GPS-only gravity field determination from GOCE data

Heike Bock¹, Adrian Jäggi¹, Ulrich Meyer¹, Gerhard Beutler¹, Jose van den IJssel²

¹Astronomical Institute, University of Bern (AIUB)

²Faculty of Aerospace and Engineering, Delft University of Technology

IAG Scientific Assembly

September 1-6, 2013, Potsdam, Germany

Background and motivation

Courtesy:ESA

- AIUB is responsible for the determination of the Precise Science Orbit (SST_PSO) product within the GOCE HPF consortium
- The kinematic orbit product (SST_PKI) is used for the determination of the low degrees of the Earth's gravity field => GPS-only gravity field solutions
- The "Celestial Mechanics Approach" (CMA) developed at AIUB allows it to directly test the performance of the GPS-only gravity field solutions

GOCE orbit determination - SLR validation

GOCE orbit determination - results

- RMS of the differences between reduced-dynamic and kinematic orbits
- RMS values are growing during the mission

GOCE orbit determination - results

Astronomical Institute University of Bern AIUB

Slide 5

GOCE orbit determination - results

Slide 6

GOCE orbit determination – results

GPS-only gravity field determination

- Celestial Mechanics Approach
- Pseudo-observations: kinematic GOCE positions (SST_PKI) with variance-covariance information (SST_PCV) (+ common-mode accelerometer data)
 - Parameters:
 - 6 initial orbit elements
 - Constant and once-per-revolution terms in R, S, and W
 - Pseudo-stochastic pulses in R, S, and W every 6 min (σ = 0.1mm/s)
 - Gravity field parameters up to degree/order 120

Impact of accelerometer data

Impact of accelerometer data

Slide 10

Release 1 and Release 4 solutions

Slide 11

Release 1 and Release 4 solutions

Differences red.-dyn ⇔kinematic orbits

Mean of phase observation residuals mapped to the crossing of the ionosphere layer

Mean of phase observation residuals mapped to the crossing of the ionosphere layer

Number of removed observations

Summary

- AIUB is providing the Precise Science Orbit product for the GOCE satellite
- The Celestial Mechanics Approach is applied to derive GPS-only gravity field models from the GPSderived precise kinematic orbits
 - Systematic orbit errors around the geomagnetic equator are mapped into the gravity field solutions
 - Removal of GPS observations, which are affected by a ionosphere change of >5cm/s from one observation epoch to the next
- Systematic errors are removed but orbit quality suffers => more investigations necessary