12-year LAGEOS solution for SLR
station Riyadh (Saudi Arabia). Red lines denote solution 1, magenta lines -
solution 2 (mostly covered by blue lines), blue lines - solution 3, green lines -
solution 4.

Figure 5.5: 3D repeatability of SLR station coordinates for SLR stations providing at
least 150 weekly solutions between 1999.0 and 2011.0.
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Table 5.3: Amplitudes of annual and semiannual signals of geoceter coordinates based on
SLR observations of LAGEOS-1/2. NP denotes Not Provided. Units: mm.

X Y Z
value error value error value error

Annual signal
This study, solution 1 2.61 0.17 3.34 0.17 4.12 0.35
This study, solution 2 2.87 0.16 2.54 0.14 3.71 0.28
This study, solution 3 2.90 0.16 2.57 0.14 3.76 0.28
This study, solution 4 2.75 0.15 2.22 0.12 3.01 0.27
Gourine (2012) 2.9 0.8 2.3 0.5 2.3 0.6
Altamimi et al. (2011) 2.6 0.1 3.1 0.1 5.5 0.3
Cheng et al. (1999) 2.38 NP 2.00 NP 4.10 NP
Angermann et al. (2002) 2.8 NP 3.0 NP 5.1 NP
Moore and Wang (2003) 3.5 0.6 4.3 0.6 4.6 0.6

Semiannual signal
This study, solution 1 0.26 0.19 0.44 0.14 1.59 0.32
This study, solution 2 0.36 0.17 0.16 0.14 1.78 0.27
This study, solution 3 0.37 0.17 0.17 0.14 1.78 0.27
This study, solution 4 0.27 0.16 0.22 0.13 1.74 0.26
Cheng et al. (1999) 0.75 NP 0.89 NP 0.50 NP

differences not exceeding 0.7 mm (with the exception of the values derived by Moore and
Wang (2003)). The Z component disagrees to the largest extent between the individual
solutions, varying between 2.3 mm and 5.5 mm. However, in all solutions different time-
spans are considered, which can be the reason for the differences. The estimates of the
amplitudes of semiannual signals in the geocenter coordinates are below 1 mm for X any
Y components in all solutions. In general, the amplitudes of the annual and semiannual
signals of the geocenter coordinates from solutions 2−4 have very small amplitudes and
they are in good agreement with the other solutions.

Figure 5.6 shows the differences of the Z component of the geocenter due to OTL, ATL,
and ANTL. ANTL corrections are strongly related to the seasons: in winter the omission
of ANTL corrections causes positive differences in the Northern hemisphere, whereas
in the summer the differences are negative. Almost all SLR stations with big impact
of ANTL signal are in the Northern hemisphere. Therefore, the observed variations in
the Z component of the geocenter are related to the compensation of seasonal high and
low air pressure variations in the Northern hemisphere, because of the different land-to-
ocean ratio for both hemispheres. Apart from that, all SLR stations in the Southern
hemisphere are coastal stations with very small impact of ANTL. The variations of the
Z component of the geocenter are different in different years, e.g., in 2010 and 2009 the
effect is hardly noticeable as compared to, e.g., 2005 (see Figure 5.6). Similar signals with
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Figure 5.6: Differences in the Z coordinates of the geocenter derived from different
solutions (solution 1 - solution 2, solution 2 - solution 3, solution 3 - solution
4, from left to right).

Figure 5.7: Differences of daily X pole and Y pole coordinates and LoD between solution
3 and solution 4 (the effect due to ANTL).

smaller amplitudes (not shown here) are obtained for X and Y components.

The OTL corrections do not induce an annual signal (see Figure 5.6). The resolution
of 7-days does not allow recognizing high frequency tidal corrections. The impact of
ATL corrections is smaller than OTL and ANTL, but with different periods. A Fourier
analysis of the differences between solution 2 and solution 3 shows two dominating periods
of 222 days and 560 days, corresponding to the draconitic years of LAGEOS-2, and -1,
respectively, indicating possible modeling problems related to the solar radiation pressure.

5.1.7 Earth Rotation Parameters

Table 5.4 shows mean offsets of estimated ERP and weighted RMS w.r.t. the IERS-08-C04
series. The mean offsets caused by ATL and ANTL are rather small, i.e., approximately
1 µas for the pole coordinates and 1 µs/day for LoD. The comparison with the IERS-08-
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Table 5.4: ERP derived from SLR solutions (comparison w.r.t. IERS-08-C04 series).

Bias WRMS
X pole Y pole LoD X pole Y pole LoD

[µas] [µas] [µs/day] [µas] [µas] [µs/day]

Solution 1 42 -2 -2.1 205 210 40
Solution 2 38 -2 -1.4 179 180 37
Solution 3 37 -2 -1.3 179 180 37
Solution 4 36 -2 -1.2 180 178 36

C04 series does not allow us to decide which solution is the best one, because the C04
series is mostly based on solutions without ANTL corrections applied.

Figure 5.7 shows the differences between ERP estimations from solutions with and
without ANTL. The impact of ANTL on the polar motion is systematic with a dominating
annual signal of the amplitude of 45 µas and 42 µas on the X and Y pole coordinates,
respectively.

Differences of the estimated ERP due to OTL are largest: 250 µas in pole coordinates
and 43 µs/day in LoD (not shown here). A spectral analysis of ERP differences shows
many significant periods corresponding to the typical periods of tidal waves (14 days,
15 days), draconitic years of LAGEOS satellites (222 days, 111 days, 560 days), and the
annual signal (365 days) in the solutions without OTL.

5.1.8 LAGEOS Orbits

Subsequently, LAGEOS orbits derived in different solution types are compared using
Helmert transformation. The orbit rotations due to OTL, ATL, and ANTL may reach
0.2 mas, 0.08 mas, and 0.08 mas, respectively, but the rotations do not seem to be
systematic. As the rotations correspond to a rank deficiency in the geodetic datum of
SLR solutions, these differences are not critical. On the other hand, orbit translations are
strongly related to CMC applied and they are systematic with maximum amplitudes of
orbit differences of 10 mm, 2 mm, and 0.5 mm due to OTL, ATL, and ANTL corrections,
respectively.

Figure 5.8a explicitly shows a good agreement between the a priori CMC ATL correc-
tions applied and the orbit translations between solutions 2 and 3 for X and Y components.
The orbit differences have slightly larger amplitudes than the CMC applied, but periods
and phases are in good agreement.

In Z component the amplitudes, phases and periods of orbit differences and ATL CMC
do not agree at all. A priori ATL CMC contain annual and semiannual signals with
maximum amplitudes of 0.2 mm only, whereas spectral analysis of orbit differences shows
two predominant periods 222 days and 560 days with amplitudes 0.8 mm and 1.2 mm,
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Figure 5.8: Top: Translation of LAGEOS orbits between Solution 2 and Solution 3 due
to ATL and associated CMC.
Bottom: Sun elevation angle over the orbital planes of LAGEOS-1 and
LAGEOS-2.

respectively. These periods correspond to the draconitic years of LAGEOS-2, and -1,
respectively, indicating problems with appropriate modeling of solar radiation pressure.

The variations in the Z geocenter coordinate (and thus, also to the orbit translations in
the Z direction) can be associated with the β angle, i.e., the elevation of the Sun over the
orbital plane (see Figure 2.2). Following Meindl et al. (2013), the relationship between
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the Z geocenter coordinate, βL1 for LAGEOS-1 and βL2 for LAGEOS-2 reads as:

δZ =
1

n2
D0

(
sinβL1

cos iL1
+

sinβL2

cos iL2

)
, (5.1)

where iL1 and iL2 denote the orbital inclination angles of LAGEOS-1 and -2, respectively,
n is the mean motion of LAGEOS satellites, and D0 is the acceleration acting on LAGEOS
due to solar radiation pressure. Even small discrepancies in D0 may cause the variations
in satellite-derived Z geocenter coordinate. In LAGEOS solution D0 is not solved for, but
calculated on the basis of a constant a priori solar radiation pressure coefficient SR = 1.13
using Equation 2.19. As long as the value of SR is not known with a sufficient accuracy,
such variations in Z geocenter coordinate and in orbit translations will be present. The
SR values are not constant in time as shown in the experiment from Appendix B. The
wrong a priori value of CR for LAGEOS-2 can be compensated, to a large extent, by
SC , SS , because of the correlation from Equation D.1, but using wrong a priori values of
CR may affect the determination of the Z geocenter coordinate.

Figure 5.8b shows the time series of Sun elevation angles over orbital planes for both

LAGEOS satellites with estimated value of the coefficient
(

sinβL1
cos iL1

+ sinβL2
cos iL2

)
, correspond-

ing to variations of Z geocenter coordinate. The Z-translations and the aforementioned
coefficients are in good agreement, thus, implying that solar radiation pressure may be
responsible for the visible variation of δZ. The estimates of the Z geocenter coordinate
are very sensitive to the background modeling applied (e.g., APL CMC), as well as to the
direct and indirect solar radiation pressure modeling.

Through applying the full impact of the ANTL on satellite orbits with the atmosphere-
induced gravity field variations, the LAGEOS orbits are improved by 3-5% when analyzing
the predicted orbits (Thaller et al., 2014a). The impact of the atmosphere-induced gravity
field variations on LAGEOS is one of the major issues raised by Thaller et al. (2014a),
therefore we refer to this study for a detailed discussion.

5.1.9 Conclusions

The SLR solutions are very sensitive to atmospheric and ocean loading corrections. OTL
corrections have the largest impact on the SLR station coordinates, geocenter coordinates,
ERP and LAGEOS orbits, but the impact of ANTL cannot be neglected either. The ATL
corrections are very small and they affect only the LAGEOS orbits, mainly due to CMC.
The repeatability of coordinates of coastal SLR stations is mostly improved when applying
OTL corrections (up to 73% for Tanegashima in Japan), whereas inland stations achieve
a better repeatability when applying ANTL corrections (up to 12% for Altay in Russia).
The overall improvement of 3D SLR station repeatability is 19.5%, 0.2%, and 3.3%, due
to the OTL, ATL, and ANTL corrections, respectively, whereas the general reduction of
the amplitudes of the annual signal of SLR station height is 30%, 2%, and 10%, due to
OTL, ATL, and ANTL corrections, respectively.

Systematic seasonal effects, such as atmospheric pressure variations in the Northern
hemisphere cannot be appropriately accounted for, when the ANTL corrections on station
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coordinates are omitted. In analogy to the VLBI network, the ignored loading in SLR
shifts the origin away, from what should be the origin of the rotation axes. Therefore, the
seasonal signal which occurs, e.g., in geocenter and in pole coordinates, can appropriately
be accounted for only when correcting for ANTL at the observation level.
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5.2 The Blue-Sky Effect

The consistently reprocessed time series of SLR station coordinates with appropriate
handling of loading displacements allows us to assess the order of magnitude of the so-
called Blue-Sky effect on SLR stations. The omission of atmospheric pressure loading
(APL=ANTL+ATL) may in particular lead to inconsistencies between optical (SLR) and
microwave (GNSS, VLBI, DORIS) solutions. SLR observations are carried out during al-
most cloudless sky conditions, whereas microwave observations are weather-independent.
Cloudless weather conditions are typically related to high air pressure conditions, when
the Earth’s crust is deformed by pressure loading. Therefore, weather dependence of the
optical observations causes a systematic shift of the station heights, which is called the
Blue-Sky effect. Applying APL corrections should compensate the Blue-Sky effect.

We estimated the impact of the Blue-Sky effect on SLR stations as the difference
between the mean loading correction applied to SLR stations (considering only those
epochs when SLR stations observe) and the mean correction to SLR stations for the
entire time series. The value of the mean correction to SLR stations for the entire time
series ought to be zero, because the impact of reference pressure should be removed from
the APL model. This mean value is below 0.1 mm, indicating that the reference pressure
field in the background of the APL model is sufficiently accurate. Therefore, only the
mean loading correction for epochs when an SLR station is performing observations is
important when assessing the Blue-Sky effect.

Table 5.5 summarizes the Blue-Sky effect for the selected SLR stations. The number
of normal point observations is shown, as well. The largest effect is associated with
inland stations in central Asia and Eastern Europe. The largest Blue-Sky effect occurs
for stations with the largest magnitude of APL impact, which is not surprising.

The impact of the Blue-Sky effect is below 1 mm for most of the continuously observing
SLR core stations, despite a large impact of APL. For Riyadh the mean magnitude of
APL is, e.g., 3.7 mm, whereas the Blue-Sky effect is only 0.2 mm. It suggests that the
Blue-Sky effect cannot be assessed properly by non-continuous SLR observations (Sośnica
et al., 2012a).

The impact of the Blue-Sky effect is largest for inland stations observing occasionally.
The Blue-Sky effects in Golosiv in Ukraine (4.4 mm), and Wuhan in China (3.2 mm)
assume the largest values. On the other hand, the aforementioned stations collected a
rather small amount of data and corresponding values of the Blue-Sky effect are not very
reliable. We conclude that the maximum impact of the Blue-Sky effect is approximately
2.5 mm for most of the SLR stations, but it can be larger, if the amount of observations is
insufficient. Fortunately, the stations with the largest impact of Blue-Sky effect have only
a small influence on a potential SLR-derived reference frame due to the limited number
of normal points.

Table 5.5 also shows the estimated Blue-Sky effect by Otsubo et al. (2004) and Seitz
(2009). All results are consistent with a mean difference of only 0.2 mm, even though dif-
ferent methods were applied in the two studies. Otsubo et al. (2004) and Seitz (2009) use
regression factors and pressure observables from GNSS stations, whereas Vienna ANTL
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Table 5.5: Blue-Sky effect for selected SLR stations, ordered by the size of the effect.
Mean impact of ANTL is estimated as the RMS of ANTL vertical corrections
for every SLR station. Units: mm.

SLR station Number of Mean impact Blue-Sky Blue-Sky Blue-Sky
observations of ANTL effect1 effect2 effect3

Golosiv, Ukraine 330 6.6 4.4
Wuhan, China 1052 4.9 3.2
Greenbelt, Maryland 150 3.3 2.5
Beijing-A, China 189 2.7 2.5
Helwan, Egypt 223 3.2 2.4
Orroral, Australia 3550 3.0 2.3
Altay, Russia 1776 6.7 2.3
Lhasa, China 981 2.5 2.1
Urumqi, China 1265 3.7 2.0
Beijing, China 15669 4.1 1.9
Riga, Latvia 11728 4.2 1.8
Maidanak 1, Uzbekistan 3914 4.8 1.7
Metsahovi, Finland 3395 4.5 1.6
Changchun, China 52808 4.3 1.5
Maidanak 2, Uzbekistan 1284 5.3 1.5
Simeiz, Crimea/Ukraine 1039 4.1 1.4
Lwów, Ukraine 621 3.7 1.4
Potsdam, Germany 26449 4.1 1.3 1.3
Kunming, China 2990 2.8 1.3
Borówiec, Poland 14898 4.0 1.2 1.4
Zimmerwald, Switzerland 188806 3.2 1.2 0.9 1.9
Wettzell, Germany 73215 3.6 1.2 1.3 0.8
Komsomolsk, Russia 393 3.5 1.1
Hartebeesthoek, South Africa 49550 2.4 1.1 0.4
Tateyama, Japan 4884 1.7 0.9
Mt Stromlo, Australia 82648 2.7 0.8
Greenbelt, Maryland 71571 2.7 0.7 0.4 0.5
Graz, Austria 110888 3.6 0.7 0.7
Koganei, Japan 10771 1.9 0.7
Herstmonceux, UK 133739 2.7 0.6 1.0 0.8
Katzively, Crimea/Ukraine 7766 3.1 0.6
McDonald, Texas 50269 2.4 0.5 0.7 −0.2
Monument Peak, California 105110 1.7 0.5 0.1
Simosato, Japan 43722 1.8 0.5
Yarragadee, Australia 229063 2.2 0.4 0.2
San Fernando, Spain 12204 1.2 0.3
San Juan, Argentina 47624 1.9 0.3
Grasse, France 30624 2.6 0.3 0.6
Tahiti, French Polynesia 12204 1.2 0.3
Riyadh, Saudi Arabia 68631 3.7 0.2
Concepción, Chile 56385 1.6 0.2
Matera, Italy 60380 2.5 0.2
Haleakala, Hawaii 20890 1.5 0.1
1this study
2Otsubo et al. (2004)
3Seitz (2009)
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Figure 5.9: SLR, GNSS and SLR-GNSS co-located stations.

corrections are used in this study.

Regarding the fact that some of the SLR stations are continuously improving their
tracking capabilities the impact of the Blue-Sky effect becomes smaller for a few stations,
e.g., the Blue-Sky effect was reduced for Zimmerwald from 1.8 mm in 1999 to 0.5 mm
in 2010, for Greenbelt from 0.9 mm in 1999 to 0.3 mm in 2010, and for Katzively from
3.1 mm in 1999 to 1.4 mm in 2010. The reduction of the Blue-Sky effect is especially
visible for SLR stations which updated and automatized their laser systems or enabled
day-time tracking capabilities. For the stations without significant tracking capability
improvements the Blue-Sky effect remains at the same level or even slightly increases.

All error sources leading to larger discrepancies than 1 mm between space geodetic
techniques should be taken into account, as the goal of GGOS for the precision of station
positions is 1 mm.

Table 5.5 shows that the Blue-Sky effect exceeds the maximum value accepted by GGOS
for more than 50% of the SLR stations. This in particular affects mobile SLR stations.
Therefore, ANTL corrections are of crucial importance for the inner consistency of SLR
solutions and the consistency between different space geodetic techniques.

5.2.1 Agreement of Sites Co-located by GNSS and SLR

Let us now assess the impact of APL on SLR and GNSS solutions and the improvement
of consistency of both techniques by comparing time series of GNSS and SLR weekly so-
lutions. Two GNSS network solutions are estimated for the time-span 2000.0-2011.0: one
with APL corrections and one without APL corrections. The GNSS results are compared
to the corresponding two SLR solutions. In the daily GNSS solutions (Steigenberger,
2009) the screened observation files are used. Satellite orbit parameters are estimated
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Table 5.6: Impact of APL corrections on selected co-located GNSS-SLR stations, ordered
by the decreasing number of weekly co-locations. Units: mm.

Co-location RMS of height Station height diff. Station height diff.
diff. between between SLR solutions between GNSS solutions

GNSS SLR SLR and GNSS with and w/o APL with and w/o APL
Site Site with APL w/o APL RMS Mean RMS Mean

GRAZ 7839 5.2 5.4 1.8 0.2 2.8 0.0
MDO1 7080 10.2 10.3 1.4 0.2 2.3 0.2
MONP 7110 8.6 8.6 1.0 0.3 1.6 0.2
ZIMM 7810 8.8 9.1 1.4 0.4 2.4 0.1
YAR2 7090 5.8 5.9 1.5 0.4 2.6 0.2
GODE 7105 6.6 6.9 1.7 0.2 2.0 0.0
MATE 7941 7.4 7.7 1.0 -0.1 2.3 -0.1
HARB 7501 8.4 8.3 1.8 0.4 2.4 0.3
SFER 7824 19.7 19.5 1.0 0.0 1.7 0.0
CONZ 7405 16.3 16.3 0.9 0.3 2.2 0.0
GRAS 7845 12.9 12.7 1.4 0.1 1.9 -0.1
BOR1 7811 15.8 16.0 2.5 0.7 2.9 0.2
STR1 7825 5.2 5.7 1.5 0.6 3.0 0.2
BJFS 7249 19.1 19.2 3.1 0.7 3.4 0.6
THTI 7124 10.9 11.2 1.0 0.1 3.4 0.0
RIGA 1884 19.4 19.4 3.1 1.2 3.0 0.4
AREQ 7403 18.5 18.5 1.0 0.1 1.8 0.0
POTS 7836 7.0 7.3 2.3 0.5 2.5 0.1

MEAN 11.43 11.56 1.63 0.35 2.46 0.13

together with ERP, station and geocenter coordinates, and troposphere parameters. Sub-
sequently, the weekly solutions are derived by stacking the daily normal equation systems.
The station coordinate time series from weekly solutions is analyzed and validated by
identifying outliers, discontinuities, and velocity changes according to Ostini (2012). The
global distribution of SLR and GNSS stations and of GPS-SLR co-locations is shown in
Figure 5.9.

Analysis of GNSS-SLR Co-location Stability

Table 5.6 shows the comparison of differences in the vertical component of the selected
GNSS and SLR co-located stations with long periods of observations and possible none or
small number of discontinuities in the SLR and GNSS coordinate time series. The mean
RMS of the differences of the vertical components of SLR and GNSS is 11.43 mm when
APL corrections are applied, and 11.56 mm when APL corrections are omitted. A small
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Figure 5.10: Amplitudes of annual signal of vertical components in mm for selected SLR-
GNSS co-located stations for solutions with and without APL corrections.

improvement is thus seen in the GNSS-SLR co-located stations’ stability, but it must
be distinguished between high-performing stations, e.g., Zimmerwald, Graz, Tahiti where
the improvement is more pronounced (0.3, 0.2, 0.3 mm, respectively), and the remaining
stations.

From the analysis of the differences between the vertical components of SLR solutions
with and without APL corrections (see Table 5.6) it results that the mean difference has
a value of 0.35 mm. For GNSS it is only 0.13 mm, because GNSS solutions, as opposed
to SLR solutions, are not affected by the Blue-Sky effect. The variations of GNSS station
height differences in solutions with and without APL corrections are clearly larger (RMS
of 2.46 mm on average) than for SLR (RMS of 1.63 mm on average), because GNSS
stations observe continuously, whereas SLR observations are weather-dependent.

All well-performing SLR stations co-located with GNSS show only a small impact of
APL (due to their locations close to oceans). Hence, the study concerning the impact of
the Blue-Sky effect on the SLR-GNSS co-locations is limited. When subtracting station
height differences between GNSS solutions with and without APL from the station height
differences between SLR solutions with and without APL (see Table 5.6), the large differ-
ences between SLR and GNSS solutions appear for semi-continental stations, e.g., Riga
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(RIGA-1884, Latvia), Borówiec (BOR1-7811, Poland), Potsdam (POTS-7836, Germany),
and Mount Stromlo (STR1-7825, Australia), amounting to 0.8 mm, 0.5 mm, 0.4 mm, and
0.4 mm, respectively. The results for these stations indicate that the omission of APL
corrections leads to inconsistencies between SLR and GNSS solutions of up to 0.8 mm on
average.

Figure 5.10 shows the amplitudes of estimated annual signals of the station heights for
co-located SLR and GNSS sites. Solutions with APL and without APL corrections are pre-
sented. For some co-located stations the agreement between the GNSS- and SLR-derived
amplitudes is rather poor (e.g. for Graz, McDonald and Monument Peak), implying that
the amplitudes are influenced by technique-specific problems and data processing issues,
and do not show any geophysical or environmental effects. On the other hand, for sta-
tions Greenbelt, Tahiti, San Fernando, and Hartebeesthoek the agreement between the
amplitudes is on the sub-mm level. The amplitudes of the vertical components are usually
smaller for the SLR stations (on the average 2.6 mm and 2.3 mm for the solutions without
and with APL corrections, respectively) than for the GNSS stations (3.5 mm and 2.8 mm
for the solutions without and with APL corrections). Smaller variations of the vertical
components in SLR can be associated with:

• the correlations in GNSS solutions between the vertical component and other es-
timated parameters, e.g. station clock corrections or troposphere delays. None of
these parameters have to be estimated in the SLR solutions, making the vertical
component more robust,

• in SLR solutions the strongest and best established component is the vertical com-
ponent, because it is defined by direct range observations. In GNSS the solution is
based on double-difference phase observations,

• in GPS the orbit modeling deficiencies are typically reflected in draconitic year
periods, and thus, accumulated in the annual signal of geocenter coordinates. The
draconitic years of LAGEOS-1 and -2 are different and not coincident with the
annual period,

• seasonal pressure variations are more visible in GNSS time series, whereas SLR sites
are affected by the Blue-Sky effect.

For some co-located stations the amplitude is increased by an insignificant amount
when applying APL corrections (e.g. Zimmerwald), but for most stations APL reduces
the amplitude. The mean amplitude reduction is slightly larger for GNSS (0.6 mm) than
for SLR stations (0.4 mm), even if the same co-located stations are considered. Therefore,
either the impact of APL in GNSS solutions is overestimated (due to correlations with
other parameters) or the impact of APL in SLR is underestimated (due to discontinuous
observations). In the solutions with APL the discrepancy of the estimated amplitudes
in the vertical components between GNSS and SLR solutions is reduced from 0.8 mm to
0.6 mm, implying a better consistency between SLR and GNSS when correcting for APL.
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Table 5.7: Comparison between GNSS-SLR from selected local ties (used in ITRF 2008)
and station coordinate differences derived from space geodetic solutions (with
APL and without APL corrections).

Co-location Local tie 3D difference of coord. between
GNSS SLR dx dy dz local tie and the solution
Station Station (m) (m) (m) w/o APL with APL

(mm) (mm)

GRAZ 7839 -2.558 8.516 -1.321 12.1 11.9
MDO1 7080 22.394 8.467 23.408 9.4 9.4
MONP 7110 31.365 -5.456 20.526 9.1 9.7
ZIMM 7810 13.506 5.986 -6.420 4.2 3.8
YAR2 7090 -18.612 -12.467 -5.841 4.5 4.9
GODE 7105 54.230 97.009 93.863 4.1 3.7
MATE 7941 -29.157 -22.201 37.912 10.2 10.4
HARB 7501 -743.471 1994.877 207.587 3.7 3.8
SFER 7824 45.041 -35.273 -89.594 97.8 97.9
GRAS 7845 -1.173 -81.348 5.620 4.8 5.0
BOR1 7811 25.767 -72.908 -0.324 9.0 8.1
STR1 7825 -38.054 4.584 58.108 12.2 11.7
BJFS 7249 16.517 -118.317 146.279 4.0 2.8
THTI 7124 -8.456 24.551 -28.299 23.8 23.8
RIGA 1884 3.401 -18.661 6.963 51.7 50.0
AREQ 7403 18.614 -0.547 21.499 3.0 2.7
POTS 7836 50.091 95.219 -40.438 3.9 4.4

MEDIAN 9.0 8.1
MEAN 15.7 15.5

Comparison with GNSS-SLR Local Ties

The differences between station coordinates derived from series of SLR and GNSS solu-
tions can be compared to the local tie values used in the ITRF computations (Altamimi
et al., 2011). Not all co-locations have, however, reliable local ties. Table 5.7 shows the
comparison for the selected local ties used in the ITRF2008 solution with the estimated
mean differences between SLR and GNSS coordinates in the solutions with and without
APL (only for common epochs when both, SLR and GNSS stations, were observing).
Two co-locations seem to have erroneous local ties, namely Riga and San Fernando. Most
other differences do not exceed 10 mm, indicating a good agreement w.r.t. the local ties.
The SLR and GNSS solutions are processed independently without introducing local tie
constraints on station coordinates. Therefore, the tie residuals are larger than those from
the ITRF2008 analyses.

APL improves the consistency between estimated and measured ties by only 0.2 mm.
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But for stations with moderate APL impact the improvement is larger, e.g., from 9.0 mm
to 8.1 mm for Borówiec, from 4.2 mm to 3.8 mm for Zimmerwald, and from 4.0 mm to
2.8 mm for Beijing. For only few stations APL has a negative impact on the agreement
with the local tie (e.g., for Monument Peak), but in general, we conclude that the agree-
ment between SLR and GNSS station coordinates with local ties is slightly improved by
applying APL.

5.2.2 Geocenter Coordinates

Ideally, the time series of geocenter coordinates derived from different techniques (e.g.,
SLR, DORIS, GNSS) should be the same. The derived time series of geocenter coor-
dinates is, however, often affected by orbit modeling problems, correlations with other
estimated parameters, and the inhomogeneity of networks. An example for discrepancies
in geocenter coordinate estimates has been described in Section 5.1. Here we compare the
geocenter coordinates derived from SLR and GNSS solutions with and without applying
APL. In theory, the largest impact of APL corrections should be in the Y component,
because the largest Earth’s crust deformations occur in Central Asia and Central Canada
(along the meridians 90◦E and 90◦W). The impact of APL on the X component should be
rather small, because of the domination of oceans along the meridians 0◦ and 180◦. The
deviations of the Z component are related to the land domination in Northern hemisphere
and the ocean domination in Southern hemisphere.

Figure 5.11 shows a major impact of APL on the Y geocenter coordinate and a minor
impact on the X geocenter coordinate in the GNSS solution. The same figure shows that
a major impact on the X geocenter coordinate and a minor impact on the Y geocenter
coordinate is found for the SLR solution. Moreover, the estimated amplitudes of the
annual signal in the GNSS solutions (1.57 mm, 3.49 mm, and 3.36 mm for the X, Y and Z
components, respectively) do not agree well with the SLR solutions (3.22 mm, 2.57 mm,
and 3.93 mm for the X, Y and Z geocenter coordinates, respectively). This situation
is caused on one hand by the correlations between geocenter coordinates and empirical
orbit parameters in the GNSS solution (Thaller et al., 2014b) and on the other hand by
the distribution of the SLR stations (see Figure 5.9). The network of SLR stations is
unbalanced with most of the high performing core stations close to the X axis. The SLR
stations located along the Y axis are either coastal stations with minor impact of APL
or low performing inland stations. The GNSS network is to a great extent well balanced
with also high performing inland stations along the Y axis. The difference in the global
distribution of SLR and GNSS stations explains the different impact on the geocenter
coordinates in Figure 5.11. There is also a reduction of annual amplitudes of the X and
the Y geocenter components in both, the SLR and GNSS solutions, when applying APL,
amounting to 0.15 mm, 0.38 mm, 0.04 mm, and 0.82 mm for the SLR X, SLR Y, GNSS
X, and GNSS Y components, respectively.

Figure 5.12 gives some additional information regarding the impact of the a priori
applied APL model on the geocenter coordinates. To assess the effect of a priori Vienna
APL corrections on the geocenter coordinates the deformations in the North, East, and
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Figure 5.11: Differences of geocenter coordinate estimates in SLR and GNSS solution due
to APL corrections. Units: mm.

Up directions were transformed to Cartesian coordinate system, by integration over the
Earth’s surface, making use of the equations 3 and 4 described by Dach et al. (2011b).
The total impact of the APL model on the geocenter is shown in Figure 5.12a. The impact
of the APL model on the geocenter Y coordinate (see Figure 5.12a) is closer to the impact
on the Y geocenter obtained from the GNSS solution than from the SLR solution (see
Figure 5.11). However, in both cases the magnitude of the a priori impact is larger than
the obtained differences in the Y geocenter coordinate time series. The differences can be
explained by the distribution of observing stations. Figure 5.12b is generated in a similar
way as Figure 5.12a, but the distribution of SLR stations and irregular observation epochs
are taken into account. Therefore, Figure 5.12a shows the a priori APL signal as seen by
the SLR network. The difference of both a priori impacts from Figure 5.12a and b implies
that the SLR network is far less sensitive to geocenter variations in the Y component,
due to inhomogeneous distribution of the stations and the sparse observations. For the
Y component the theoretical impact of APL on the geocenter (Figure 5.12b) is in a good
agreement with the impact of APL corrections from the SLR solution (Figure 5.11). We
can conclude that for SLR network there is a significant network effect that may affect
the geocenter coordinate estimates, when neglecting APL corrections.
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Figure 5.12: The impact of Vienna ANTL corrections on the X and Y geocenter coor-
dinates; a) The impact of the a priori grid model, b) The impact of the
model concerning the inhomogeneous distribution of SLR stations and the
observation epochs. Units: mm.

The comparison between the a priori impact of the APL (Figure 5.12a) and the re-
sulting variations (Figure 5.11) for the X geocenter coordinate shows that the variations
in the SLR solutions are overestimated and, on the other hand, the variations in GNSS
solutions are underestimated. Different patterns between the results obtained from the
SLR solutions and the a priori APL impact can be partly explained by the distribution of
the SLR stations and sparse observations (Figure 5.12b), but the magnitude of the esti-
mated X geocenter variations remains larger than the theoretical a priori variations. The
variations of the X geocenter coordinate obtained from the GNSS solutions suggest that
the APL corrections might be absorbed by parameters other than station and geocenter
coordinates. The GNSS network is well distributed as compared to the SLR network and
the observations are continuous for most of the GNSS stations, so the uneven distribution
of the stations cannot solely explain the differences of the X geocenter between the a
priori APL impact and the impact obtained from GNSS solution.
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Figure 5.13: Geocenter coordinates from the SLR and GNSS solutions with a spectrum
analysis.
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5.2.3 Conclusions

The impact of the Blue-Sky effect exceeds 2.0 mm for nine SLR inland stations. For the
Golosiv station in Ukraine the Blue-Sky effect reaches even 4.4 mm, due to sparse SLR
data collected by this station. The mean Blue-Sky effect is 1.1 mm for all SLR stations.
These results agree well with the Blue-Sky effect assessed for six stations by Otsubo et al.
(2004). The Blue-Sky effect causes inconsistencies between SLR and microwave solutions.
Applying ANTL corrections slightly improves the inner stability of SLR solutions and
reduces the discrepancies between GNSS and SLR solutions. As a result, the estimated
GNSS-SLR coordinate differences fit better at the 10% level to the local ties at the co-
located stations when applying APL corrections. The discrepancies in the tie residuals
may also be due to technique errors, for both, GNSS and SLR, and perhaps in the ground
survey measurements themselves.

The systematic shift of the SLR station height due to the Blue-Sky effect has a non-
negligible impact on the scale derived from SLR technique. The shift of 1 mm corresponds
to a scale discrepancy of about 0.2 ppb w.r.t. the radius of the Earth. Therefore, the dis-
agreement between the scale derived from SLR and VLBI, amounting 8 mm in ITRF2008,
can be partly diminished when applying APL corrections.

The reduction is different in the GNSS and the SLR solutions, which can be caused
by the global distribution of observing stations and by the unbalanced SLR network. In
GNSS solutions the amplitude of annual signal of the Y component of the geocenter is
maximally reduced (0.82 mm for the Y and only 0.05 mm for the X component), whereas
in SLR solutions the reduction of the amplitude of the annual signal of the X geocen-
ter component is somewhat larger (0.38 mm) than the reduction of the Y component
(0.15 mm).

In SLR solutions, the amplitudes of annual signal of the Z geocenter coordinate are
reduced due to the OTL and ANTL corrections by 0.4 mm and 0.7 mm, respectively.
The Z component of geocenter coordinates is strongly affected by deficiencies in solar
radiation pressure modeling in the GNSS solutions (Meindl et al., 2013) and does not
show an amplitude reduction due to ANTL (see GNSS series in Figure 5.13).
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5.3 Orbit Modeling of Low Orbiting Geodetic Satellites

Today, the contribution of Starlette, Stella, and AJISAI is neglected when defining the
ITRF, despite a huge amount of data collected within the long time series of precise
observations. The ILRS does not routinely deliver official products related to geodetic
Low Earth Orbiters (LEO) due to the difficulties in the precise orbit determination of LEO
and thus a poorer accuracy of orbits as compared to, e.g., LAGEOS satellites. The SLR-
derived parameters and ITRF are, therefore, almost solely defined by LAGEOS-1, and
LAGEOS-2, because the contribution of very high orbiting Etalon satellites is virtually
negligible (Thaller et al., 2014a).

Currently, ILRS ACs consider the possibility of including low orbiting geodetic satellites
for the generation of the standard ILRS products (e.g., LARES, AJISAI, Starlette)4.
Therefore, the question has to be answered: Whether the SLR-derived reference frame can
be improved by incorporating SLR observations to Starlette, Stella, AJISAI or LARES?

Due to the low orbital altitude, Starlette and Stella are very sensitive to the variations
of Earth’s gravity field, ocean tides, and the solid Earth tides. They are successfully
used in the determination of e.g., Earth’s gravity (Cheng et al., 1997) or elastic Earth
parameters (Rutkowska and Jagoda, 2012).

Schutz et al. (1989) demonstrate the potential of Starlette for the determination of ERP.
At that time the best obtained pole coordinates from the Starlette data agreed within
4.4 mas and 3.6 mas for the X pole and Y pole, respectively, with values obtained from
LAGEOS-1 observations. In one of the most recent analysis Gourine (2012) demonstrates
that ERP obtained from a combined solution containing LAGEOS-1 and LAGEOS-2
solution are better than those from a combined LAGEOS-1 and Starlette. However, a
combined LAGEOS-1/2 - Starlette solution was not considered in the paper, therefore the
possible improvement of a combined multi-satellite solution has not yet been assessed.

Lejba and Schillak (2011) show that Starlette, Stella, and AJISAI can be used for
the determination of SLR station coordinates and velocities, however with poorer quality
comparing to LAGEOS solutions. The analysis reveals artifacts of the vertical component
of station coordinates when using the AJISAI data. For some SLR stations the vertical
component is systematically shifted w.r.t. the vertical component obtained from LAGEOS
or Starlette/Stella solutions.

Otsubo and Appleby (2003) study the Center-of-Mass Corrections (CoM) of AJISAI,
LAGEOS, and Etalon and showed that applying one CoM for all SLR stations is not
sufficient. They conclude that the CoM should be applied station-specific, because of
differences in equipments and screening procedures at SLR stations.

5.3.1 Orbit Modeling

The precise orbit determination of LEO, such as Starlette, Stella, and AJISAI is more
demanding than the determination of the LAGEOS orbits, because of:

4http://ilrs.gsfc.nasa.gov/docs/2012/AWG_Minutes_Frascati_2012.pdf
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Table 5.8: Parameters estimated in LAGEOS and LEO solutions.

Parameter LAGEOS-1/2 LEO

Station Coordinates Weekly Weekly
Earth Rotation Parameters PWL daily PWL daily
Geocenter Coordinates Weekly Weekly
Gravity field Up to d/o 3 Up to d/o 3
Range Biases Selected sites All sites
Satellite Orbits:
· Osculating Elements Weekly Weekly
· Constant along-track S0 Weekly -
· Air Drag Scaling Factor - Daily
· Once-per-rev SS , SC Weekly Daily
· Once-per-rev WS , WC - Daily
· Pseudo-Stochastic Pulses - OPR in S

• a larger sensitivity to the Earth’s gravity field and to its temporal variations,

• a large sensitivity to atmospheric drag models and variations of air density in the
upper atmosphere,

• insufficiently known station-specific range biases due to different laser systems used
at SLR stations.

The issue of uncertainties and the sensitivity to time varying Earth’s gravity field is
addressed by using EGM2008 (Pavlis et al., 2012b) and the estimation of time variable
low degree gravity field coefficients from SLR. EGM2008 is used up to degree 30 for
LAGEOS and up to degree 90 for LEO satellites. Some of the low degree harmonics
are not taken from the model, but are replaced according to the recommendations of the
IERS Conventions 2010 (Petit and Luzum, 2011). This includes the application of drifts
for the low degree zonal coefficients.

The issue related to variations of air density in the upper atmosphere is addressed by
estimation of empirical and stochastic orbit parameters.

The issue of poorly known center-of-mass corrections for LEO satellites is addressed by
estimating station- and satellite-specific range biases and by combining the LEO solutions
with the LAGEOS solutions. The center-of-mass corrections for LAGEOS satellites are
well-established and no range biases for most SLR stations considered in the LAGEOS
solutions have to be estimated. Therefore, the station- and LEO-specific range biases
may compensate for inadequate values of center-of-mass corrections for LEO satellites.
Moreover, the resulting combined solutions are entirely consistent with the LAGEOS
solutions, because the scale is derived mostly from LAGEOS tracking data. The satellite
modeling and parameter spacing are shown in Table 5.8.
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In the Starlette, Stella, and AJISAI (LEO) 7-day solutions the atmospheric drag
NRLMSISE-00 model (Picone et al., 2002) is applied including as well the anomalous
oxygen variations. The daily scaling factors of the atmospheric drag model are estimated
instead of a constant acceleration in along-track (see Table 5.8). The outliers in the LEO
solutions are eliminated on the basis of 1-day orbital arcs, where the empirical parameters
are constrained to a priori values with a sigma of 10−9 ms−2.

The OPR dynamical parameters together with pseudo-stochastic pulses account for
large orbit perturbations due to variations of the air density in the upper atmosphere.
In analogy to the LAGEOS satellites, the dynamical parameters absorb the mismodelled
forces due to direct solar radiation pressure, indirect radiation pressure (albedo), and ther-
mal effects for Starlette, Stella, and AJISAI. The pseudo-stochastic pulses are estimated
every revolution period in the along-track direction with a sigma of 10−7 ms−1.

The air drag does not only act in the S direction of a satellite, but also in the W
direction, because the velocity vector of a satellite is not exactly parallel to the S direction
and the atmosphere rotates together with the Earth. The acceleration induced by air drag
in the W direction (about 10−10 ms−2 for Starlette) is about a factor of fifteen smaller than
in the along-track (about 1.5 · 10−9 ms−2 for Starlette), but it is not negligible, especially
not for the low orbiting Stella and Starlette characterized by high eccentricity of the orbit.
Therefore, WS/WC term are also estimated on a daily basis to account for the variations
of the air drag. The radial direction is not affected by the air drag (acceleration below
10−12 ms−2 for Starlette), therefore none of the dynamical orbit parameters have to be
estimated in the radial direction.

We estimate range biases for all SLR stations, because of lack of precise Center-of-Mass
corrections (CoM) for LEO satellites. Therefore, the scale in the LEO-only solution suffers
from rank deficiency, whereas in the combined LAGEOS-LEO solution the scale is defined
by LAGEOS to the greatest extent. The LAGEOS-derived scale is of superior quality due
to much less perturbed orbit and the well-established CoM corrections (Appleby et al.,
2012). The adopted a priori CoM (see Table 2.4) for AJISAI are standard values, whereas
the CoM for Starlette/Stella are taken from Ries (2008).

5.3.2 Solution Set-up

We apply the IERS Conventions 2010 (Petit and Luzum 2011) with a new definition of
mean pole and ocean pole tide corrections. As recommended by the IERS Conventions
2010 the atmospheric tidal loading was also applied. In addition we apply the non-tidal
atmospheric loading station corrections to remove the Blue-Sky effect.

The direct and indirect solar radiation pressure (Earth albedo reflectivity and Earth’s
infrared emissivity) is considered in a way described in Chapter 4.

The adopted a priori sigmas of unit weight from the variance analysis of observation
residuals are 10 mm, 20 mm, and 25 mm for LAGEOS-1/2, Starlette/ Stella, and AJISAI,
respectively (see Table 2.6).
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5.3.3 Orbit Improvement

Subsequently, the results from several tests are documented in order to justify the un-
derlying orbit parameterization of LEO satellites. We investigate the impact of the orbit
parameterization on the basic products that are routinely derived by the ILRS, i.e., ERP
and station coordinates. In particular we compare:

• a posteriori sigma of unit weight,

• pole coordinates and LoD,

• station coordinates (RMS of Helmert transformation w.r.t. SLRF2008).

Parameter Interval Spacing

We compare the standard LEO 7-day solution (A, see Table 5.9) characterized by:

• estimating one set instead of seven sets of dynamical parameters per 7-day arc (B1),
or estimating seven sets of dynamical parameters and osculating elements per 7-day
solution (B2),

• estimating pseudo-stochastic pulses in all directions (C1) or neglecting the estima-
tion of pseudo-stochastic pulses (C2),

• estimating the 5-day solutions (D1) or 9-day solution (D2), instead of standard
7-day solutions,

• estimating the 6-day solutions with 1 set of osculating elements and 2 sets (E1) or
3 sets (E2) of dynamical parameters.

All long arc solutions are estimated by stacking 1-day consecutive NEQs containing
all parameters. An approach described by Beutler et al. (1996) is applied for ’stacking’
osculating elements, dynamical parameters, and introducing pseudo-stochastic pulses at
orbit boundaries.

Table 5.9 gives an overview of the different orbit parameterizations and the impact on
ERP, whereas the results of the coordinate comparisons are shown in Figure 5.14.

Solutions B1 and B2 show a clear degradation of WRMS of pole coordinates, reaching
even 100% for the X pole WRMS for solution B1 w.r.t. solution A. Only WRMS of LoD
is slightly improved in solution B1 w.r.t. solution A, because the daily LoD estimates
can be decorrelated better when the dynamical parameters are estimated on a weekly
basis. The RMS of the Helmert transformation of the station coordinates shows a serious
degradation of solutions B1 and B2 w.r.t. the solution A (see Figure 5.14). The station
coordinates become particularly unstable in B2 when osculating elements are estimated
on a daily basis.

The results from the solution C1 are virtually the same as from the solution A. No
further improvement can be obtained when estimating stochastic pulses in W and R
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Table 5.9: Impact of different orbit parameterizations of LEO satellites on a posteriori
sigma of unit weight and ERP (comparison w.r.t. IERS-08-C04).

Sol Length Sets of Sets of Stoch. RMS X pole Y pole LoD
of sol. oscul. dyn. pulses resid bias WRMS bias WRMS bias WRMS
[days] elem. par. [mm] [µas] [µas] [µas] [µas] [µs/d] [µs/d]

A 7 1 7 S 7.78 57.7 269.8 -8.7 218.1 -3.6 106.5
B1 7 1 1 S 13.50 38.6 508.7 -6.8 442.3 -15.0 102.2
B2 7 7 7 S 13.42 20.7 395.7 4.4 400.1 -2.2 120.0
C1 7 1 7 S,R,W 7.52 57.7 269.8 -8.7 218.1 -3.7 116.5
C2 7 1 7 - 7.81 85.5 350.2 0.1 275.7 -36.3 140.4
D1 6 1 2 S 8.21 25.7 282.6 2.4 254.2 -25.4 119.7
D2 6 1 3 S 7.98 28.2 280.7 10.5 244.8 -13.5 115.1
D3 6 1 6 S 7.65 32.1 270.5 -4.3 217.9 -6.7 105.8

directions. The estimated pulses in W and R assume the values far below their formal a
posteriori errors and thus, they are insignificant. Therefore, the estimation of pulses in
W and R should be avoided, because they significantly increase the number of estimated
parameters (and thus the size of the normal equation system). The number of stochastic
pulse parameters is quite large, because they are estimated once per revolution, which
gives in total 882 stochastic parameters in a 7-day arc solution including three satellites
and estimating pulses in R, W, and S. Moreover, introducing the stochastic pulses in all
directions may degrade other parameters, e.g., LoD.

Neglecting the estimation of stochastic pulses in along-track (C2) increases the WRMS
of the X pole and the Y pole coordinate by 30% and 26%, respectively (see Table 5.9).
The station coordinates are also worse in the C2 than in the A solution, on average by
1.4 mm. We may state that the stochastic pulses in along-track significantly improve the
estimation of ERP and station coordinates.

The estimation of the osculating elements, dynamical parameters, and ERP with dif-
ferent parameter spacing (D1, D2) shows a slightly inferior quality w.r.t. solution D3,
despite a smaller correlation between the derived parameters.

We computed also other solutions, e.g., with the estimation of solar radiation coefficient
instead of once-per-rev term in the along-track, but the results showed a degradation w.r.t.
the solution A.

For the sake of consistency with the LAGEOS 7-day arc solutions we decided that the
solution A will be the standard LEO solution for the subsequent investigations.

Individual Solutions

Table 5.10 and Figure 5.15 show the results from 10-year single satellite solutions, com-
bined solutions of two satellites, and combined solutions of all LEO satellites (solution
A in Table 5.9 and Figure 5.14). The a posteriori sigma of unit weight should not be
considered as a conclusive quality indication of the different solutions, because the degree
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Figure 5.14: RMS of Hemert transformation of SLR LEO solutions with different orbit
modeling w.r.t. SLRF2008 (in mm).

Figure 5.15: RMS of Hemert transformation of individual SLR solutions w.r.t. SLRF2008
(in mm).
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Table 5.10: Impact of individual satellite solutions on aposteriori sigma of unit weight and
ERP (comparison w.r.t. IERS-08-C04).

Solution RMS Mean X pole Y pole LoD
of resid. number bias WRMS bias WRMS bias WRMS

[mm] of observ. [µas] [µas] [µas] [µas] [µs/d] [µs/d]

AJISAI-only 6.31 3011 36.4 266.3 3.6 233.9 -17.3 108.5
Starlette-only 6.45 1697 21.8 339.5 -6.5 290.5 -18.0 133.0
Stella-only 6.03 813 120.0 901.6 -11.8 829.0 9.6 110.7
AJI+Sta 6.85 4708 32.0 207.3 -3.0 184.4 -35.2 136.9
AJI+Ste 7.24 3824 71.8 304.4 -3.8 256.6 -1.0 93.1
Sta+Ste 7.62 2510 75.2 365.2 -19.1 291.5 -3.7 99.4
AJI+Sta+Ste 7.78 5521 57.7 269.8 -8.7 218.1 -3.6 106.5

of freedom strongly differs between solutions.

The Stella-only solution shows a poor quality for the station coordinates and the polar
motion w.r.t. Starlette-only and AJISAI-only solutions. The WRMS of the X pole and the
Y pole (∼850 µas) is about three times larger than for the other single satellite solutions
(∼250 µas). The reason of the inferior quality of the Stella solutions is twofold: on one
hand the small number of observations, on the other hand the specific sun-synchronous
orbit and the orbital inclination of 98.6◦ resulting in a small sensitivity of polar motion
and significant resonances with the apparent diurnal and semi-diurnal motion of the Sun
(Cheng et al., 1997).

The station coordinates and the polar motion are very well-established in the com-
bined AJISAI-Starlette solution resulting in a 3D RMS of the Helmert transformation of
18.6 mm and for a WRMS of 207 µas and 184 µas for the X pole and the Y pole, respec-
tively. The combined solutions using AJISAI-Stella or Starlette-Stella exhibit a serious
degradation of the WRMS of polar motion (up to 365 µas) and station coordinates (up to
20.5 mm of 3D RMS). It shows that the resonant forces influencing Stella’s orbit degrade
all the tandem solutions with Stella.

On the other hand the bias of LoD and the WRMS of LoD are significantly improved,
e.g., the bias of LoD from −35.2 µs/day in the AJISAI-Starlette solution is reduced to
−3.7 µs/day in the Starlette-Stella and to −1.0 µs/day in the AJISAI-Stella solutions.
The bias of LoD is mostly due to the correlation between C20, dynamical parameter WS ,
and LoD, because all these parameters associated with the drift of satellite ascending
nodes (Thaller et al., 2014a). The nodal drift depends on the orbital inclination, so
the decorrelation of LoD and C20 is not possible for two satellites with almost identical
inclination angles (50.0◦ and 49.8◦ for AJISAI and Starlette, respectively). LoD and
C20 are decorrelated as soon as Stella is considered, despite the orbit resonances and the
inferior quality of Stella’s orbit.

Many authors use the tandem Starlette-Stella for various purposes, e.g., for determi-
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nation of elastic Earth parameters (Rutkowska and Jagoda, 2012) or for the estimation
of station coordinates (Lejba and Schillak, 2011). From this study we conclude that the
Starlette-Stella solution is not optimum for the estimation of station coordinates (3D
RMS of 20.5 mm) and polar motion. Much better results can be obtained by combining
three LEO satellites.

The AJISAI-Starlette-Stella solution shows a small degradation of the polar motion
w.r.t. the AJISAI- Starlette solution, but on the other hand, reduces the LoD bias by
about a factor of ten. Both the AJISAI-Starlette-Stella and the AJISAI-Starlette solutions
show a similar quality of station coordinates (18.6-18.7 mm of 3D RMS) that is better
than in all other combinations (above 20 mm of 3D RMS).

5.3.4 Conclusions

Incorporating SLR observations to Starlette, Stella, and AJISAI strengthens the SLR-
derived parameters. The number of SLR normal points is on average three times larger
in the combined solutions than in the LAGEOS-only solutions.

The estimation of pseudo-stochastic pulses in along-track improves the orbits of LEO
satellites and other SLR-derived parameters. Neglecting the estimation of pulses for low
satellites increases the WRMS of the X pole and the Y pole coordinate by 30% and 26%,
respectively. The estimation of pulses in the out-of-plane and in the radial directions
does not further improve the solution. The best orbit parameterization found is when
determining long orbital arcs (5-9 days) and estimating dynamical parameters once per
day.

Incorporating Stella into the combined solution using low spherical satellites is im-
portant for the decorrelation of LoD and C20, despite the Stella’s sun-synchronous orbit
exhibiting resonances with the diurnal and semi-diurnal motion of the Sun. Moreover the
tandem Starlette-Stella is not optimum for the estimation of station coordinates and polar
motion. Much better results can be achieved from the AJISAI-Starlette-Stella solution.
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5.4 Combined LAGEOS-LEO Solutions

In this section the results from the combined LAGEOS-LEO solutions are presented. In
particular the parameters defining the ITRF are discussed, i.e., station coordinates, ERP,
geocenter coordinates and the global scale. The station-specific CoM are also derived for
LEO satellites from a combined solution.

5.4.1 Station coordinates

Some of the SLR stations within the ILRS network are not capable of observing LAGEOS
satellites, or the number and quality of LAGEOS observations is not sufficient. In the
later case such stations are always eliminated during the residual screening. The only way
to estimate reliable positions of such stations is to use observations of LEO satellites.

In our solution, the positions of six SLR stations are estimated exclusively on the basis of
LEO observations: Mendeleevo, Russia (1870), Helwan, Egypt (7831), Lhasa (7356) and
Bejing-A, China (7357), Cagliari, Italy (7548) and the mobile French Transportable Laser
Ranging Station in Burnie, Tasmania (7370). Most of them are temporarily observing
SLR stations. Some of these stations are considered in SLRF2008, but not in ITRF2008.
One station, i.e., Mendeleevo was neither included in the official release of ITRF2008 nor
in SLRF2008, despite ten years of observations to LEO satellites. However, the quality
of data provided by this station is much poorer as compared to other SLR stations.

Figure 5.16 shows the estimated coordinate time series of Arequipa, Peru (7403) from
the LAGEOS-1/2 and LEO solutions w.r.t. the a priori SLRF2008 coordinates. The
station provides more observations to LEO satellites, thus the number of LEO solutions is
larger than the LAGEOS solutions. The continuous long time series of station coordinates
for a SLR station like Arequipa are of highest priority, because in ’80 and ’90 Arequipa
was the only SLR station in South America. Moreover, only 15% of all SLR stations are
located in the Southern hemisphere.

The differences of station repeatability in LAGEOS and LEO solutions are shown in
Figure 5.17. Positive values denote a better repeatability of LAGEOS solutions, negative
values - of the LEO solutions. The SLR stations are sorted by the number of weekly so-
lution. In general, for the high performing stations a better repeatability can be obtained
in the LAGEOS solution. There are a few exceptions, e.g., for Changchung, China (7237)
and San Fernando, Spain (7824), where the East component is slightly better determined
by the LEO solutions. We do not expect a better repeatability of the vertical component
of the LEO solution, because the range biases are estimated for LEO satellites.

On the other hand, the repeatability of stations contributing to few solutions is bet-
ter in the LEO solutions. The reason is twofold: the larger number of observations to
LEO satellites, and one satellite more in the LEO solution. Again, the East component
benefits most in the LEO solutions w.r.t. LAGEOS solutions, especially for Shanghai,
China (7837), Simeiz, Crimea (1873), Borówiec, Poland (7811), and Tahiti, French Poly-
nesia (7124). The repeatability of other station components is better for stations with a
short time-span of observations, e.g., for Haleakala, Hawaii (7210) observing for two years
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Figure 5.16: Time series of the Arequipa SLR station coordinates w.r.t. SLRF2008 for
LEO solutions and LAGEOS-1/2 solutions.

Figure 5.17: Difference of the repeatability of station coordinates in the LAGEOS-1/2
solution and the LEO solution. Positive values denote better repeatability
in the LAGEOS-1/2 solution.
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Figure 5.18: Time series of the Zimmerwald SLR station coordinates w.r.t. SLRF2008 for
LEO, LAGEOS-1/2, and the combined solutions.

Figure 5.19: Difference of the repeatability of station coordinates in the combined solution
and in the LAGEOS-1/2 solution. Positive values denote better repeatability
in the combined solution.
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within the considered time-span.

Figure 5.18 demonstrates the time series of station coordinates for the high performing
core station Zimmerwald. Peaks related to unsatisfactory LEO solutions due too low
number of observations disappear in the combined solution. Before 2008 the vertical
component is noisy in all solutions, because range biases are estimated for all satellites,
including the LAGEOS satellites. The vertical component in the combined solution for
Zimmerwald is remarkably stable, although different wavelengths (423.0 nm, 532.1 nm,
846.0 nm) and different SLR receiver systems were used. The vertical component in the
LEO solutions is very stable due to large amount of data collected by Zimmerwald and
good observation geometry, even though range biases were estimated to all LEO satellites.
Equipment changes show up in the range biases estimates, and thus, they lead to different
values of CoM in different periods.

The difference of repeatability in the LAGEOS solution and in the combined solution
is presented in Figure 5.19. Positive values denote a better repeatability in the com-
bined solution, negative values in the LAGEOS solution. In general, the repeatability of
station coordinates can be improved when combining LAGEOS solutions with Starlette,
Stella, and AJISAI solution. The improvement is largest for horizontal components and
for non-core SLR stations. However, the vertical component shows worse characteris-
tic of repeatability for some stations, when additionally including LEO data, but this
degradation is usually due to weeks with LEO-only solution. Nevertheless, incorporating
LEO data improves the determination of station coordinates especially for those stations
which provide small number of LAGEOS observations and, due to insufficient observation
geometry, the 7-day LAGEOS-only solutions are not of the highest quality, whereas the
combined solutions are well-established. The high-performing stations, providing many
SLR observation from satellite passes spaced widely apart in the orbit, have already well-
defined station coordinates from the LAGEOS-only solutions and thus a further quality
improvement by incorporating LEO data is minor.

Bloβfeld et al. (2014) carried out a similar study using SLR data up to ten geode-
tic satellites (Etalon-1/2 LAGEOS-1/2, Stella, Starlette, AJISAI, Larets, LARES and
BLITS). They found that the horizontal component of station coordinates in the multi-
SLR solution can be improved by about 20% as compared to LAGEOS-only solutions.
For the vertical component the authors found only a marginal improvement. Findings
from Bloβfeld et al. (2014) are thus in a very good agreement with the results from this
study.

We conclude that combining LEO with LAGEOS satellites does not worsen the LAGEOS-
derived coordinates, but improves especially the East component of station coordinates.
Moreover, for some of SLR stations the coordinates can only be obtained using the ob-
servations to LEO satellites, because of the lack of LAGEOS observations.

5.4.2 Geocenter

Figure 5.20 shows the time series of geocenter coordinates from LEO, LAGEOS, and
combined solutions for the Z component. All series represent a similar signal for the
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Figure 5.20: Time series of the Z (Top) and X (Bottom) components of the geocenter
coordinates.

geocenter motion, but the LEO solution is noisier than the solutions including LAGEOS
satellites (see Table 5.11). The mean a posteriori error of the geocenter coordinates (mx)
is smallest in LAGEOS-only and combined solutions for the X and Y components, whereas
the Z component has the smallest error and exhibits the smallest scatter in the combined
solution. The Z geocenter component is of special importance, because estimation of
the Z component is affected by, e.g., by solar radiation pressure mismodelings (Meindl
et al., 2013). Therefore, reliable estimates of the Z geocenter coordinate cannot be derived
from GPS, GLONASS, or DORIS. In the LEO and combined solutions the errors of the
estimation of the amplitude of the annual signal in the Z geocenter are smaller than in the
LAGEOS solution. The Z component benefits especially from the Stella’s orbit, which is
almost a polar orbit.

Figure 5.20 shows the examples of the X and the Z components of geocenter coordinates
resulting from the LEO, LAGEOS, and combined solutions. All series show a similar signal
for the geocenter motion, but the LEO solution is noisier than the solutions including the
LAGEOS satellites (see Tab. 5.11). The mean a posteriori error of the coordinate X of the
geocenter (mx) is smallest for the LAGEOS-only and the combined solutions, amounting
0.74 mm and 0.72 mm, respectively. For the Y coordinate a reduction of the a posteriori
error is slightly larger, amounting from 0.81 mm to 0.74 mm, whereas the Z component
has the smallest error and shows the smallest scatter in the combined solution (0.92 mm
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Table 5.11: Geocenter coordinates: a posteriori sigma of geocenter parameters, drift, am-
plitudes of annual and semiannual signals w.r.t. SLRF2008.

X Y Z
LEO LAG. Comb. LEO LAG. Comb. LEO LAG. Comb.

mxx (mm) 1.23 0.74 0.72 1.47 0.81 0.74 1.50 1.31 0.92
Drift 0.66 0.11 0.24 1.75 0.36 0.85 0.21 0.00 -0.21
(mm/y) ±0.06 ±0.05 ±0.05 ±0.06 ±0.04 ±0.04 ±0.07 ±0.07 ±0.07
ann. ampl. 2.97 2.99 3.40 5.28 2.49 2.94 4.68 3.64 4.13
(mm) ±0.20 ±0.18 ±0.17 ±0.22 ±0.16 ±0.16 ±0.27 ±0.30 ±0.25
semiann. 2.37 0.46 1.06 0.64 0.05 0.24 1.88 1.49 1.28
ampl.(mm) ±0.22 ±0.19 ±0.18 ±0.23 ±0.16 ±0.17 ±0.28 ±0.28 ±0.25

in the combined solution, compared to 1.31 mm in the LAGEOS solution).

The Z component of the geocenter is of special concern, because estimation of this
component using satellite techniques is strongly affected by the solar radiation pressure
modeling deficiencies (Meindl et al., 2013). Therefore, reliable estimates of the Z geocenter
coordinate cannot be derived from GPS, GLONASS, or DORIS satellites.

In the LEO and combined solutions the errors of the estimation of the amplitude of
annual signal in the Z geocenter are smaller than in the LAGEOS solution. The Z compo-
nent in the combined solution benefits especially from the Stella orbit, which is almost in
a polar orbit. Observations of satellites in polar orbits maximize the topocentric satellite
position unit vector along the Z axis of the reference frame (see Eq. 2 from Meindl et
al., 2013), which is associated with the maximum of the partial derivatives of the range
observations w.r.t. the Z geocenter parameter in the normal equation system. Thus, the
satellites in polar or high-inclined orbits carry a valuable information for the determina-
tion of the Z geocenter component.

The spectral analysis of the Z coordinate of the geocenter shows that the amplitude
associated with the period related to the draconitic year of LAGEOS-2 (the time interval
between two subsequent crossings, in the same direction, of the Sun through the satel-
lite’s orbital plane, amounting 222 days for LAGEOS-2) is reduced from 0.60 mm in the
LAGEOS-only solution to 0.35 mm in the combined solution. Therefore, the Z component
is even better defined in the combined solution and, as opposed to GNSS estimates, it
is less affected by mismodelings of solar radiation pressure (Thaller et al., 2014b). The
amplitudes of other signals are also reduced in the Z component, e.g., the semiannual
signal from 1.49 mm to 1.28 mm (see Tab. 5.11).

For all geocenter components, the amplitude of the annual signal is larger in the com-
bined solution than in the LAGEOS solution (see Table 5.11), on average by 0.45 mm.
Lower satellites are more sensitive to low degree harmonics of the Earth’s gravity field,
and thus, they are more sensitive to a geocenter offset. On the other hand, the difficulties
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in LEO orbit modeling may lead to a degradation of geocenter estimates.
The decomposition of the accelerations caused by the perturbing potential V10 into the

R, S, W system, following Meindl et al. (2013), reads as:
R
S
W

∆V10 = C10
GMae
r3


−2 sin i sinu

sin i cosu
cos i

 , (5.2)

where C10 is related to the Z geocenter coordinate (see Section 2.2.3). The estimated
once-per-revolution parameter in the along-track direction SC may, thus, absorb some
geocenter variations, because of the correlation with the geocenter-induced perturbing
acceleration ∆V10.

Indeed, the spectral analysis of the LAGEOS-2 SC parameter in Figure 4.4 shows not
only the draconitic year period, but also the annual signal. The peak related to the
draconitic year implies that the SC parameter absorbs some deficiencies in modeling of
non-gravitational forces (see Chapter 4), whereas the peak related to the annual signal
emerges rather from the geophysical phenomena.

From the analysis of correlations coefficients between the Z geocenter coordinate and
the SC parameter, the correlation coefficients are −0.83, and 0.58 for LAGEOS-1, and
LAGEOS-2, respectively in LAGEOS-only solutions. These correlations are reduced to
−0.23 and 0.15 in the multi-SLR solutions. Thus, we conclude that in the LAGEOS-only
SLR solutions with the estimation of the standard set of empirical parameters (including
SC), some of the geocenter signals can be absorbed by the empirical orbit parameters.
In particular, the amplitude of annual signal is underestimated for the Z geocenter co-
ordinate. In the multi-SLR solutions the correlations between empirical parameters and
geocenter coordinates are substantially reduced, and the amplitudes of the annual signal
are increased.

In the SLR solutions with only one satellite, e.g., LAGEOS-1, the correlation coefficient
between SC and the Z geocenter coordinate is equal ±1. Thus, for the period before the
launch of LAGEOS-2, the combined LAGEOS-1/AJISAI/Starlette solutions should be
considered for, e.g., ITRF, instead of solutions based solely on LAGEOS-1, which have
the spurious geocenter estimates.

From the spectral analysis, the amplitudes of other than the annual and semiannual
signals in X and Y geocenter components can be slightly increased in the combined solu-
tion, but none of the amplitudes exceed the value of 0.5 mm (see Figure 5.20 for the X
component). Therefore, we conclude that the quality of estimated geocenter coordinates
is the same for the X and Y components in LAGEOS-only and the combined solutions,
whereas the quality of the Z geocenter coordinate is remarkably improved in the combined
solution.

5.4.3 Earth Rotation Parameters

Table 5.12 shows the mean biases and WRMS of pole coordinates and LoD estimates
w.r.t. the a priori IERS-08-C04 series. In all cases, the mean biases are not significant
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Table 5.12: Pole coordinates and LoD estimates compared to the IERS-08-C04 series.

LEO LAGEOS SLR GPS GLONASS GNSS
combined combined

X pole [µas] 57.7 4.1 6.4 -8.5 -44.2 -12.5
Mean bias Y pole [µas] -8.7 -8.0 -8.5 20.2 86.6 20.0

LOD [µs/d] -3.6 6.1 6.3 -2.8 0.7 -3.0

X pole [µas] 269.8 160.0 148.9 45.8 173.1 45.3
WRMS Y pole [µas] 218.1 155.2 140.3 38.6 172.3 40.6

LOD [µs/d] 106.5 57.0 56.3 40.0 29.4 37.9

and they agree very well with the C04 series. The pole coordinates from LEO solutions
are worse in terms of the WRMS by a factor of 1.6 than the LAGEOS solutions.

Schutz et al. (1989) reported that the best obtained pole coordinates from Starlette
data agreed within 4.4 mas and 3.6 mas for the X pole and the Y pole, respectively, with
values obtained from LAGEOS-1 observations. The agreement of pole coordinates in this
analysis between LEO and LAGEOS solutions is at the level of 0.2 mas, and thus, better
by a factor of 20 compared to the values derived by Schutz et al. (1989). It shows that the
quality of SLR-derived ERP has been dramatically improved within the time-span of 20
years, mostly due to improved underlying background models, more satellites involved,
and by far much better quality of SLR data.

The ERP estimated from the LAGEOS-only solutions can be even further improved
in the combined solution (see Table 5.12 and Figure 5.21). The WRMS of the pole
coordinates is reduced from 160 µas and 155 µas in the LAGEOS solution for the X pole
and the Y pole, respectively, to 149 µas and 140 µas in the combined solution. This
corresponds to an improvement of 7% for the X pole, and 10% for the Y pole coordinates.

The differences in LoD estimates between LAGEOS and the combined solution are
almost negligible.

The comparison w.r.t. ERP estimates from GNSS solutions shows that the WRMS of
SLR-derived polar motion is a factor of three larger than the WRMS from the GPS-only or
GPS+GLONASS solutions. The WRMS of SLR-derived LoD values is a factor 1.4 larger
than the in GPS solutions. However, The GPS solutions contribute to the largest extent
to the IERS-08-C04 series, so a better agreement between C04 and GPS is expected, as
well. The WRMS of polar coordinates in the GLONASS-only solution is larger than in
the SLR solutions, mostly due to a sparse GLONASS network before 2008 and incomplete
satellite constellation (Fritsche et al., 2014).

As shown in Section 5.3.4 the incorporation of Stella degrades the WRMS of polar
motion for the LEO solutions. Therefore, we computed another multi-satellite solution
excluding Stella. The solution did not show, however, any difference of the polar motion
and LoD w.r.t. the solution with five satellites, because of the dominating impact of the
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LAGEOS satellites. The contribution of Stella by the mean of a smaller formal error is,
however, visible for the other parameters, i.e., the geocenter coordinates and the Earth’s
gravity field parameters.

5.4.4 Scale

According to Panafidina et al. (2008) the SLR-derived scale estimates are correlated with
the Z geocenter coordinate due to the inhomogeneous distribution of SLR stations. The
correlation coefficient in weekly LAGEOS solutions varies typically between −0.1 and
−0.5, depending on the geographical distribution of SLR observing stations. Thus, we
expect in the scale estimate series similar variations and characteristic periods as in the
Z geocenter coordinate series.

Figure 5.22 shows the weekly scale estimates from the Helmert transformation w.r.t. the
a priori reference frame SLRF2008. In LAGEOS-1/2 solutions the scale is well-established,
because no range biases to the LAGEOS satellites have to be estimated for most of the
SLR stations (see Table 2.6). Therefore, the scale in the combined solutions is driven
mostly by LAGEOS, because range biases to LEO satellites absorb the discrepancies in
scale estimates.

Both scale estimates agree within 1 ppb for most of the epochs. The mean values of
scale differences w.r.t. SLRF2008 are 0.24 ppb and 0.33 ppb for the LAGEOS and the com-
bined solutions, respectively. These values correspond to 1.5 mm and 2.1 mm. The scale
differences in LAGEOS and in combined solutions are not statistically significant from
the SLRF2008 scale, because the WRMS of scale differences are 0.58 ppb, and 0.57 ppb,
respectively. The scale in ITRF2008 and thus also in SLRF2008 are derived as a mean
value from the SLR and VLBI contributions. The SLR contribution is dominated by LA-
GEOS satellites, whereas the contribution from the LEO SLR satellites is neglected. The
scale derived from the LAGEOS-only solutions agrees by 0.6 mm better w.r.t. SLRF2008
than the combined solution, which is not surprising. This difference is, however, one or-
der of magnitude smaller than the disagreement between SLR and VLBI-derived scale in
ITRF2008 amounting 8 mm.

The spectral analysis of the combined solution shows similar amplitudes of the annual
signal in the multi-SLR and in the LAGEOS solutions. Moreover, other artifactual peaks
from the LAGEOS solution due to mismodelings of satellite orbits can be reduced, e.g.,
the peak of 216.6 days, corresponding to the draconitic year of LAGEOS-2 (the drift
of the satellite’s orbital plane w.r.t. the Sun), the 108.3 day period and the 263.0 day
period corresponding to eclipsing periods of LAGEOS-2 and LAGEOS-1, respectively (or
to aliasing periods with K2, M2, and S2 tides and LAGEOS orbits, see Table 3.10), and
the 306.8 day period corresponding to a drift of LAGEOS-2 perigee and ascending node
w.r.t. the Sun.
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Figure 5.21: X pole coordinates w.r.t. IERS-08-C04 series for half a year and entire time
series.

Figure 5.22: Time series of scale estimates from Helmert transformation and the FFT
analysis w.r.t. SLRF2008.

Figure 5.23: Correlation matrix for LAGEOS-1/2 solution and multi-SLR solution.
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5.4.5 Correlations

Figure 5.23 shows correlation matrices derived from NEQs of the LAGEOS-1/2 solution
and the multi-SLR solution (one weekly solution in December 2011). The matrices are
composed of the station coordinates (parameters 1-36), ERP (37-60), and Earth’s gravity
field parameters (61-75). All remaining parameters are pre-eliminated, and thus, are
implicitly included in the correlation matrices.

The maximum correlation between the Earth’s gravity field parameters and station co-
ordinates is reduced from 0.53 in LAGEOS-1/2 solution to 0.18 in the multi-SLR solution.
The correlations between pole coordinates and UT1-UTC are also strongly reduced in the
multi-SLR solution. The only correlations between the ERP in the multi-SLR solution
exceeding 0.25 are between UT1-UTC for the consecutive days, which is expected since
the PWL parameterization is applied with constraining only one UT1-UTC parameter
and because UT1-UTC cannot be solely derived from satellite-based observation tech-
niques. Finally, the correlations between station coordinates are also reduced due to the
larger datasets and better observation geometry.

5.4.6 Range Biases and Center-of-Mass Corrections

The satellite’s orbit refers to the satellite center-of-mass, i.e., the point whose motion
reflects the orbital dynamics. laser impulse is reflected by retroreflectors embedded on the
surface of the spherical satellite. This is why a CoM correction is needed to extrapolate the
laser range measurements to the satellite’s center-of-mass. The value of CoM correction
depends on the size, shape, type, and properties of the corner cubes, as well as properties
of the ground-based systems, i.e., pulse energy, pulse width, wavelength, and receiver
characteristics (Otsubo and Appleby, 2003).

We estimate the satellite- and station-specific differential range biases (∆RB) and we
transform them to the CoM corrections. Thus, the estimated CoM corrections contain
not only the differences between reflecting points and the center-of-mass of the satellites,
but also the properties of the ground-based systems. ∆RB are derived w.r.t. a priori
range biases provided in the ILRS data handling file. A straightforward transformation
between CoM corrections and ∆RB is possible, because both corrections are added and
subtracted, respectively in the process of data reduction (see Equation 2.51). The CoM
corrections for individual stations can be computed as: CoM=CoMapriori-∆RB.

The ∆RB are estimated to all LEO satellites and for all SLR stations. For LAGEOS
satellites ∆RB are estimated only for selected periods and stations, following the recom-
mendations from the ILRS data handling file. For all other stations the CoM corrections
to the LAGEOS satellites are fixed to well-established station- and satellite-specific cor-
rections, as provided by Appleby et al. (2012)5.

We found that ∆RB for Starlette and Stella vary between −14 mm and +11 mm, but
the weighted mean of ∆RB for all stations is only 0.2 mm. This corresponds to the mean
CoM correction amounting 77.8 mm. This result confirms the statement by Ries (2008)

5http://ilrs.gsfc.nasa.gov/docs/LAGEOS_CoM_Table_081023.pdf
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that the standard CoM correction value of 75 mm is not valid for currently operating
SLR systems. Ries (2008) also states that the CoM corrections for Starlette and Stella
are between 78 mm and 79 mm. Otsubo (2012) also claim that the CoM correction for
Starlette should be 78-79 mm for multiphoton systems and 75-79 mm for single-photon
systems.

For AJISAI the estimated ∆RB are between −6 mm and 46 mm, with a weighted
mean of 15.9 mm. This implies a significant difference between the determined mean
CoM correction (993.9 mm) and the standard AJISAI CoM value (1010 mm). Using
the standard CoM value for AJISAI leads to degraded solutions affecting in particular
the vertical component of station coordinates. The wrong a priori values of the CoM
corrections also explain the systematic shift of the vertical component reported by Lejba
and Schillak (2011), amounting, e.g., −33.2 mm for the Yarragadee station, −36.8 mm for
Herstmonceux, +19.5 for Graz, and −28.4 mm for Greenbelt in the AJISAI-only solution.

Table 5.13 provides the computed CoM corrections for different SLR stations. The dis-
continuities in time series have been detected in an a posteriori analysis. Table 5.13 shows
that the estimated CoM corrections for AJISAI vary between 964 mm and 1016 mm (a
difference of 52 mm). Therefore, adopting a single CoM correction for all SLR stations
is not sufficient for AJISAI. Using instead station- or system-specific CoM corrections is
necessary, which was pointed out by Otsubo and Appleby (2003). The CoM corrections
derived from our empirical analysis agree with the values obtained by Otsubo and Ap-
pleby (2003) using the method of matching full rate residual histograms with theoretical
response functions. Otsubo and Appleby (2003) recommend the CoM values for AJISAI
between 962 mm for single photon SLR systems to 1023 mm for multi-photon systems
with a 1 ps pulse width. The method proposed by Otsubo and Appleby (2003) is more
robust than the method presented herein, because ∆RB values may absorb also some
system-specific biases not necessarily related to CoM corrections. Nevertheless, the CoM
values from our orbit analysis agree within 3 mm with the values obtained by Otsubo and
Appleby (2003) for most of the SLR sites, which proves the legitimacy of the presented
method.

Three SLR stations, namely Zimmerwald, Concepción, and Graz have different CoM
characteristics due to equipment changes or changes of observation mode. In the Zimmer-
wald station in February 2006 a new receiver system was installed, causing a systematic
shift of 17 mm of CoM estimates for both AJISAI and Starlette- Stella (see Table 5.13).
In the considered period three different laser wavelengths were used in Zimmerwald, but
the derived CoM assume the same values independently from the wavelength used.

In case of the Concepción SLR station the shift of CoM was caused by a laser change
in March 2006. Before 2006 a secondary blue wavelength of 423.5 nm was mostly used,
whereas after 2006 the prevalent observations were performed using an IR primary wave-
length of 847.0 nm. Different wavelengths do not influence the CoM for Starlette- Stella
(see Table 5.13), but they have a significant impact on AJISAI CoM (the difference of
28 mm), because of the much larger size of AJISAI satellite (by a factor of nine) as com-
pared to Starlette and Stella. The estimated CoM for Concepción for IR laser is 964 mm
- less than CoM for most of the other SLR stations.
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Table 5.13: Center-of-Mass corrections for AJISAI and Starlette/Stella derived from 10-
year orbital analysis. The weighted mean is computed on the basis of the
number of weekly solutions for each SLR station.

Station Number Period CoM CoM
of sol. AJISAI ± Sta/Ste ±

7090 Yarragadee, Australia 520 2002.0-2012.0 991 5 78 5
7840 Herstmonceux, United Kingdom 456 2002.0-2012.0 983 9 81 8
7839 Graz, Austria 282 2002.0-2008.1 1007 7 79 5

163 2008.1-2012.0 1016 6 79 5
7810 Zimmerwald, Switzerland 189 2002.0-2006.2 1003 10 92 9

256 2006.2-2012.0 986 6 76 5
8834 Wettzell, Germany 434 2002.0-2012.0 989 11 73 8
7832 Riyadh, Saudi Arabia 401 2002.0-2012.0 1008 8 78 7
7105 Greenbelt, Maryland 392 2002.0-2012.0 988 7 78 6
7237 Changchun, China 383 2002.0-2012.0 1003 17 78 13
7110 Monument Peak, California 374 2002.0-2012.0 987 6 76 6
7825 Mt Stromlo, Australia 373 2002.0-2012.0 998 8 80 6
7080 McDonald Observatory, Texas 370 2002.0-2012.0 993 8 79 10
7501 Hartebeesthoek, South Africa 348 2002.0-2012.0 987 8 75 9
7941 Matera, Italy 347 2002.0-2012.0 995 9 79 10
7841 Potsdam, Germany 307 2002.0-2012.0 989 8 80 6
7838 Simosato, Japan 292 2002.0-2012.0 997 12 72 10
7405 Concepción, Chile 64 2002.0-2006.3 993 11 77 10

212 2006.3-2012.0 964 11 77 7
7824 San Fernando, Spain 262 2002.0-2012.0 998 11 76 13
7406 San Juan, Argentina 260 2002.0-2012.0 1013 13 80 9
7403 Arequipa, Peru 228 2002.0-2012.0 989 7 77 8
7249 Beijing, China 206 2002.0-2012.0 989 13 67 13
7119 Haleakala, Hawaii 198 2002.0-2012.0 991 7 77 8
7821 Shanghai, China 185 2002.0-2012.0 1000 18 82 15
7124 Tahiti, French Polynesia 152 2002.0-2012.0 993 10 79 8
7210 Haleakala, Hawaii 111 2002.0-2012.0 984 7 77 9
7308 Koganei, Japan 101 2002.0-2012.0 985 12 68 12
1884 Riga, Latvia 95 2002.0-2012.0 980 22 71 16
7837 Shanghai, China 85 2002.0-2012.0 999 9 78 9
7836 Potsdam, Germany 84 2002.0-2012.0 994 11 79 8
7835 Grasse, France 79 2002.0-2012.0 1008 8 79 10
7848 Ajaccio, France 71 2002.0-2012.0 991 11 78 7
7811 Borówiec, Poland 58 2002.0-2012.0 995 14 82 11
1873 Simeiz, Crimea 56 2002.0-2012.0 1001 19 77 18
7849 Mt Stromlo, Australia 52 2002.0-2012.0 1015 6 83 7

Weighted Mean 993.9 77.8

Graz SLR station shows also a jump in ∆RB time series of AJISAI between Jan-
uary and February 2008 in Figure 5.24. The jump is, however, not associated with any
equipment changes. It is related to a change in SLR normal points generation in a post-
processing mode. The Graz SLR station is equipped with kHz laser system operating in
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Figure 5.24: Time series of ∆RB derived for the Graz SLR station for AJISAI, Starlette
and Stella.

the multi-photon mode (see Section 2.5.4). The station registers echoes not only from
the ’leading edge’ (the closest retro-reflectors) of spherical satellites, but also from other
retro-reflectors. The actual ’reflective depth’ of spherical satellites is up to 80 mm for
LAGEOS, and up to 300 mm for a large-size AJISAI (Kirchner et al., 2008). This in-
troduces a corresponding scatter of registered photons. In the beginning of 2008, a new
procedure of normal point generation was implement in Graz, the so-called ’leading edge’
method, in which only echoes from the nearest 20 mm are accepted, instead of taking all
received echoes (Kirchner et al., 2008). The new method remarkably reduced the scatter
of AJISAI normal points from 17 mm to 0.4 mm (Kirchner et al., 2008). Kirchner et al.
(2008) claims that the implementation of the ’leading edge’ method leads to a change in
CoM of AJISAI of about 9.8 mm. We found a difference in CoM amounting 9 mm from
our in-orbit analysis.

A difference in ∆RB time series of Starlette and Stella has not been detected (see
Figure 5.24), because these satellites are substantially smaller than AJISAI, and thus,
their ’reflective depths’ are by far shallower.

Table 5.14 shows the results of the LEO solutions with different a priori CoM. Fixing
the CoM corrections to one standard value causes an offset of up to 240 µas for the
X pole coordinate, corresponding to 10 mm on the Earth’s surface. The offset vanishes
when estimating differential range biases for all SLR stations or by using the fixed station-
specific CoM values. The estimation of range biases leads to the acceptable solutions even
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Table 5.14: Impact of the a priori CoM and estimation of range biases. Comparison w.r.t.
the IERS-08-C04 series for polar motion and w.r.t. SLRF2008 for the Helmert
transformation.

Range CoM RMS X pole Y pole LoD RMS of Helmert
biases resid bias RMS bias RMS bias RMS U N E

[mm] [µas] [µas] [µs/day] [mm] [mm] [mm]

Fixed standard1 7.96 240.8 352.2 -81.0 322.8 -5.1 118.2 26.3 19.3 16.8
Est. standard1 7.78 57.7 269.8 -8.7 218.1 -3.6 106.5 20.8 16.5 15.0
Est. substituted2 7.78 57.7 269.7 -8.7 218.0 -3.6 106.6 20.7 16.5 15.0
Fixed substituted2 7.84 38.3 267.9 -7.8 217.6 -3.8 105.6 18.5 16.1 14.9
1Standard CoM: 1100 mm for AJISAI and 75 mm for Starlette/Stella. One value for all stations
2Station-spec. CoM: derived on the basis of estimated ∆RBs and re-substituted into the solution

if the a priori CoM corrections are incorrect. Fixing range biases increases the RMS of
residuals in all cases, because the number of parameters is reduced and the degree of
freedom of the solution is changed. Nevertheless, solution 4 from Table 5.14 with fixed
range biases and station-specific CoM values shows a further slight improvement of ERP
estimates as compared to the solutions with estimating range biases.

The Helmert transformation of station coordinates w.r.t. SLRF2008 shows a degra-
dation of the vertical component when the CoM corrections are fixed to the standard
values (on average a repeatability of 26.3 mm) as compared to the solution when the
CoM corrections are fixed to station-specific values (the repeatability of 18.5 mm).

5.4.7 Conclusions

We found that the repeatability of the East and North component of station coordinates is
improved when combining LAGEOS solutions with low orbiting SLR satellites. Moreover,
processing SLR observations to low orbiting satellites is essential for SLR stations not
capable of tracking LAGEOS satellites.

The Z component of geocenter coordinates is of better quality when combining several
geodetic satellites than in pure LAGEOS-1/2 solutions; the mean a posteriori error is
decreased (from 1.3 mm to 0.9 mm) and the correlation coefficient between once-per-
revolution empirical orbit parameters SC and the Z geocenter coordinate is reduced (e.g.,
from −0.83 to −0.23 for LAGEOS-1). In a combined solution the amplitudes of the annual
signal for all geocenter components are increased by about 0.45 mm as compared to the
LAGEOS-only solutions, whereas the amplitude of the period related to the draconitic
year of LAGEOS-2 is reduced from 0.60 mm in the LAGEOS-1/2 solutions to 0.35 mm
in the combined multi-SLR solutions.

Rebischung et al. (2014) also studied the sensitivity of GNSS and LAGEOS solutions
to geocenter coordinates finding a high collinearity between the Z geocenter component
and orbital parameters in LAGEOS-1/2 solutions. The authors claim that ”the first-
order signature of a Z geocenter shift can be compensated by variations of the satellite
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osculating elements, or equivalently by variations of their initial state vectors”. This
statement is, however, incorrect, because the set of six Keplerian elements can describe
only the unperturbed orbit (the two-body problem). Moreover, Rebischung et al. (2014)
state that ”starting from a circular orbit, such a periodic variation of the orbit radius (due
to Z geocenter component) can in fact simply be obtained through a slight ellipticization”.
This is also an imprecise explanation of the low sensitivity of LAGEOS solutions to the
Z geocenter component. Indeed, a change of the orbital shape (of eccentricity and semi-
major axis) may approximate the circular orbit with a shifted origin, but according to
the second Kepler’s law, after such an ’ellipticization’ the satellite velocity in the perigee
will be different than the velocity in the apogee. A change of the orbital shape cannot,
thus, alone explain such a change in the orbit’s origin. Only the once-per-revolution
parameters in along-track can account for such velocity changes, which is also confirmed
by Equation 5.2. Thus the SC/SS parameters estimated along with oculating elements
can entirely explain the moderate sensitivity of LAGEOS solutions to the Z geocenter
component.

The WRMS of the pole coordinates w.r.t. IERS-08-C04 series is reduced from 160 and
155 µas for the X and Y coordinates in the LAGEOS-1/2 solution, respectively, to 149
and 140 µas for the X and Y coordinates of polar motion in a combined solution. It
corresponds to an improvement of 7% for the X and 10% for the Y coordinate.

A spectral analysis of the scale of the SLR network w.r.t. SLRF2008 shows that the
artifacts related to orbit perturbations in the LAGEOS solutions, e.g., periods related to
the draconitic year, are remarkably reduced in the combined solutions.

The parameters derived from the multi-satellite solutions are of superior quality com-
pared to the single-satellite solutions. Thus, the multi-satellite LAGEOS-1-Starlette-
AJISAI solutions should be considered in particular in the period before the launch of
LAGEOS-2 for the establishment of the reference frame instead of LAGEOS-1-only solu-
tions.

Finally, we showed that the standard CoM corrections, i.e., one value for all SLR sta-
tions, are not best suited for the currently operating SLR systems. The mean CoM values
derived from our analysis are: 77.8 mm, 77.8 mm, and 993.9 mm for Starlette, Stella,
and AJISAI, respectively. The variations of differential range biases reach 52 mm and
25 mm for AJISAI and Starlette-Stella, respectively. Therefore, it is recommended that
the station-specific CoM corrections be used instead of one value for all SLR stations or
the range biases should be estimated for all SLR stations. The station-specific differen-
tial range biases for AJISAI from this study explain a systematic shift of the vertical
component of station coordinates in the AJISAI solutions reported by Lejba and Schillak
(2011).

Equipment changes or even changes in post-processing of SLR raw data cause discon-
tinuities in station-specific ∆RB series. E.g., introducing the ’leading edge’ method for
the multi-photon receiver in Graz caused a jump in ∆RB for the large-size AJISAI. Such
differences are related to tracked objects and thus they must be reflected in the CoM
values, which should be station-, satellite-, and time-dependent.
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5.5 Simultaneous Estimation of Gravity Field along with other
Parameters

Before analyzing the SLR-derived Earth’s gravity field, a critical question has to be an-
swered: What is the benefit of a simultaneous determination of geopotential coefficients
for other parameters derived from SLR solutions?

For this purpose we compare: (1) LAGEOS-1/2 solutions, (2) Starlette-Stella-AJISAI
solutions, and (3) multi-SLR solutions (including all five satellites). For test purposes we
analyze solutions with and without estimating the geopotential parameters. We compare
the estimated parameters to external sources, e.g., ERPs to the IERS-08-C04 series and
station coordinates to the SLRF2008 reference frame, in order to assess the quality of the
solutions.

5.5.1 Earth’s Gravity & Geometry & Rotation

The main ’three pillars’ of satellite geodesy can be summarized as (see Chapter 2):
(1) Earth’s geometry, (2) rotation, (3) gravity. Even though all three pillars describe
geodetic and geodynamic phenomena within the system Earth, the gravity has typically
been treated separately from the geometry and rotation. E.g., the official products of the
ILRS comprise SLR station coordinates, pole coordinates and the LoD from the 7-day
combined LAGEOS-Etalon solutions, whereas the gravity field parameters are not esti-
mated. On the other hand, when estimating gravity field parameters from SLR data, the
parameters related to geometry and rotation have typically been fixed and not simultane-
ously estimated (Cheng and Tapley, 1999; Cheng et al., 2003; Devoti et al., 2001; Maier
et al., 2012; Matsuo et al., 2013).

In this section, we present the results of a simultaneous estimation of the gravity field,
ERPs, and station coordinates from a combined SLR solutions incorporating five geodetic
satellites. This solution covers all three pillars of satellite geodesy and ensures full consis-
tency between the Earth rotation, gravity, and geometry-related parameters. We address
benefits emerging from such an approach and discuss particular aspects and limitations
of the gravity field recovery using SLR data.

5.5.2 Impact on ERP and Station Coordinates

Table 5.15 shows the comparisons between the solutions with and without estimating
geopotential coefficients. In the LAGEOS-1/2 solutions and in the multi-SLR solutions
without estimating the geopotential, the once-per-revolution empirical orbit parameters
in the out-of-plane directions (WS/WC) are additionally estimated, because they are
capable to absorb the large variations of C20. Omitting WS/WC leads to inferior solutions
when C20 is not estimated (see Chapter 3). The mean station coordinate repeatability
is calculated for the 15 best performing SLR stations contributing to at least 350 weekly
solutions (about seven years).
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Figure 5.25: Left: Differences of the X pole coordinate w.r.t. IERS-08-C04 series (Top),
spectral analysis of the differences (Middle), a posteriori errors of the X
pole coordinates (Bottom). The Y pole coordinate shows similar variations,
thus, it is not shown here.
Right: Differences of the LoD w.r.t. IERS-08-C04 series (Top), spectral
analysis of the differences (Middle), a posteriori errors of LoD estimates
(Bottom). Note the logarithmic scale for the y axis in the bottom figure.

Station Coordinates

The repeatability of the height and North components of station coordinates grows in-
significantly by 0.2 mm in the LAGEOS-only solution with estimating geopotential. The
East component does not show this growth, because the network rotation around the Z
axis is inferior in a solution with shifted LoD estimates (when not estimating the gravity
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Table 5.15: Differences in ERPs estimation and station coordinate repeatability in SLR
solution with and without estimating the Earth’s gravity field coefficients.
Comparison with IERS-08-C04 series and SLRF2008.

X pole [µas] Y pole [µas] LoD [µs/day] Repeatability [mm]
Solution type bias WRMS bias WRMS bias WRMS Up North East

LAGEOS-1/2 d/o 4/4 4.1 160.0 -8.0 155.2 6.1 57.0 11.1 10.2 12.3
LAGEOS-1/2 no grav 45.8 168.5 -54.1 153.5 77.3 120.5 10.9 10.0 12.4
SLR-LEO d/o 4/4 38.3 267.9 -7.8 217.6 -38.5 105.6 15.3 15.4 15.2
SLR-LEO no grav 190.1 437.5 -61.1 315.9 189.6 359.3 15.8 15.6 16.8
multi-SLR d/o 4/4 6.4 148.9 8.5 140.3 6.3 56.3 11.3 11.2 11.7
multi-SLR no grav 12.3 118.8 -3.2 120.7 73.2 120.9 11.1 11.3 11.8

field, Thaller et al., 2014a). The slightly worse coordinate repeatability can be associated
with a larger number of estimated parameters which are not well established by LAGEOS
satellites (degree 3 and 4 of gravity field, see Figure 5.27), and thus weaken the LAGEOS
solutions. All differences in the repeatability of station coordinates are, however, minor
as compared to the differences in ERPs.

Polar Motion and LoD

In the LAGEOS solutions, the mean biases w.r.t. IERS-08-C04 for the X and Y pole co-
ordinates become larger in the solution without geopotential parameters (see Table 5.15).
The mean biases amount 4.1 and −8.0 µas for the X and Y pole coordinates, respectively,
in the LAGEOS solutions with estimating geopotential and 45.8 and −54.1 µas in the
LAGEOS solutions without estimating geopotential parameters. A particular degradation
of LoD estimates is observed for the solution without estimating geopotential parameters,
namely the WRMS grows from 57.0 to 120.5 µs. This agrees with the findings of Thaller
et al. (2014a), who state that LoD is shifted when the PWL parameterization of ERPs
is used and C20 is not estimated. Moreover, LoD absorbs the part of C20 that is not ac-
counted for by a priori C20 values in the solution without estimating geopotential, which
leads to a shift in LoD series. As a result, the C20 estimates and the shift of LoD from the
solution without estimating the geopotential are of the same order of magnitude (Thaller
et al., 2014a). Thus, the estimation of C20 is beneficial for the LAGEOS solutions, when
estimating PWL LoD values.

Similar problems with LoD estimates are found for the Starlette-Stella-AJISAI solutions
(LEO-SLR). The degradation of pole coordinates is significant in the Starlette-Stella-
AJISAI solutions, reflected in WRMS of 267.9 and 437.5 µas for the X pole coordinate
in the solutions with and without estimating the geopotential, respectively. We conclude
that the estimation of Earth’s gravity field parameters is beneficial for low orbiting SLR
satellites when a static a priori gravity field model is used. Neglecting the estimation of
geopotential parameters for Starlette, Stella, and AJISAI, leads to a serious orbit and
ERP degradation, whereas the station coordinates only are marginally affected (up to
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1.6 mm for the height component of station repeatability).

Figure 5.25, left shows the X pole coordinates and Figure 5.25, right shows LoD esti-
mates as differences w.r.t. IERS-08-C04 series for different SLR solutions. The LAGEOS
solution without estimating gravity field parameters is closest to the official ILRS solu-
tions. Figure 5.25 clearly shows that including low orbiting satellites is beneficial for ERP
estimation.

Table 5.15, however, shows a degradation of the pole coordinates in the multi-SLR solu-
tions when the geopotential parameters are additionally estimated. The WRMS increases
from 118.8 to 148.9 µas for the X pole coordinate and from 120.7 to 140.3 µas for the Y
pole coordinate in the multi-SLR solutions without and with estimating the gravity field
parameters, respectively. Figure 5.25 (left, middle) shows peaks of about 3.5, 7.0, and
14.0 days, which are related to the lengths of the solution batches and its harmonics or
to the orbit alias with tidal waves. The gravity field parameters are estimated in 7 day
interval batches, which lead to an inferior quality of pole coordinates due to, e.g., the
correlations between C21, S21 and pole rates and due to the relaxation of the mean pole
w.r.t. the IERS definition in the solution with simultaneous estimation of gravity and
ERPs. Besides these peaks, both, the multi-SLR solutions with and without estimating
the gravity field parameters, have a similar quality and a posteriori errors at a similar
level, which are much smaller as compared to LAGEOS-1/2 solutions. Figure 5.25 (left,
middle) shows that all multi-SLR solutions (regardless whether estimating geopotential
or not) do reduce the peaks in the X pole coordinate, which are apparent in the LAGEOS-
1/2 solutions. These peaks are related to LAGEOS orbit modeling deficiencies or to the
alias with tidal waves, e.g., the annual signal and an eclipsing period of LAGEOS-2 (107.4
days on periodogram).

For LoD, the simultaneous estimation of the gravity field parameters:

1. reduces the offset of LoD estimates (Fig 5.25, right top), which is mostly due to
absorption by LoD estimates the C20 variations (Thaller et al., 2014a),

2. reduces peaks in the spectrum analysis (Fig 5.25, right middle), which correspond,
e.g., to orbit modeling deficiencies (peaks of 222 days, i.e., a draconitic year of
LAGEOS-2, 280 days, i.e., an eclipsing period of LAGEOS-1),

3. substantially reduces the a posteriori error of estimated LoD (Figure 5.25, right
bottom, notice a logarithmic scale for the y axis). The mean a posteriori error of
LoD is 1.3, 16.9, 7.1, and 44.6 µs/day in the multi-SLR solution with gravity, multi-
SLR solution without gravity, LAGEOS-1/2 solution without gravity, and SLR-LEO
solution without gravity field parameters, respectively.

The a posteriori error of LoD in the multi-SLR solutions (16.9 µs/day) is thus more than
factor of two higher than in the LAGEOS-1/2 solutions (7.1 µs/day) when the gravity
field parameters are not estimated. This quality degradation implies that the estimation
of the gravity field parameters is essential for high-quality PWL LoD estimates when
using SLR data to low orbiting geodetic satellites.
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5.5.3 Conclusions

The simultaneous estimation of the gravity field parameters, ERP, and station coordinates
leads to a minor degradation of the pole coordinate quality in the multi-SLR solutions
(e.g., the WRMS of the X pole is 148.9 and 118.8 µas in solutions with and without
estimating gravity, respectively), but substantially improves the quality of LoD estimates.
The pole coordinates benefit particularly from incorporating many geodetic satellites of
different altitudes and inclinations and a better observation geometry, whereas the LoD
benefits most from the simultaneous estimations of ERP and C20.

In the determination of LoD the simultaneous estimation of the gravity field parameters
along with other SLR-derive parameters: (1) reduces the offset of LoD estimates, which
is mostly due to absorption of C20 variations by LoD estimates, (2) reduces peaks in the
spectrum analysis, which correspond, e.g., to orbit modeling deficiencies, (3) reduces the
a posteriori error of estimated LoD.

The differences in ERPs due to the estimation of the gravity field parameters are
much larger than the differences in station coordinate repeatability, implying that the
geopotential parameters affect the satellite orbits and their orientation in the inertial
frame to a greatest extent and have only a minor impact on the SLR station coordinates.

Finally, the quality of the SLR-derived pole coordinates and LoD from Starlette, Stella,
and AJISAI data is by factor of two better when estimating low degree gravity field
coefficients, as compared to the solution without estimating gravity coefficients. LAGEOS
satellites remarkably stabilize the ERP and station coordinate estimates in a multi-SLR
solutions, thus, the combined solution using SLR observations to many satellites is highly
preferable.
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5.6 Time Variable Earth’s Gravity Field From SLR

The quality of low degree coefficients of the gravity field recovered using SLR is addressed
in this section. Weekly gravity field coefficients up to degree and order 4 are recovered
and the SLR results are compared to the GRACE and CHAMP-derived gravity field
coefficients. The excitation function of polar motion parameters derived from the SLR
solutions is compared to the SLR-derived C21 and S21 coefficients. The possibility of the
recovery of the low degree gravity field coefficients from the SLR station displacements
as the variations of the surface load density is investigated, as well.

5.6.1 Gravity Field from SLR

Before the advent of satellite gravity-dedicated missions, i.e., CHAMP, GRACE, and
GOCE, the geodetic SLR satellites contributed most to the determination of Earth’s
gravity field models (Tapley et al., 1993; Lemoine et al., 1998; Cheng and Tapley, 1999).
The high degree coefficients of the SLR-derived gravity field were, however, of poor quality
due to an inhomogeneous and sparse SLR network and due to correlations between con-
secutive coefficients. By using several SLR satellites the coefficients could be decorrelated
to some extent (Bianco et al., 1998) or the correlations could be addressed by deriving
the lumped geopotential harmonics (Cheng et al., 1997).

CHAMP (Reigber et al., 1998), launched in 2000, was the first mission dedicated to the
Earth’s gravity field determination. The high quality of CHAMP-derived static gravity
models was obtained using, e.g., precise kinematic satellite positions from the continuous
GPS observations (e.g., Prange, 2011).

The knowledge of mass transport within the system Earth was substantially improved
after the launch of the GRACE (Tapley et al., 2004) mission in 2002. The tandem
GRACE-A/B satellites allowed defining the relationship between mass variations in the
atmosphere, oceans, land hydrology, and ice sheets with high temporal and spatial res-
olutions. Some of the lowest degree coefficients of the gravity field are, however, still
better defined by the SLR geodetic satellites, because the K-Band inter-satellite GRACE
observations in conjunction with the near-polar orbits (see Table 2.4) are nearly insensi-
tive to, e.g., the coefficient C20 and coefficients of degree one (geocenter). Therefore, the
SLR satellites have still a non-negligible potential to the determination of the low degree
parameters of Earth’s gravity field (Maier et al., 2012).

Despite that the GRACE mission was originally designed for five years, today after
twelve years of the mission, the GRACE satellites still provide high-quality data, but there
is a serious risk that the mission may be terminated at any time. In 2011 first outages
in GRACE data occurred due to reduced capacity of satellite batteries. The GRACE
Follow-on Mission (the successor of the GRACE mission) is planned to be launched in 2017
(Watkins et al., 2013), so most likely there will be a gap between the missions. This section
addresses the possibility of filling this gap in the recovery of the time variable Earth’s
gravity field in terms of low degree coefficients using SLR data to geodetic satellites.

So far, the geodetic SLR satellites were typically used for defining the Earth’s static
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gravity field (Maier et al., 2012) or for defining the variations of the zonal spherical
harmonics (Cheng and Tapley, 1999; Bianco et al., 1998). The analysis of SLR-derived
time variable tesseral and sectorial harmonics was mostly limited to degree two (Chen
and Wilson, 2008; Chen et al., 2009). We address the possibility of recovering the time
variable geopotential coefficients from the SLR solutions up to d/o 4 and we compare the
results with the GRACE and CHAMP solutions. We investigate which harmonics can be
better obtained by GRACE or SLR and which are contaminated by artifacts related to
the alias with the S2 tide or to correlations between parameters. In particular, we focus
on the comparison of seasonal variations of the coefficients derived from SLR, GRACE,
and CHAMP solutions.

We study the limitations of the SLR technique in deriving the geopotential parameters.
Thus, we focus on four limiting areas, which emerge from

• deficiencies in the background applied models (e.g., ocean and atmosphere tides),

• deficiencies in modeling non-gravitational orbit perturbations (e.g., direct solar ra-
diation pressure, albedo, the Yarkovsky and Yarkovsky-Schach effects), which typi-
cally have periods of the draconitic year or its harmonics,

• correlations between geopotential parameters (e.g., C30 and C50) or correlations
between geopotential parameters and satellite orbit parameters (e.g., argument of
perigee, right ascension of ascending node, etc.),

• a sparse and inhomogeneous distribution of SLR stations, which limits the sen-
sitivity of the SLR network in recovering some geophysical phenomena (see, e.g.
Section 5.2.2 for a study concerning the impact of APL on SLR-derived geocenter
coordinates).

5.6.2 Methods of Analysis

We will compare the Earth’s gravity field coefficients derived from SLR observations to
LAGEOS-1/2, Starlette, Stella, and AJISAI up to d/o 4/4 having a weekly temporal
resolution for 2002-2012 with:

• Earth’s gravity field coefficients derived from GRACE K-band observations and
GRACE GPS-based orbits, up to d/o 60/45 with a monthly resolution for 2003-
2012 as described by Meyer et al. (2012). The solution is available at the ICGEM6.

• Earth’s gravity field coefficients derived from CHAMP GPS-based orbits, up to d/o
60/60 with a monthly resolution for 2003-2010 as described by Weigelt et al. (2013),
available at ICGEM7 .

6http://icgem.gfz-potsdam.de/ICGEM/shms/monthly/aiub/
7http://icgem.gfz-potsdam.de/ICGEM/shms/monthly/ulux/
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Geopotential from GRACE and CHAMP

The temporal variations of the Earth’s gravity field are computed from GRACE K-Band
observations and satellite positions (Jäggi, 2010; Jäggi et al., 2010a) with the so-called
Celestial Mechanics Approach (Beutler et al., 2010a) using an improved pseudo-stochastic
satellite orbit modeling (Jäggi, 2007) and the improved modeling of antenna phase center
variations (Jäggi et al., 2007). The monthly models are derived up to d/o 45/60, because
the high degree coefficients above 45 are heavily contaminated by noise (Meyer et al.,
2012). The Atmosphere and Ocean De-aliasing product (AOD) RL04 has been used for
dealiasing.

The temporal variations of the Earth’s gravity field from the CHAMP solutions are
derived with a monthly temporal resolution. The kinematic CHAMP orbits derived by
Prange (2011) have been used for the gravity field recovery by Weigelt et al. (2013)
using a low-pass Kalman filter (Weigelt et al., 2013), because the spectral analysis of the
unfiltered coefficients shows large periods related to the orbit revolutions of the satellite.
AOD product RL04 has been used for dealiasing of the CHAMP series.

Geopotential from SLR

The SLR gravity field solutions follow the developments described in Section 5.3.1. The
range biases are estimated only for selected SLR stations (see Table 2.6). For remaining
SLR stations the CoM corrections are fixed to values derived in Section 5.4.6.

The a priori Earth’s gravity field model is EGM2008 up to d/o 30/30 for LAGEOS and
d/o 90/90 for LEO. The station displacement corrections due to the atmospheric loading
are applied in order to remove the impact of the Blue-Sky effect (see Section 5.2).

One SLR solution is estimated with the Atmosphere and Ocean De-aliasing RL05
(AOD) products applied at the observation level with both atmosphere and ocean in-
duced gravity corrections, and another one without applying AOD. As shown by Thaller
et al. (2014a) the time variable Earth’s gravity field from AOD reduces the RMS of ob-
servation residuals of the LAGEOS solutions by 0.29 mm and improves and improves the
orbit predictions by about 12−32%. The AOD corrections for degree one, corresponding
to geocenter variations, are not taken from the model.

Figure 5.26 shows the geographical distribution of observation residuals for LAGEOS
and Starlette, Stella, AJISAI, respectively. The spatial gaps due to the inhomogeneous
distribution of SLR sites and the orbital inclinations are larger for low orbiting satellites.
Different observation residuals are addressed by different a priori sigma of SLR normal
points for LAGEOS and LEOs (see Table 2.4).

Sensitivity of SLR Solutions

Cheng et al. (1997) studied the sensitivity of Keplerian orbital elements of geodetic satel-
lites w.r.t. gravity field parameters for single satellites. Bloβfeld et al. (2014) carried out
an empirical study of the impact of different geodetic satellites on gravity field parameters
and found that including Starlette remarkably improves the estimates, in particular the
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Figure 5.26: Left: Geographical distribution of observation residuals to LAGEOS-1/2 in
2009.
Right: Geographical distribution of observation residuals to Starlette,
Stella, and AJISAI in 2009. Units: mm.

Figure 5.27: Sensitivity of the SLR solutions to geopotential coefficients as the square
roots of diagonal elements from the weekly normal equations. Value 1 · 109

corresponds to an a posteriori error of a parameter equals 1 ·10−11, assuming
that a posteriori sigma of unit weight is 10 mm.

tesseral coefficients. Here, we address the overall sensitivity of the individual satellites and
of the combined SLR solution. Figure 5.27 shows the sensitivity of the SLR solutions to
geopotential coefficients as the square roots of diagonal elements of a weekly normal equa-
tion matrix. These values are, thus, related to formal errors from the variance-covariance

matrix, because
√

diag(N) = m0

√
diag(C−1

xx ) (see Section 2.3 for the explanation of sym-

bols used).

Single satellite solutions show a rather low sensitivity as compared to combined solu-
tions. The sun-synchronous Stella orbit carries only marginal information about coeffi-
cients of degree 2 and moderate information for degree 3 and 4. Starlette and AJISAI
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show the sensitivity of a similar order to the same coefficients, because of comparable orbit
inclination angles. Starlette is, however, very sensitive to C30, because of the large eccen-
tricity of the Starlette orbit. Appendix C shows that C30 causes variations of i, Ω, and
ω, which are proportional to the excitation of eccentricity vector e sinω/e cosω. Because
of large eccentricity, Starlette’s e sinω/e cosω can be well defined with small a posteriori
errors which is associated with a large sensitivity to C30.

A combined LAGEOS-1/2 solution is very sensitive to C20, whereas the LAGEOS
sensitivity to coefficients of higher order decreases rapidly. Coefficients of degree 4 cannot
be satisfactorily recovered from the LAGEOS-only solutions with the exception of C40.
The sensitivity of LAGEOS solutions to C30 is only minor as compared to the low orbiting
satellites. One has to bear in mind that some empirical orbit parameters are set up, which
substantially reduces the sensitivity of some gravity field coefficients. E.g., WC/WS reduce
the LEO sensitivity to C20, whereas SC/SS reduce the sensitivity to C30. The neglect of
estimation of empirical orbit parameters causes a degradation of estimated parameters,
i.e., ERPs and station coordinates (see Section 5.3). They are thus set up in the solution
with the simultaneous estimation of gravity, ERPs, and coordinates. In the combined
solutions, however, the correlations between empirical orbit parameters and gravity field
parameters is decreased, because orbits of the geodetic satellites have different inclination
angles and altitudes.

When comparing the solution using three low orbiting satellites (all LEO) and a com-
bined solution of five satellites (all sat.), the contribution of LAGEOS-1/2 is remarkable,
even for coefficients of degrees 3 and 4. This implies that LAGEOS satellites substantially
stabilize the combined solutions by providing a good observation geometry and the in-
formation related to other simultaneously estimated parameters, e.g., station coordinates
and ERPs, even if LAGEOS satellites do not contribute much directly to the estimation
of high order coefficients. Thus, a combined solution is always preferable for the gravity
field recovery.

The combined SLR solutions show a particularly high sensitivity to the zonal gravity
field coefficients (C20, C30, C40) and to the coefficients related to the Earth’s figure axis,
i.e., C21 and S21. All of the coefficients up to d/o 4/4 in Figure 5.27 exceed the value of 1.0·
109 in a combined solution (which corresponds to a formal error of gravity field coefficients
not larger than 1.0 · 10−11), implying that all low degree geopotential parameters should
be well recovered from the multi-SLR solutions.

5.6.3 SLR-GRACE-CHAMP Comparison

We study the consistency between the SLR, GRACE, and CHAMP gravity field solutions
by investigating:

• RMS of differences of the coefficients,

• correlation coefficients of gravity field parameters,

• amplitudes of seasonal signals.
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RMS of differences provides an ’absolute’ discrepancy between gravity field coefficients.
RMS assumes large values in particular when the results are shifted by a certain offset
or when they exhibit different seasonal variations. Correlation coefficients reveal discrep-
ancies of the ’periodic’ (seasonal) signals, since the mean values (offsets) are removed.
In a case when a gravity field coefficient has none or minor seasonal variations, the cor-
relation coefficient between different series can be close to or equal zero, despite a very
good agreement in terms of RMS of differences. Thus, the comparison using correlation
coefficients is eligible only for gravity field coefficients with explicit seasonal signals.

RMS of differences provided in Figure 5.28 reveals a median agreement amounting 4.1,
5.3, and 4.8·10−11 between GRACE-SLR, SLR-CHAMP, and CHAMP-GRACE, respec-
tively. The smallest discrepancy has, thus, been obtained between the GRACE and SLR
solutions, whereas the discrepancy between SLR and CHAMP are by 28% larger. The
zonal coefficients agree to the smallest extent, e.g., RMS of differences is 84.4 and 9.9·10−11

for C20 and C30, respectively between the SLR and GRACE solutions. The zonal coeffi-
cients typically have the largest annual variations (Cheng et al., 1997). Surprisingly good
agreement is observed for some coefficients of degree four, i.e., C42, S42, C43 between all
three techniques, despite much lower sensitivity of SLR solutions to these coefficients as
compared, e.g., to coefficients of degree two. It implies that SLR is well-suited for recov-
ery also non-zonal coefficients of gravity field. This result is contrary to the statement of
Cheng et al. (1997), who claim that ”the variations in the non-zonal spherical harmon-
ics are associated with relatively small scale or regional mass transport, which results in
smaller-amplitude and higher-frequency oscillations in the satellite orbit and are difficult
to detect by SLR”. We found that the tesseral and sectorial low degree coefficients can
also be well established by SLR with the agreement between 2.5 and 6.5·10−11.

Figure 5.29 shows the correlation coefficients r between the SLR, GRACE, and CHAMP
series for the low degree geopotential coefficients. The mean correlation coefficients are
0.38, 0.21, and 0.37 for SLR-GRACE, SLR-CHAMP, and CHAMP-GRACE solutions,
respectively, implying only a moderate overall agreement between different gravity field
solutions. Some of the geopotential parameters show, however, a very good agreement,
e.g., S42 with r being about 0.85 for all solutions, whereas others do not agree, or even
show negative correlations, e.g., the zonal terms C20 and C40 .

Figure 5.30 illustrates as an example S42, i.e., a gravity field coefficient with a very
good agreement in all solutions, and C42 coefficient with the correlations r = 0.28, −0.05,
and −0.20 for SLR-GRACE, SLR-CHAMP, and CHAMP-GRACE solutions, respectively.
Indeed, amplitudes of the annual signal in S42 are almost identical in all three solutions
amounting about 5 · 10−11. The amplitudes of the annual signal are smaller for C42 in
the SLR and GRACE solutions and by far larger in the CHAMP solutions. Thus, the
amplitudes of the annual signal in some of the CHAMP-derived geopotential parameters
are thought to be overestimated (see Figure 5.31). This results in a close to zero or even
negative correlation coefficients between the CHAMP and SLR or CHAMP and GRACE
solutions.

The low value of the correlation coefficient in C42 between SLR and GRACE solutions
can be explained on one hand by small annual variations of C42, and on the other hand by
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Figure 5.28: RMS of differences of gravity field parameters from SLR, CHAMP and
GRACE solutions.

Figure 5.29: Correlation coefficients of gravity field parameter variations from SLR,
CHAMP and GRACE solutions (all solutions with a priori AOD products
applied).
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Figure 5.30: Comparison of C42 and S42 derived from SLR and GRACE solutions.

Figure 5.31: Amplitudes of annual signal of low degree gravity field coefficients in SLR
(weekly), GRACE (monthly), and CHAMP (monthly filtered) solutions.
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the SLR-specific issues. The spectral analysis reveals some peaks related to satellite orbit
modeling difficulties, i.e., a period of 117 days related to the drift of AJISAI’s ascending
node (see Table 2.4), and a period of 36.4 days related to a draconitic year of Starlette.
Nevertheless, these SLR orbit modeling issues do not substantially degrade the quality
of derived gravity field parameters, because the corresponding peaks have the amplitudes
0.7·10−11 at maximum, which is much less than, e.g., the amplitudes of annual signals
(on average 2.8·10−11).

Figure 5.31 shows the amplitudes of the annual signal of gravity field coefficients re-
covered from the GRACE, CHAMP, and two SLR solutions: with and without AOD
corrections. The mean amplitudes, excluding C20, are: 2.8, 2.0, and 5.4·10−11 for the
GRACE, SLR-AOD, and CHAMP solutions, respectively. It suggests that the ampli-
tudes of the annual signal might be overestimated in the CHAMP solutions for some
coefficients, on average by a factor of two w.r.t. the GRACE series.

The amplitudes in the GRACE and SLR solutions agree very well with exceptions for
the coefficients C20, C30, S32, C33, and S33, for which the amplitudes obtained from the
GRACE solutions are by more than a factor of 2 larger. The largest difference between
the SLR solutions with and without applying AOD corrections is observed for C20 and
S21.

The amplitudes of annual signal have, however, similar order of magnitude as the RMS
of differences of coefficients from the comparison of Figures 5.28 and 5.30. It explains on
one hand a low value of the correlation coefficients in Figure 5.29 for some geopotential
parameters, and on the other hand suggests that some geopotential parameters may
exhibit a different signal or may be shifted by a certain offset. Some parameters seem to
be affected by modeling deficiencies. The special cases of extreme high or low discrepancies
between GRACE, SLR, and CHAMP solutions are discussed hereafter.

Zonal Spherical Harmonics

Figure 5.32 shows the variations of C20 from the SLR, GRACE, and CHAMP solutions.
The C20 series from the GRACE solutions show unrealistic variations related to the alias
period of S2 tide amounting about 160 days (Chen et al., 2009) reaching the amplitude of
6 · 10−10. The determination of C20 from GRACE range-rate data is problematic (Meyer
et al., 2012). Moreover correlations between C20 and the empirical coefficients which are
set up every 15 min weaken the C20 determination from GRACE (Meyer et al., 2012).
However, some other studies show a moderate agreement between C20 estimates from
GRACE and SLR data, e.g., Cheng et al. (2013).

The CHAMP solutions show annual variations of the amplitude twice larger than the
variations from SLR and a shifted phase of these variations. The semiannual signal is not
recovered at all, because of a low-pass filter applied in the CHAMP solutions.

The mean formal errors of the weekly estimates of C20 are 4 · 10−12, 8 · 10−12, and
10 ·10−12 from the SLR, GRACE, and CHAMP solutions, respectively, indicating a rather
over-optimistic value for the GRACE estimates. The formal error from the SLR solutions
corresponds to 0.05 mm of the geoid height difference.

191



5 Improving SLR Solutions

C40 estimates from SLR and GRACE agree to some extent before 2009 (see Figure 5.33,
top). The amplitude of the semiannual signal is similar in both, the SLR and the GRACE
solutions, but the amplitude of the annual signal disagrees. It seems that the GRACE
solutions fail to recover the entire annual signal in C40, as already observed by Lemoine
et al. (2006). Moreover, the spectral analysis shows the peak with the amplitude of
1.2·10−11 which is related to the S2 tide (about 160 days) in the GRACE solution, implying
that not only C20 is affected by the deficiencies in S2 tide, but also other GRACE-derived
gravity field coefficients.

Figure 5.33 bottom shows large annual variations in C30 from the GRACE solutions,
which are not present in the SLR solution. C30 and C50 impose similar perturbations
on the Starlette, Stella, and AJISAI orbits, thus, the decorrelation of C30 and C50 is not
possible for this set of low orbiting satellites (Cheng et al., 1997) and for a truncated
solution up to d/o 4/4, because the gravity field recovery in the SLR solutions is based
uniquely on the orbit perturbations. In the SLR solutions the lumped C30 + 0.9 · C50

coefficient is recovered instead of C30 (Devoti et al., 2001). Figure 5.33 bottom shows
that the C50 coefficient derived from the GRACE solution shows a similar amplitude to
C30 with the phase shifted by 180◦. In this study the estimated empirical parameters
WC/WS additionally reduce the sensitivity to odd-degree gravity field parameters.

Decorrelation of C30 and C50 is possible by increasing the number of low orbiting spher-
ical satellites with different orbital altitudes and inclinations. However, other spherical
satellites like Larets, Blits, and Westpack have inclinations and altitudes similar to that
of Stella and the number of SLR observations to these satellites is usually insufficient.
Following the studies of orbital sensitivity to C30 and C50 performed by Cheng et al.
(1997), the decorrelation between C30 and C50 can be achieved by including addition-
ally BEACON-C data. BEACON-C has a high eccentricity (e =0.0238), which makes
the satellite sensitive to odd-degree gravity parameters, and a low inclination (i =41.25◦,
which allows for a separation between C30 and C50. However, BEACON-C data are not
considered in this study, because it is a non-spherical geodetic satellite equipped with
large-size solar panels, and thus, very sensitive to the solar radiation pressure and atmo-
spheric drag. Moreover, the quality of SLR normal points is poor due to the trapezoidal
shape of the satellite. The recently launched LARES satellite may probably help in the
decorrelation of C30 and C50, but today the time series of collected data is still too short
for a longterm analysis. However, a very small eccentricity of LARES orbit (varying in
a range 0.0006< e <0.0016, Sośnica et al., 2014a) reduces the sensitivity to odd-degree
gravity field parameters.

Degree 2

The excitation function χ1, χ2 of the ERPs can be compared to the variations of spherical
harmonics C21, S21, respectively, after removing the impact of the ocean currents and
the atmosphere (e.g., Beutler, 2005; Gross, 2007). The numerical procedure for the
transformation of the pole coordinates to ∆C21 and ∆S21 is described in Appendix D.

Figure 5.34 shows the GRACE and SLR-derived C21 and S21 coefficients compared
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Figure 5.32: C20 from the SLR solutions with AOD and without AOD corrections applied
at the observation level.

Figure 5.33: C40 and C30 from the SLR (red line) and the GRACE solutions (blue line).
C50 from the GRACE solutions is additionally shown as a green line.

to the excitation of the polar motion. In the GRACE solutions the AOD signal was
recovered a posteriori in order to compare the fully consistent time series. For S21 all
three solutions agree to a great extent, with an exception of several months in 2003 and
2004. The periods shadowed in gray (see Figure 5.34) correspond to the GRACE monthly
solutions with data gaps and resonances (Meyer et al., 2012), causing inferior gravity field
recovery. Otherwise, the annual and inter-annual variations contain a comparable signal.
For S21 the correlation coefficient is 0.73, 0.78, and 0.62 between SLR-GRACE, SLR-χ,
and GRACE-χ solutions, respectively.
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Figure 5.34: Comparison of C21 and S21 derived from SLR solutions, GRACE solutions,
and SLR-derived excitation function of polar motion.

Figure 5.35: Comparison of C22 and S22 derived from SLR and GRACE solutions.
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The agreement between the GRACE and the SLR-derived variations of C21 and the
excitation of polar motion is less prominent than for S21. The spectral analysis shows
that the amplitude of the annual signal is the same in all three solutions, but the GRACE
solution additionally shows large signals of about 333 and 429 days. The correlation
coefficient amount 0.31, 0.46, and 0.27 between SLR-GRACE, SLR-χ, and GRACE-χ
solutions, respectively. Nevertheless, the differences of the C21 coefficient derived from
three different solutions do not exceed 1·10−10 with the exception of the shadowed periods
with the inferior GRACE solutions.

The SLR series shows some small artifacts related to the orbit perturbations. In the
spectral analysis of C21 a period of 73 days corresponding to a draconitic year of Starlette,
is observed, and in the spectral analysis of S21 a period of 107 days, corresponding to
the drift of Starlette’s perigee, is visible. The spectral analysis of S21 shows a period of
520-550 days in both, the SLR and the polar motion series, of an amplitude of 1.6 ·10−11.
In the GRACE solution a period of about 500 days has almost twice the amplitude
(2.8 · 10−11) of the SLR and polar motion series. In the SLR gravity solutions and in
the SLR-derived polar motion this period can be associated with the draconitic year of
LAGEOS-1 (560 days), but the origin of this period is currently not explained in the
GRACE results.

The agreement of the remaining spherical harmonics of degree 2, i.e., C22 and S22,
is quite good (see Figure 5.35) for the SLR and GRACE solutions with the correlation
coefficient 0.37 and 0.80 for C22 and S22, respectively. The spectral analysis reveals,
however, small aliasing problems in SLR solutions. The periodogram shows peaks around
36 and 44 days corresponding to the S2 aliasing period with the orbits of Starlette and
AJISAI, respectively. Thus, the deficiencies in the S2 tide modeling imply not only
problems in the recovery of some gravity field coefficients from GRACE (Meyer et al.,
2012), but also disrupt the SLR solutions. The S2-induced amplitudes are small and they
assume a value of 1.8 · 10−11 at maximum, but they are detectable, because of the high
quality of the SLR data.

The CHAMP solutions overestimate the annual signal in both, the C22 and S22 coef-
ficients, and they show an opposite drift in C22 as compared to the SLR and GRACE
solutions.

Degree 3 and 4

Gravity fields derived from SLR and GRACE agree quite well for most of the coefficients
of degrees 3 and 4. There are, however, five exceptions, namely: C33, S33, S32, C41, S41,
where the gravity field signal could not be fully recovered in the SLR solutions.

The SLR-derived coefficients C41 and S41 (see Figure 5.36) reveal secular trends similar
to that one in the GRACE solutions, but they show in addition large variations equal
73 days, 89 days, and 121.4 days. These variations correspond to the draconitic year of
Starlette (73 day), the draconitic year of AJISAI (89 days), and to Stella’s revolution
period of the perigee (122 days) or Starlette’s secular drift of ascending node w.r.t. the
sidereal year (365.25 · Ω̇Starlette/(365.25 − Ω̇Starlette) = 121 days). These variations are
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related to a mismodeling of the non-gravitational orbit perturbations. Secular drifts of
the coefficients C41 and C21 are essentially important for the description of the ice mass
depletion in Greenland (Matsuo et al., 2013).

In the coefficient C42 (see Figure 5.30) a period of Starlette’s draconitic year can be
detected as well as a period corresponding to the drift of AJISAI’s ascending node of
117 days. Kucharski et al. (2010) found that the precession of AJISAI’s spin axis is equal
to the drift of ascending node and it amounts 117 days, indicating the influence of the
Yarkovsky and the Yarkovsky-Schach effects, which are not modeled because of a lack of
information concerning the evolution in time of the satellite’s spin axis.

The modeling of non-gravitational forces affecting SLR satellites is essential, because
the SLR-derived gravity field is recovered exclusively from the orbit perturbations. Mod-
eling thermal effects like the Yarkovsky and the Yarkovsky-Schach effect is, however,
not possible, because the orientation and evolution of the spin axis and the revolution
period is not known for low orbiting SLR satellites. The modeling deficiencies of the non-
gravitational forces impose today the major limitation in the recovery of the SLR-derived
gravity field coefficients.

5.6.4 Other SLR Solutions

LAGEOS-only Solutions

Figure 5.37 shows the series of C20 and S22 obtained from the weekly LAGEOS-1/2
solutions and the multi-SLR solutions using five geodetic satellites. AOD corrections are
not applied for both solutions.

The variations of C20 agree to a great extent in both solutions. The LAGEOS-only
solution shows, however, the annual and semiannual signals with amplitudes which are
by 25% larger than in the multi-SLR solutions. Differences in the amplitudes can be ex-
plained by correlations between LoD, geopotential parameters, and empirical orbit param-
eters in the LAGEOS-only solutions (see Figure 5.23). A comparison with the solutions
provided by the Center for Space Research (CSR8, Cheng et al. 2011) reveals a better
agreement with the multi-SLR results than with the LAGEOS-only solution (with the
correlation coefficient r = 0.93 between CSR and multi-SLR and r = 0.87 between CSR
and LAGEOS-1/2). In the CSR solutions different orbit parameterizations are applied,
but SLR observations to five geodetic satellites are used, as well (LAGEOS-1/2, Starlette,
Stella, AJISAI).

Apart from the degree 1 coefficients and C20, the other geopotential coefficients cannot
be very well recovered from the weekly LAGEOS-only solutions. Figure 5.37 illustrates
this effect by showing the recovery of S22, for which the variations of the weekly LAGEOS-
only solution are almost three times larger than the variations of the multi-SLR solution.
This is due to the moderate or to the low LAGEOS sensitivity to high degree/order gravity
field coefficients (cf. Figure 5.27) Moreover, the spectral analysis reveals a peak at the
period of 219 days, which corresponds to the draconitic year of LAGEOS-2, indicating

8ftp://ftp.csr.utexas.edu/pub/slr/degree_2/
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Figure 5.36: Comparison of C41 and S41 derived from SLR and GRACE solutions.

Figure 5.37: Variations of C20 and S22 from the weekly LAGEOS-only and the multi-SLR
solutions with spectral analyses.
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Figure 5.38: Variations of S22 from the monthly LAGEOS-only and the monthly GRACE
solutions with spectral analyses

Figure 5.39: Top: A priori corrections for S21 from the AOD products.
Bottom: A priori AOD corrections for S21 and the difference between S21

from the SLR solutions with AOD and without AOD applied.

orbit modeling issues. The peak is substantially reduced in the combined multi-SLR
solutions. Using SLR observations to many geodetic satellites for gravity field recovery is
thus recommended, instead of generating the LAGEOS-only solutions.

Generating monthly instead of weekly LAGEOS-only solutions remarkably reduces the
artifactual peaks in the spectral analysis (see Figure 5.38). The gravity field coefficients
derived from the monthly LAGEOS-only solutions are thus more consistent with the
GRACE solutions. However, generating very long satellite arcs degrades the SLR-derived
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ERP estimates by about 40% when comparing to weekly LAGEOS solutions(Sośnica et al.,
2011).

De-aliasing Products

AOD products shall absorb gravity field variations due to the atmosphere and ocean-
induced pressure loading (Flechtner, 2007). The AOD RL5 contain gravity field correc-
tions every 6 hours up to d/o 100. The intermediate values are interpolated in time using
linear regression between two consecutive sets of values.

Gravity field corrections due to ocean and atmosphere are shown in Figure 5.39 (top),
whereas in Figure 5.39 (bottom) the a priori applied AOD corrections are shown with
a comparison to differences between the S21 estimates from solutions with and without
a priori applied AOD corrections. Figure 5.39 shows that the AOD corrections can be
properly reproduced from the SLR solutions. Similar pattern can be observed also for
other gravity field parameters. There are, however, some differences indicating that the a
priori gravity corrections influence not only the gravity estimates, but also other parame-
ters, e.g., station coordinates and ERPs. See Thaller et al. (2014a) for LAGEOS/Etalon
studies of AOD.

Figure 5.40 shows the SLR-derived time series of C20 variations with and without
applying AOD. The solution with AOD shows almost three times smaller annual variations
than the solution without AOD. On the other hand, the amplitude of semiannual signal
is almost doubled when applying AOD. The solution with applying AOD still shows
large seasonal variations. AOD can reduce the gravity variations, affecting the orbits of
SLR satellites, only to some extent, because the hydrology-induced loading, post-glacial
rebound, and loading due to the ice sheets are not included in AOD.

Surface Load

Surface mass variations of low degree spherical harmonics can be derived from residual
displacements of SLR station coordinates in analogy to GNSS solutions (Fritsche et al.,
2010). The derived harmonics reflect the deformations of the Earth’s crust due to the
loading of surface mass. Unfortunately, the distribution of SLR stations is far from ideal
with only 7 SLR sites in the Southern hemisphere and with about 45 SLR sites in the
Northern hemisphere. Moreover, the SLR observations are restricted by weather condi-
tions. Therefore, some loading corrections applied to SLR stations do not represent well
the global loading deformation effects, e.g., for the geocenter coordinates (see Section 5.2).

For the estimation of the surface mass variations we apply the approach described by
Blewitt (2003) and applied by Fritsche et al. (2010) for the GPS-derived surface load
geocenter variations.

Figure 5.41 shows a comparison between the low gravity field coefficients derived from
the analysis of orbit perturbations of geodetic satellites and the SLR station displace-
ments transformed to the coefficients of the load surface density variations. The second
approach is more limited by the inhomogeneity in the distribution of SLR sites, observa-
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tion geometry, and discontinuities in time series of station coordinates. The Z geocenter
coordinate (C10) and C20 are shown in Figure 5.41.

The geocenter coordinates can be quite well reproduced from the surface load density
coefficients. The Z coordinate seems to be even less noisy in 2003 and 2004 than the C10

gravity field coefficient. A disagreement can be observed, however, in the beginning of
2008, when both approaches lead to contradictory results. The correlation coefficient r
between both series is 0.52. The X and Y geocenter coordinates agree to a similar extent
with correlations coefficients 0.65 and 0.53, respectively.

The C20 coefficient derived from the orbit analysis of SLR satellites and from station
displacements do not agree well (correlation coefficient of 0.26). In 2003 or 2010 the
reproduced signal are very consistent, but in 2006 or 2008 both solutions are out-of-phase.
The spurious variations in 2008 can be associated with anomalous pressure variations,
which were already identified for the Y geocenter component in Figure 5.12a. This might
be related to the La Niña event (a part of the broader El Niño Southern Oscillation
climate pattern), which took place in 2008 and caused heavy rains, a drop in sea surface
temperatures over Southeast Asia by 2◦C, and anomalous atmosphere pressure variations
(Redondo-Rodriguez et al., 2012). In particular the pressure variations have an impact
on Earth crust displacements (see Section 5.1).

Nevertheless, the surface load density yields an alternative for the determination of low
degree Earth’s gravity field coefficients. The high degree gravity field coefficients cannot
be, however, well established using the surface load density variations. We conclude that
the geocenter coordinates can be reproduced from load surface density to a certain extent.
The gravity coefficients of degree 2 and higher, cannot be sufficiently well reproduced by
surface load density variations of SLR stations.

5.6.5 Summary on Gravity Field Recovery

Table 5.16 summarizes the most appropriate solutions for the low degree gravity field
coefficients, which are indicated by stars, and the mean a posteriori errors of gravity field
parameters. The best solutions for particular coefficients are chosen as follows: (1) lack
of S2 tide alias, (2) fully reproduced annual and semiannual signals comparable to other
solutions (if possible), (3) no orbit modeling issues from the spectral analysis, e.g., no
modeling issues related to the draconitic years or to the nodal drifts.

GRACE solutions show problems only with recovery of C20 and C40. 15 out of 21
geopotential coefficients can be well determined from the multi-SLR solutions, whereas
the weekly LAGEOS-only solutions are suitable only for the C20 recovery. 13 coefficients
can be well determined by CHAMP, however, their seasonal variations are limited to the
annual signals, due to the applied Kalman filter.

Table 5.16 shows that for degree 2 the a posteriori errors are at the same level in
the GRACE and multi-SLR solutions. For coefficients higher than C20 the mean error
is a factor of 3 to 90 times larger for the LAGEOS-only solutions as compared to the
multi-SLR solutions, showing a rapidly decreasing LAGEOS sensitivity to the gravity
field coefficients of higher degrees. In the GRACE solutions the mean error of tesseral
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5.6 Time Variable Earth’s Gravity Field From SLR

Figure 5.40: C20 from the SLR solutions with AOD and without AOD corrections applied
at the observation level.

Figure 5.41: Comparison between low degree gravity field coefficients derived from the
analysis of orbit perturbations of SLR satellites and the SLR station displace-
ments transformed to the coefficients of the load surface density variations.

harmonics is much smaller than for the sectorial terms (compare e.g., C41 and C44),
because the K-Band GRACE observations have a minor sensitivity to sectorial harmonics
(for details see Beutler et al., 2010a). The mean error of even zonal terms is very small in
the GRACE solutions (see C20, C40), but these terms are affected by the alias with the
S2 tide. In the multi-SLR solutions the mean errors of all geopotential parameters up to
d/o 4/4 are at the comparable level.

The mean a posteriori sigma is smaller in the multi-SLR solutions than in the CHAMP
solutions for coefficients of degree 2. For degree 3 and 4 some of the CHAMP-derived
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5 Improving SLR Solutions

Figure 5.42: Monthly Earth’s gravity field from the SLR, GRACE, and CHAMP solutions
in 2004. Geoid heights in cm w.r.t. EGM2008. For the GRACE and CHAMP
solutions the Gauss filter of 1000 km was applied and the coefficients were
taken up to maximum d/o provided by the models. In SLR solutions the
maximum d/o is 4/4. The differences of the C20 coefficient and coefficients
of degree 1 have been excluded.

coefficients have smaller mean errors, but they seem to be underestimated, because the
CHAMP-derived gravity coefficients show large variations in the monthly solutions. The
annual signals show much larger amplitudes or even the opposite variations for some
CHAMP-derived coefficients, which was already shown in Figure 5.31. Prange (2011)
also argues that the formal errors of the space-borne GNSS gravity field models are too
optimistic.

We conclude that the low part of the time variable Earth’s gravity field can be well
established from the multi-SLR solutions with a quality comparable to the GRACE so-
lutions for most of the coefficients. More than half of the coefficients can also be well
determined from the filtered CHAMP solutions.

The CHAMP gravity field solutions are in particular suitable for the recovery of sectorial
harmonics. This fully agrees with findings from Beutler et al. (2010a), who studied the
GPS-only GRACE gravity field and concluded that the sectorial terms were much better
determined by GPS than the zonal terms. Moreover Beutler et al. (2010a) stated that the
sectorial terms from GRACE were determined with GPS with an accuracy comparable
to that of K-Band-only solutions.

Figure 5.42 shows a comparison of the SLR, GRACE, and CHAMP monthly Earth
gravity fields for June 2004 and December 2004 w.r.t. EGM2008. The differences of
Earth’s potential are converted to differences of geoid height. The models are derived as
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Table 5.16: Mean a posteriori errors of gravity field parameters from the weekly SLR,
monthly GRACE, and filtered monthly CHAMP solutions. The best solutions
for particular coefficients are shown in bold and with ?.

Coeff. Mean a posteriori sigma mxx in 10−11

GRACE multi-SLR LAGEOS CHAMP

C20 0.8 ?0.4 ?0.6 1.0
C21 ?0.4 ?0.5 1.8 0.9
S21 ?0.3 ?0.5 1.6 ?0.9
C22 ?0.5 ?0.6 3.5 ?1.1
S22 ?0.5 ?0.6 2.8 ?1.1
C30 ?0.2 0.6 53.2 0.9
C31 ?0.1 ?0.9 4.2 ?0.8
S31 ?0.1 ?0.8 4.8 ?0.8
C32 ?0.2 ?1.0 9.5 0.8
S32 ?0.2 0.9 8.7 ?0.7
C33 ?0.4 0.8 12.0 ?0.9
S33 ?0.4 0.7 12.5 ?0.9
C40 0.05 ?0.7 2.6 0.9
C41 ?0.05 0.8 8.9 0.8
S41 ?0.05 0.7 6.9 0.8
C42 ?0.08 ?0.7 6.3 0.7
S42 ?0.08 ?0.6 4.1 ?0.7
C43 ?0.2 ?0.7 7.8 ?0.7
S43 ?0.2 ?0.7 7.6 ?0.7
C44 ?0.5 ?1.0 10.2 ?0.7
S44 ?0.5 ?0.9 8.8 ?0.7

mean values of five consecutive weekly solutions. Figure 5.42 shows a moderate agreement
between the SLR and GRACE solutions. In December 2004 all maxima and minima of
geoid displacements in the SLR and GRACE solutions agree very well, e.g., a maximum
over the Pacific, South America, South Africa, and Oceania, and a minimum over North
America and the Indian Ocean. The amplitudes of the geoid displacements differ to some
extent, because of the truncation of the SLR solution up to d/o 4/4 and by far much lower
spatial resolution than the GRACE solutions. The agreement between CHAMP-derived
seasonal geoid variations and SLR or GRACE solutions is minor. The CHAMP solution
seems to be noisier because of larger annual variations of the gravity field coefficients.

5.6.6 Conclusions

There are four main reasons which limit the quality of the SLR-derived time-variable
gravity field, emerging from:
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• deficiencies in the background applied models, in particular the S2 tide,

• deficiencies in modeling non-gravitational orbit perturbations, which mostly cause
the variations of draconitic year,

• correlations between geopotential parameters (e.g., C30 and C50),

• a sparse and inhomogeneous distribution of SLR stations, which limits the sensitivity
of the SLR network in recovering some geophysical phenomena, in particular when
deriving the geopotential parameters from the surface load displacements.

Multi-SLR solutions are currently the best source for the estimation of C20. The
GRACE solutions cannot resolve the series of C20 with a sufficient quality, because of
the alias with the S2 tide. C20 derived from LAGEOS-only solutions shows a similar
quality as the multi-SLR solutions, but the amplitude of annual signal is increased by
25% due to the correlations with other parameters. Gravity field coefficients of degrees
higher than that of C20 are of inferior quality in the weekly LAGEOS-only solutions, due
to a rather low sensitivity of high orbiting LAGEOS satellites. Therefore, the weekly
gravity field coefficients of degree higher than C20 should be computed from the solutions
incorporating many SLR satellites. C20 can be also recovered from the SLR station load
surface displacements, but this method is very limited by the inhomogeneity of the dis-
tribution of the SLR sites. The correlation coefficient between the gravity field from the
load surface and the orbit perturbations of SLR satellites is 0.255 for C20 and 0.521 for
the Z geocenter coordinate (C10).
C21 and S21 derived from GRACE, SLR, and excitation function of the polar motion

agree very well with exception of several months with gaps of GRACE data and orbit
resonances. C21 and S21 are in particular affected by the AOD corrections, so in order to
achieve a full consistency, the same a priori gravity field corrections have to be applied.

Aliasing with S2 tide causes artifacts for many gravity field coefficients, e.g., for C20

and C40 in the GRACE solutions, and for C42 in the SLR solutions. In the SLR-derived
gravity field coefficients, the periods related to the S2 tide alias are very small (1.8 · 10−11

at maximum), but detectable with the current great accuracy of SLR data.
The time variable Earth’s gravity coefficients of low degree derived from the SLR so-

lutions agree better with the GRACE results than the CHAMP-derived time variable
coefficients, which show much larger annual variations when compared to GRACE and
SLR. The GRACE and SLR solutions lead to comparable results in terms of low degree
geoid surface variations. RMS of differences reveals a median agreement amounting 4.1,
5.3, and 4.8·10−11 between GRACE-SLR, SLR-CHAMP, and CHAMP-GRACE solutions,
respectively.
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The contribution of the SLR to the definition of the origin of reference frame (geocenter
coordinates), the global scale (in both the geometric and dynamic sense), and low degree
coefficients of the Earth’s gravity field (especially the oblateness term) is essential, due
to the high stability of satellite orbits and the exceptional precision of SLR observations,
which are affected only by few error sources. Moreover, the SLR technique has a great
contribution to a definition of the global terrestrial reference frame, estimation of the
Earth rotation parameters and the time variable Earth’s gravity field. The long time
series of precise SLR observations allow validating many models, e.g., ocean tide models,
Earth gravity field models, atmospheric pressure loading models, atmosphere and ocean-
induced time variable gravity field models, etc.

We have shown that appropriate modeling of gravitational and non-gravitational forces
is essential for orbit determination of geodetic satellites. Concerning the gravitational
forces, the coefficient C20 couses the largest perturbations on LAGEOS satellites. The
sensitivity of LAGEOS orbits dramatically decreases for higher degree geopotential co-
efficients, whereas low orbiting geodetic satellites are very sensitive to both, low- and
medium-degree coefficients of the Earth’s gravity field.

The differences between the current ocean tide models have bigger impact on LAGEOS
orbits than the differences between the current Earth gravity field models. The mean
differences between solutions using various ocean tide models (max. 1.32 mm of RMS)
are larger than the mean differences between orbit solutions using various Earth gravity
field models (max. 1.16 mm of RMS). Insufficient quality of the S2 tide constituent causes
large variations of the empirical orbit parameters of SLR geodetic satellites, as well as
variations for different type satellites, e.g., GRACE.

The atmospheric drag causes a secular decay of semi-major axes of low orbiting geodetic
satellites, i.e., Starlette, Stella, and AJISAI, whereas the Yarkovsky and the Yarkovsky-
Schach effects cause a secular decay of LAGEOS-1 and LAGEOS-2. The decay of the
semi-major axis of LAGEOS-1 is smaller than the decay reported in many earlier papers
due to the satellite’s de-spinning effect. The decay is ∆aL1 = −20.3 ± 3.5 cm/year for
LAGEOS-1 and ∆aL2 = −23.9± 3.7 cm/year for LAGEOS-2 in the 1994-2011 time span.

The albedo modeling reduces the estimated semi-major axis of LAGEOS by 1.5 mm and
changes the scale of the reference frame by 0.07 ppb. The perturbations due to the albedo
are largest in the radial directions, but some of the spurious perturbations in along-track
can also be explained by the albedo radiation. In general, all non-gravitational forces (e.g.,
atmospheric drag, solar radiation pressure, Earth radiation pressure, the Yarkovsky, and
the Yarkovsky-Schach effects) cause the largest variations for the in-orbit components,
i.e., the along-track and the radial components.
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Figure 6.1: Blue-Sky effect on SLR stations (units: mm). Area of the dots is proportional
to number of normal points to LAGEOS satellites collected by stations.

The SLR solutions are very sensitive to atmospheric and ocean pressure loading. Ocean
tidal loading corrections have the largest impact on the SLR station coordinates, geo-
center coordinates, Earth rotation parameters, and LAGEOS orbits, but the impact of
atmospheric non-tidal loading cannot be neglected either. The atmospheric tidal load-
ing corrections are very small and they affect the LAGEOS orbits to the largest extent,
due to the associated CMC. The repeatability of coordinates of coastal SLR stations is
mostly improved when applying ocean tidal loading corrections (up to 73% for Tane-
gashima in Japan), whereas inland stations achieve a better repeatability when applying
atmospheric non-tidal loading corrections (up to 12% for Altay in Russia). The overall
improvement of 3D SLR station repeatability is 19.5%, 0.2%, and 3.3%, due to the ocean
tidal, atmospheric tidal, and atmospheric non-tidal loading corrections, respectively.

The omission of atmospheric non-tidal loading may in particular lead to inconsistencies
between optical (SLR) and microwave (GNSS, VLBI, DORIS) solutions. SLR observa-
tions are carried out during almost cloudless sky conditions, whereas microwave obser-
vations are weather-independent. Cloudless weather conditions are typically related to
high air pressure conditions, when the Earth’s crust is deformed by pressure loading.
Therefore, weather dependence of the optical observations causes a systematic shift of
the station heights, which is called the Blue-Sky effect. Applying atmospheric non-tidal
loading corrections compensates the Blue-Sky effect. The impact of the Blue-Sky effect
exceeds 2.0 mm for nine SLR inland stations. For the Golosiv station in Ukraine the
Blue-Sky effect reaches even 4.4 mm, due to sparse SLR data collected by this station.
The mean Blue-Sky effect is 1.1 mm for all SLR stations (see Figure 6.1).
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Applying atmospheric non-tidal loading corrections slightly improves the inner stabil-
ity of SLR solutions and reduces the discrepancies between GNSS and SLR solutions.
As a result, the estimated GNSS-SLR coordinate differences fit better at the 10% level
to the local ties at the co-located stations when applying atmospheric non-tidal loading
corrections. The reduction of amplitudes of the annual signal of geocenter coordinates is
different in GNSS and SLR solutions, which is caused by the global distribution of ob-
serving stations, by the unbalanced SLR network, and by other simultaneously estimated
parameters, e.g., tropospheric parameters estimated in the GNSS solutions.

Incorporating SLR observations to Starlette, Stella, and AJISAI strengthens the SLR-
derived parameters and improves the SLR-derived reference frame due to, e.g., improved
observation geometry. The number of SLR normal points is on average three times larger
in combined solutions than in LAGEOS-only solutions. For some SLR stations, e.g.,
Mendeleevo in Russia and Helwan in Egypt the station coordinates can only be determined
by LEO-SLR data, because of insufficient number or lack of LAGEOS observations.

The parameters derived from the multi-satellite solutions are of superior quality com-
pared to the single-satellite solutions. The single-satellite solutions are typically character-
ized by large correlations between estimated parameters, e.g., between the geocenter co-
ordinates and empirical orbit parameters. Thus, the multi-satellite LAGEOS-1-Starlette-
AJISAI solutions should be considered in particular in the period before the launch of
LAGEOS-2 for the establishment of the reference frame, instead of LAGEOS−1-only
solutions.

Incorporating Stella into the combined solution using low orbiting spherical satellites
is important for the decorrelation of Length-of-Day and C20, despite the Stella’s sun-
synchronous orbit exhibiting resonances with the diurnal and semi-diurnal motion of
the Sun. Moreover the tandem Starlette-Stella is not optimum for the estimation of
station coordinates and the polar motion. Much better results can be achieved from the
AJISAI-Starlette-Stella solution in terms of SLR solutions using exclusively low orbiting
satellites. The artifacts related to orbit perturbations in the LAGEOS solutions, e.g., to
the draconitic year or to eclipsing periods, can be significantly reduced in the combined
multi-SLR solutions.

The Z geocenter coordinate is of superior quality when combining low and high orbit-
ing geodetic satellites w.r.t. LAGEOS-1/2 solutions, because the mean a posteriori error
is decreased (from 1.3 mm to 0.9 mm) and the correlation coefficient between once-per-
revolution empirical orbit parameters SC and the Z geocenter coordinate is reduced (e.g.,
from −0.83 to −0.23 for LAGEOS-1). The amplitude of the period related to the dra-
conitic year of LAGEOS-2 is reduced from 0.60 mm in the LAGEOS-1/2 solutions to
0.35 mm in the combined multi-SLR solutions.

The standard Center-of-Mass corrections for low orbiting satellites are not valid for
currently operating SLR systems. The mean CoM corrections derived from the in-orbit
analysis in this thesis are: 77.8 mm, 77.8 mm, and 993.9 mm for Starlette, Stella, and
AJISAI, respectively. The variations of CoM corrections reach 52 mm and 25 mm for
AJISAI and Starlette/Stella, respectively, so using station-specific CoM instead of one
value for all SLR stations is highly recommended.
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The multi-SLR solutions are currently the best source for the C20. The GRACE so-
lutions cannot resolve C20 of sufficient quality, because of the alias with S2 tide and the
near-polar GRACE orbits. C20 can be recovered to some extent from the SLR station load
surface displacements, but this method is limited by the inhomogeneity of the distribution
of the SLR sites. C21 and S21 derived from GRACE, SLR, and excitation functions of the
polar motion agree very well with an exception of several months with gaps of GRACE
data and orbit resonances.

Aliasing with S2 tide causes artifacts in many gravity field coefficients, e.g., C20 and
C40 in the GRACE solutions, and C42 in the SLR solutions. In the SLR-derived gravity
field coefficients, the periods related to the S2 tide alias have very small amplitudes, but
they are detectable with the current highly accurate SLR data. The majority of the time
variable Earth’s gravity field coefficients of degree 3 and 4 can be well established from
the multi-SLR solution with a comparable quality to the GRACE results. There are,
however, a few exceptions, e.g., C30 can only be derived as a lumped coefficient from a
solution using five SLR geodetic satellites.

The time variable Earth’s low degree gravity coefficients derived from the SLR solutions
agree better to the GRACE results than the CHAMP-derived time variable coefficients,
but all three methods lead to comparable results by the means of the variations of the geoid
surface. The agreement in terms of median RMS of gravity field coefficient differences
is 4.1, 5.3, and 4.8·10−11 between GRACE-SLR, SLR-CHAMP, and CHAMP-GRACE,
respectively.

Finally, the results of a simultaneous estimation of ERP, gravity field, and station
coordinates from multi-SLR solutions are presented in this thesis. This type of solution
covers all three pillars of satellite geodesy and ensures full consistency between the Earth
rotation, gravity, and geometry-related parameters. The simultaneous estimations of the
gravity field parameters, ERP, and station coordinates leads to a minor degradation of
the pole coordinate quality in the multi-SLR solutions, but substantially improves the
quality of LoD estimates. The pole coordinates benefit particularly from incorporating
many geodetic satellites of different altitudes and inclinations, whereas the LoD benefits
most from the simultaneous estimations of ERP and C20.

The results and conclusions emerging from this thesis have many implications for future
research. Future studies will comprise the combination of different techniques of satellite
geodesy at the observation level. This includes the homogeneous processing of microwave
GPS, GLONASS, and Galileo data, SLR observations to GNSS satellites, as well as SLR
observations to geodetic satellites (e.g., LAGEOS, Starlette, Stella, AJISAI, LARES).
This will allow the co-location in space between different techniques. Removing all sorts of
barriers limiting the inter-technique consistency is necessary (e.g., the Blue-Sky effect) for
fully homogeneous solutions. Eventually, similar studies of the simultaneous estimation of
ERP, gravity field, and station coordinates are planned for GNSS satellites. The results
from this thesis will, thus, be applied for the improvement of the geodetic parameters
derived from various satellites.
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A Impact of General Relativity on LAGEOS

Hugentobler (2008) studied the impact of relativistic corrections on artificial Earth satel-
lites assuming that the scale, defined as GM , may be changed. For a case with fixed GM ,
the differences in the semi-major axes of satellites due to general relativity read as:

• Schwarzschild correction:

∆a = −4
GM

c2
, (A.1)

• Lense-Thirring correction:

∆a = −8

3

anJ

c2
cos i, (A.2)

• Geodetic precession (de Sitter) correction:

∆a = 4
GMS

c2

ans
Rn

cosβ
√

1− e2
S , (A.3)

where: G - gravitational constant, M - Earth mass, MS - Sun mass, c - speed of the light,
a - satellite’s semi-major axis, n - satellite’s mean motion, J - Earth’s angular momentum
per unit mass, i - inclination angle of the satellite’s orbit, nS - mean motion of the Earth,
eS eccentricity of the Earth’s orbit, R distance between Earth and Sun, β - inclination of
the satellite’s orbital plane with respect to the ecliptic.

The differences of the estimated semi-major axes are shown in Figure A.1 and Fig-
ure A.2 for LAGEOS-1, and LAGEOS-2, respectively and in Table A.1. For details see
Chapter 4.2.5.

Table A.1: Difference of the LAGEOS semi-major axes due to the general relativity cor-
rections. Mean values for 2008.

LAGEOS-1 LAGEOS-1 LAGEOS-2
Hugentobler (2008) this study this study

[mm] [mm] [mm]

Schwarzschild −4.4 −17.72 −17.76
Lense-Thirring −0.042/ cos(i) = 0.014 0.041 −0.079
de Sitter 0.051/ cos(β) ∼ −0.122 (variable) ∼ 0.230 (variable)
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Figure A.1: Differences of the LAGEOS-1 semi-major axis due to the general relativity
corrections. The bottom figure is the zoomed version of the top figure.

Figure A.2: Differences of the LAGEOS-2 semi-major axis due to the general relativity
corrections. The bottom figure is the zoomed version of the top figure.
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B LAGEOS Solar Radiation Pressure
Coefficients

Figure B.1: Estimated solar radiation pressure coefficient CR for LAGEOS-1 and
LAGEOS-2.

The solar radiation pressure coefficient CR has been estimated for LAGEOS-1 and
LAGEOS-2, because of the large perturbations detected for the once-per-revolution em-
pirical acceleration parameters in along-track (SC , SS). These perturbations could not
be solely explained by albedo modeling deficiencies or unmodeled thermal forces (see
Chapter 4).

Following Beutler (2005), the first order orbit perturbations due to the solar radiation
pressure, decomposed into the R,S,W system, read as:

R
S
W

 = CR
A

m

S

c

a2
u

|r − rs|2


cosβ cos ∆u
− cosβ sin ∆u

sinβ

 , (B.1)

where CR is the solar radiation pressure coefficient, S is the solar constant, c is the speed
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of light, ae is the astronomical unit, r is the geocentric position vector of the satellite, rs
is geocentric position vector of the Sun, A

m is the area-to-mass ratio, β is the elevation of
the Sun over the orbital plane, and ∆u is the argument of latitude of the satellite w.r.t.
the argument of latitude of the Sun. The absolute value of the acceleration due to the

direct solar radiation pressure can be written as: D0 = CR
A
m
S
c

a2e
|r−rs|2

.

The effects due to the Earth albedo and Earth thermal emissivity are taken into account
in the solutions.

The Equation D.1 shows a correlation between the SC , SS empirical parameters (which
are typically estimated in the LAGEOS solutions) and the direct solar radiation pressure
for β 6= 90◦. In order to avoid the correlation, we generated LAGEOS-1/2 solutions with
estimating a following set of empirical parameters: S0, D0, WS , and WC (no SC , no SS).

The a priori value of CR for LAGEOS-1 and LAGEOS-2 was 1.13. This value is
typically used by the ILRS ACs. Figure B.1 shows time series of estimated CR values
for both LAGEOS satellites. The mean value for LAGEOS-1 is not significantly different
from the a priori value at two sigma level, and yields:

CR(L1) = 1.125± 0.015. (B.2)

The mean value for LAGEOS-2 differs significantly at two-sigma level from the a priori
value, and yields:

CR(L2) = 1.094± 0.012. (B.3)

CR values show a large dependence on time, in particular for LAGEOS-2. Between 2002
and 2005, the CR values for LAGEOS-2 vary between 1.08 and 1.10, whereas between 2005
and 2012 the CR values vary between 1.09 and 1.11. Figure B.1 shows that the reflecting
properties of LAGEOS-1 and LAGEOS-2 differ significantly and, thus, the individual
characteristics of both satellites should be considered instead of introducing the same CR
values for both satellites.

The maximum value of β depends on the inclination i of satellite orbits. For LAGEOS-2
β ≤ i+ ε = 52.5+23.5◦ = 76◦, where ε is the obliquity of the ecliptic. For LAGEOS-1 the
maximum β reaches 90◦, due to the LAGEOS-1 inclination (see Figure 5.8 for series of
LAGEOS β angles). When the elevation angle of the Sun over the orbital plane forms a
right angle, the error of CR determination is maximum, which is reflected in a large scatter
of CR values shown in Figure B.1 for LAGEOS-1. Similar large errors of CR values are
not present in Figure B.1 for LAGEOS-2, because the Sun is never perpendicular w.r.t.
LAGEOS-2 orbital plane.

The wrong a priori value of CR for LAGEOS-2 can be compensated, to a large extent,
by SC , SS , because of the correlation from Equation D.1. Using the appropriate a priori
value of CR is, however, highly recommended, because the empirical SC , SS parameters
are correlated, e.g., with the Z component of geocenter coordinates (see Section 5.4.2).
Thus, using wrong a priori values of CR may affect the determination of some SLR-derived
parameters. Such ’leaks’ between deficiencies of the solar radiation pressure modeling and
the geodetic parameters are typically reflected in variations with periods corresponding
to draconitic years or eclipses of LAGEOS satellites (see Section 5.4.2).
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C Impact of First Zonal Spherical
Harmonics on Orbit Parameters

Following Hlibowicki (1981), the secular changes in Keplerian elements due to spherical
harmonics: C20, C30, C40 of the Earth’s gravity potential, can be expressed as:
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The equations are valid for small orbital eccentricities. The changes are expressed in

units per one revolution. For the explanation of symbols used see Section 2.2.3.
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D Excitation Function of the Pole
Coordinates

The excitation function χ1, χ2 of the ERPs can be compared to the variations of spherical
harmonics C21, S21, respectively, after removing the impact of the ocean currents and
winds (e.g., Brzeziński, 1992; Beutler, 2005; Gross, 2007; Brzeziński et al., 2009). The
SLR-derived pole coordinates are transformed to the excitation parameters, and then, the
ocean and atmosphere-induced variations are removed in order to obtain the χmass terms,
which are converted to ∆C21 and ∆S21 variations.

A three-step procedure reads as follows:

1. Transformation of SLR-derived pole coordinates to the excitation functions χ1, χ2

of polar motion (e.g., Beutler, 2005):

χ1 ≈ +X +
Ẏ

γe(1−
k′2ξ
γe

)ωe
, (D.1)

χ2 ≈ −Y +
Ẋ

γe(1−
k′2ξ
γe

)ωe
, (D.2)

where γ denotes a dynamical flattering and yields γ = 1/305.45, rate of Earth’s
rotation is ωe = 7.292115 · 10−5 rad s−1, Love number is k′2 = 0.3, and deformative
flattering is ξ = ω2

ea
3
e/GM = 1/288.9.

2. Reduction of the excitation functions of polar motion by impacts from the geophys-
ical models: the effective atmospheric angular momentum functions χatm (a part
corresponding to winds) and the oceanic angular momentum χocn (a part corre-
sponding to ocean currents):

χmass1 = χ1 − χatm1 − χocn1 , (D.3)

χmass2 = χ2 − χatm2 − χocn1 . (D.4)

The atmospheric angular momentum functions χatm and the oceanic angular mo-
mentum χocn, which are based on products provided by the Special Bureau for
Atmosphere of the IERS, were generated from the IERS tool for the excitation
functions of Earth rotation1. χatm and χocn are sometimes called the ’motion’ part
χmotion of the excitation functions, whereas the χmass1 is also called the ’matter’ part
χmatter1 of the excitation functions.

1http://hpiers.obspm.fr/eop-pc/analysis/excitactive.html
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3. Conversion of the χmass terms to ∆C21 and ∆S21 variations. We make use of the
modified equation derived by Chen and Wilson (2003), because as pointed out by
Cheng et al. (2011) the part related to the mantle anelasticity ∆k′an = −0.021
was neglected, and thus the C21, S21 variations were overestimated. The modified
equation from Chen and Wilson (2003) reads as:

∆C21 = −(1 + k′2 + ∆k′an)

√
3

5

C −A
1.098a2

eM
χmass1 , (D.5)

∆S21 = −(1 + k′2 + ∆k′an)

√
3

5

C −A
1.098a2

eM
χmass2 , (D.6)

where M = 5.9737 · 1024 kg and ae = 6378136.6 m are the mass and equatorial
radius of the Earth, C = 0.33070Meae m2 kg and A = 0.32961Meae m2 kg are two
principal moment of inertia. The resulting ∆C21 and ∆S21 values can be compared
to SLR-derived or GRACE-derived C21 and S21 variations after removing the mean
offset and drift between both series. The sampling of ∆C21 and ∆S21 values is
reduced from 1-day resolution to 7-day resolution by estimating mean value over
every 7 days, in order to maintain a full consistency with SLR-derived series.

The resulting ∆C21 and ∆S21 values contain, e.g., the impact of hydrology (water height),
deglaciation, post-glacial rebound, atmosphere- and ocean-induced variations in gravity
field. They can be compared with the GRACE- and SLR-derived series assuming that all
these geophysical phenomena are also included in the GRACE and SLR series. Thus, for
GRACE series an a posteriori recovery of the impact of AOD corrections is necessary.

Cheng et al. (2011) show that the consistent modeling of the solid pole Earth tide
and the ocean pole tide are essential when comparing the excitation of the polar motion
derived from SLR and GRACE. Therefore, in this study the impact of the ocean pole tide
had to be reduced a posteriori from the GRACE series, because the GRACE solutions
are following the standards from the IERS2003 Conventions without the ocean pole tide
corrections applied.
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Folkner W., Charlot P., Finger M., Williams J., Sovers O., Newhall X., Jr E. S. (1994)
Determination of the extragalactic-planetary frame tie from joint analysis of radio in-
terferometric and lunar laser ranging measurements. In: Astronomy and Astrophysics
(ISSN 0004-6361), vol 287, pp. 279–289

Förste C., Flechtner F., Schmidt R., Meyer U., Stubenvoll R., Barthelmes F., Koenig
R., Neumayer K., Rothacher M., Reigber C., Biancale R., Bruinsma S., Lemoine

223



Bibliography

J., Raimondo J. (2005) A New High Resolution Global Gravity Field Model Derived
From Combination of GRACE and CHAMP Mission and Altimetry/Gravimetry Sur-
face Gravity Data. Poster presented at EGU General Assembly 2005, Vienna, Austria

Förste C., Schmidt R., Stubenvoll R., Flechtner F., Meyer U., König R., Neumayer H.,
Biancale R., Lemoine J., Bruinsma S., Loyer S., Barthelmes F., Esselborn S. (2008) The
GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-
only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. Journal
of Geodesy 82, 6:331–346, doi:10.1007/s00190-007-0183-8

Fritsche M., Dietrich R., Rülke A., Rothacher M., Steigenberger P. (2010) Low-degree
Earth deformation from reprocessed GPS observations. GPS Solutions 14(2):165–175
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