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Summary

Degree-error RMS; geoid errorFormal errors; empirical errors & geoid height differences (w.r.t. ITG-Grace2010s) 

Comparison of GOCE-GPS gravity fields derived by different approaches

Several approaches have been proposed to extract gravity field information from the GPS-derived
kinematic GOCE (Gravity field and steady-state Ocean Circulation Explorer) orbits. Although there is a
general consensus that, except for energy balance, these methods theoretically provide equivalent results,
GOCE-GPS solutions based on real data have never been compared with each other within a consistent data
processing environment so far. This contribution strives to close this gap. The gravity field solutions
considered here make use of the

CMA Celestial Mechanics Approach [1] computed at AIUB (U Bern)

SAA Short-Arc Approach [2] computed at ITSG (TU Graz)

AAA Averaged Acceleration Approach [3] computed at DEOS (TU Delft)

PAA Point-wise Acceleration Approach [4] computed at GIS/IWF (U Stuttgart/Austrian Acad. of Sciences)

EBA Energy Balance Approach [5] computed at INAS (TU Graz)

O. Baur1, H. Bock2, P. Ditmar3, H. Hashemi Farahani3, A. Jäggi2, T. Mayer-Gürr4, T. Reubelt5, N. Zehentner4

(1) Space Research Institute, Austrian Academy of Sciences, Graz  (2) Astronomical Institute, University of Bern, Switzerland  (3) Delft Institute for Earth-Oriented Space research, Delft University
of Technology, The Netherlands  (4) Institute of Theoretical Geodesy and Satellite Geodesy, Graz University of Technology, Austria  (5) Institute of Geodesy, University of Stuttgart, Germany

Processing details

CMA SAA AAA PAA EBA

Orbit data ESA SST_PKI product (reprocessed kinematic GOCE orbit)

Variance-covariance data ESA SST_PCV product no ESA SST_PCV product

Period 1.11.2009–11.1.2010 (R1) 

Spectral resolution 130 120 100

Regularization no

A priori information EGM96 no

Background models according to IERS Conventions 2003/2010

Non-gravitational accel. yes no yes

Empirical accelerations yes no
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SLR tracking residuals (obs.–comp.)

empirical relative errors (log10)formal errors (log10) geoid height differences (cm), smoothing 500km
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Empirical errors at degree 100

PAA: 18.2 cm

CMA: 18.3 cm

SAA: 19.1 cm

AAA: 22.0 cm

EBA: 29.7 cm

empirical

formal

Accumulated geoid height errors

Lageos1 (up to degree and order 20)

c20 coefficient replaced by SLR-derived value

Parameterization: monthly arcs
Estimated parameters: state vectors (1/arc), station coordinates 
(1/arc), drag coefficients (1/day), constant empirical 
accelerations (1/day), measurement biases (1/station and arc)
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