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Abstract

Time series of geocenter coordinates were determined with data of two global navigation satellite systems (GNSSs), namely the U.S.
GPS (Global Positioning System) and the Russian GLONASS (Global’naya Nawigatsionnaya Sputnikowaya Sistema). The data was
recorded in the years 2008–2011 by a global network of 92 permanently observing GPS/GLONASS receivers. Two types of daily solu-
tions were generated independently for each GNSS, one including the estimation of geocenter coordinates and one without these
parameters.

A fair agreement for GPS and GLONASS was found in the geocenter x- and y-coordinate series. Our tests, however, clearly reveal
artifacts in the z-component determined with the GLONASS data. Large periodic excursions in the GLONASS geocenter z-coordinates
of about 40 cm peak-to-peak are related to the maximum elevation angles of the Sun above/below the orbital planes of the satellite sys-
tem and thus have a period of about 4 months (third of a year). A detailed analysis revealed that the artifacts are almost uniquely gov-
erned by the differences of the estimates of direct solar radiation pressure (SRP) in the two solution series (with and without geocenter
estimation). A simple formula is derived, describing the relation between the geocenter z-coordinate and the corresponding parameter of
the SRP. The effect can be explained by first-order perturbation theory of celestial mechanics. The theory also predicts a heavy impact on
the GNSS-derived geocenter if once-per-revolution SRP parameters are estimated in the direction of the satellite’s solar panel axis. Spe-
cific experiments using GPS observations revealed that this is indeed the case.

Although the main focus of this article is on GNSS, the theory developed is applicable to all satellite observing techniques. We applied
the theory to satellite laser ranging (SLR) solutions using LAGEOS. It turns out that the correlation between geocenter and SRP param-
eters is not a critical issue for the SLR solutions. The reasons are threefold: The direct SRP is about a factor of 30–40 smaller for typical
geodetic SLR satellites than for GNSS satellites, allowing it in most cases to not solve for SRP parameters (ruling out the correlation
between these parameters and the geocenter coordinates); the orbital arc length of 7 days (which is typically used in SLR analysis) con-
tains more than 50 revolutions of the LAGEOS satellites as compared to about two revolutions of GNSS satellites for the daily arcs used
in GNSS analysis; the orbit geometry is not as critical for LAGEOS as for GNSS satellites, because the elevation angle of the Sun w.r.t.
the orbital plane is usually significantly changing over 7 days.
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1. Introduction

1.1. Basics

The satellite geodetic methods used for highest accuracy
applications determine the distances between satellites
orbiting the Earth’s center of mass and receivers (observa-
tories) on the Earth’s surface based on the measurement of
propagation times of electromagnetic signals. In rough
approximation we may write

D ¼ rðtÞ � RðT Þ � GðT Þð Þj j þ E; ð1Þ

where D stands for the distance derived from the measure-
ments, r for the geocentric position vector of the satellite, R
for the position vector of the observer w.r.t. the origin of
the reference system, and R–G for the observer’s geocentric
position vector; G consequently is the position vector of the
geocenter w.r.t. the origin of the reference system (the sat-
ellites are forced to revolve around the endpoint of G). The
epochs t and T depend on the measurement technique: For
global navigation satellite systems (GNSS) they are signal
emission and reception times, respectively, for satellite laser
ranging (SLR) t ¼ T is the time of reflection of the laser
pulse at the satellite.

Depending on the observation technique, the term E
may contain signal delays caused by the Earth’s neutral
and electrically charged atmosphere; satellite and receiver
clock corrections w.r.t. a reference clock (e.g., a particular
GNSS system time); sensor offsets (e.g., optical centers of
SLR reflectors or microwave antenna phase centers)
w.r.t. the center of mass of a satellite or w.r.t. a terrestrial
geodetic marker; technique-specific biases, e.g., SLR range
biases or GNSS phase ambiguity parameters.

Eq. (1) is fundamental to determining the coordinates of
the geocenter (and other parameters) for all observation
techniques. The equation contains scalar products of
vectors and is therefore not attached to a particular coordi-
nate system. The vectors in Eq. (1) may, however, also be
interpreted as component matrices of the coordinates of
vectors r, R, and G, referring to a particular coordinate
system.

An Earth-fixed reference frame is advantageously cho-
sen for the estimation of the geocenter coordinates, because
the coordinates of the vectors RðT Þ ¼ R and GðT Þ ¼ G are
time-independent in this case (assuming a rigid Earth).
Consequently, the vector rðtÞ has to be available in (or
transformed into) the terrestrial reference frame. In our
analysis, the coordinates of the reference stations refer to
the ITRF2008 (International Terrestrial Reference Frame,
Altamimi et al., 2011).

Introducing T ¼def
r� ðR� GÞ as the topocentric satellite

position vector, the partial derivatives of the distance D in
Eq. (1) w.r.t. the geocenter coordinates in the Earth-fixed
reference frame may be written as
@D
@Gi
¼
X3

k¼1

@D
@T k

@T k

@Gi
¼ T i

jT j with i ¼ 1; 2; 3: ð2Þ
The T i=k are the components of vector T in the used
coordinate system and Gi the components of vector G .
The partial derivative of the observation D w.r.t. the
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coordinate Gi of the geocenter thus simply is the compo-
nent i of the unit vector associated with the topocentric vec-
tor T .

Eq. (2) is the partial derivative entering the normal
equation system (NEQ) when analyzing SLR observations.
The analysis of GNSS observations is complicated by
epoch-specific satellite and receiver clock errors, which
have to be pre-eliminated at each epoch. Instead of pre-
eliminating these errors one may analyze the difference
between simultaneous observations either made (a) by
two different sites to the same satellite (which greatly
reduces the satellite clock errors) or (b) by the same site
to two different satellites (which eliminates the receiver
clock errors). The partial derivative of a type-(a) difference
w.r.t. the geocenter coordinates simply is the difference of
two partial derivatives of type (2):

@ðD1 �D2Þ
@Gi

¼ T 1;i

jT 1j
� T 2;i

jT 2j
with i ¼ 1; 2; 3; ð3Þ

where the D1=2 are the observations pertaining to the two
sites and the T 1=2 the corresponding topocentric position
vectors. The absolute values of the partial derivatives (2)
are much larger than these of the partial derivatives (3), be-
cause the topocentric distances of satellites usually are
much larger than the distances between receivers. The sen-
sitivity of the GNSS observable w.r.t. the geocenter coordi-
nates is thus greatly reduced when compared to SLR. Note
that the comparison of Eqs. (2) and (3) may really only
serve as an order of magnitude argument. A mathemati-
cally correct treatment of the GNSS case requires to pro-
cess all simultaneous observations of the tracking
network in the same analysis step and to take the mathe-
matical correlations between them into account. Note, as
well, that differences of type (b) do not substantially reduce
the sensitivity w.r.t. the geocenter coordinates.

1.2. Geocenter determination using different observation

methods

When speaking of the geocenter we mean the difference
between the center of mass of the entire system Earth
(including solid Earth, atmosphere, oceans, hydrosphere,
cryosphere) and the origin of a terrestrial reference frame,
e.g., the ITRF at a given epoch. As satellite orbits refer to
the center of mass, the geocenter can be determined by
satellite observation techniques.

Variations of the geocenter are caused by mass redistri-
butions in the system Earth. Annual and semi-annual peri-
ods are predominant (Dong et al., 1997). These variations
can be explained by geophysical models for the atmo-
sphere, oceans and hydrology. In 1997, the International
Earth Rotation and Reference Systems Service conducted
an analysis campaign dedicated to the determination of
the geocenter. The status at that time is summarized by
Ray (1999). Meanwhile, the geocenter series derived from
geophysical models and from space-geodetic data have
been compared in several articles, e.g., by Chen et al.
(1999), Bouillé et al. (2000), Moore and Wang (2003),
Feissel-Vernier et al. (2006), and Wu et al. (2012). All stud-
ies show a good agreement between geophysical models
and space geodetic results, with annual amplitudes of
about 2–3 mm for the x- and y-components and about 3–
5 mm for the z-component.

The best geocenter time series are based on the SLR
solutions. SLR measurements to the geodetic satellites
LAGEOS-1 and -2 are particularly well suited for geocen-
ter estimation:

� The absolute and unambiguous observations provide
sub-centimeter accuracy for so-called normal points
since decades;
� the propagation delays of the SLR pulses caused by the

Earth’s atmosphere may be taken into account with sub-
centimeter accuracy by well-established models (Mendes
and Pavlis, 2004) without solving for atmosphere-
related parameters;
� non-gravitational forces acting on the satellites are easily

modeled because atmospheric drag may be neglected at
the height of the LAGEOS satellites and solar radiation
pressure (SRP) may be accounted for on the sub-centi-
meter level without solving for model parameters;
� parameter estimation may be based on relatively long

arcs—seven-day arcs corresponding to more than 50
revolutions are standard—helping to de-correlate
parameters of different kinds.

The Earth’s geocenter, as established by SLR observa-
tions of the LAGEOS satellites, is rather stable over long
time spans (years to decades). Variations in the SLR-
derived time series are within 1 cm for the x- and y-components
and within about 1.5 cm for the z-component.

Watkins and Eanes (1997) demonstrate that even diur-
nal and sub-diurnal variations induced by tides might be
determined by LAGEOS solutions although their size is
at the few millimeter level.

Alternatively, the other two satellite techniques, i.e.,
GNSS and the French Doppler Orbitography and Radio-
positioning Integrated by Satellite (DORIS) may be used
for geocenter determination. The two methods are attrac-
tive, because much denser global observing networks (and
thus many more observations) are available than for SLR.
In the case of GNSS this is counterbalanced (a) by a
reduced sensitivity of the basic observable w.r.t. the geocen-
ter coordinates (see Section 1.1); (b) by the presence of
phase ambiguity parameters (which may, however, be
resolved to integer numbers to a large extent in a refined
analysis); and (c) by the necessity to estimate troposphere-
related parameters. Last but not least, GNSS and DORIS
satellites are far from having a spherical shape, implying
that SRP parameters have to be determined in the analysis.
Needless to say that light–shadow transitions are more
complicated to model, as well, for non-spherical satellites.

Despite these obstacles there recently were quite a few
determinations of the geocenter based on microwave
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observation techniques—without having been able so far to
replace the SLR-derived geocenter time series as the gold
standard. The determination of the z-coordinate of the geo-
center, i.e., of the coordinate G3 of vector G , proved to be
particularly delicate. Using the SLR solutions as reference,
it is relatively easy to single out artifacts in geocenter time
series established by other observation techniques. Let us
briefly mention some of the recent articles related to geo-
center determinations.

Ferland and Piraszewski (2009) describe the procedure
of the International GNSS Service (IGS, Beutler et al.,
1999; Dow et al., 2009) to regularly produce a realization
of the ITRF. This activity includes the estimation of the
geocenter, called in that article apparent geocenter, for all
contributing analysis centers and for the combined solu-
tion. The attribute apparent is used to reflect the limitations
caused by SRP modeling. The reconstruction of the geo-
center is possible, because the products of the IGS analysis
centers are provided in a particular format allowing it to
remove possible constraints on the individual network
solutions, to redefine the geodetic datum, and to solve in
particular for a common offset of the ITRF reference sites.
The geocenter estimates are (implicitly) compared to the
SLR realization of the geocenter. The consistency of the
individual solutions w.r.t. the mean and of the mean
w.r.t. the SLR-defined geocenter are of the order of
5 mm for the x- and y-components and of the order of
10 mm for the z-component. These accuracies and consis-
tencies are remarkable achievements of the IGS.

Lavallée et al. (2006) introduce a novel approach to
derive geocenter coordinates by taking into account two
methods in a combined way: the classical network transla-
tion approach on one hand and the degree-one coefficients
derived from surface load deformations of the observing
stations on the other hand. The authors show that both
approaches have deficiencies, especially for GPS solutions,
when applied independently. The unified approach, consid-
ering both types of geocenter estimation, proved to reduce
the discrepancies between individual GPS solutions and to
increase the agreement of the annual signals in the GPS
solutions with those of the SLR-derived series.

Gobinddass et al. (2009) provide a profound analysis
related to DORIS: Measurement noise and systematic
errors in the time series of G3 prove to be about ten times
larger than the level achieved by SLR. The problems can be
clearly attributed to the SRP models, in particular to the
estimation of radiation pressure parameters.

Kang et al. (2009) use the observations of the on-board
GPS receivers of the GRACE-A and -B satellites and a glo-
bal tracking network of GPS receivers to determine the
Earth’s geocenter. The geocenter coordinates are estimated
together with the GRACE satellites’ initial position and
velocity vectors, once-per-revolution (OPR) empirical
acceleration parameters (set up in along- and cross-track
directions), and GPS-specific parameters like phase ambi-
guities and tropospheric zenith path delays. The results
are remarkable. Amplitudes and phases of the results are
low-pass filtered to monthly moving averages. Fitting these
filtered values by an annual signal results in geocenter time
series of rather good quality in all three coordinates—even
when compared to the SLR series.

Wu et al. (2012) review geocenter motion and its geo-
detic and geophysical implications in a very broad sense.
The geodesy-related prospects in the discussion section
summarize the state-of-the-art of satellite-geodetic geocen-
ter determination and of its current limitations. Once more,
the SRP model is suspected to be the accuracy-limiting fac-
tor for microwave techniques.

Thaller et al. (in press) study the combination of micro-
wave and SLR observations of GNSS satellites and of the
classical geodetic satellites LAGEOS and ETALON. It
becomes apparent that the SLR observations to the GNSS
satellites could not substantially improve the GNSS solu-
tions, whereas the combination of the SLR NEQs resulting
from the LAGEOS and ETALON observations with the
GNSS NEQs gave substantial improvements—in particu-
lar when the SRP model for the GNSS satellites was mod-
ified (and weakened). The authors conclude—in agreement
with the other references cited here—that the SRP model
plays an essential role for the biases in GNSS-derived geo-
center series. We will come back to a particular aspect of
this article in Section 5.1.

Our work differs from the cited articles by putting the
emphasis on the problems of estimating the geocenter coor-
dinates, in particular of G3, using GPS and/or GLONASS
(and not on geophysical aspects). We explain the problems
caused by the correlation between particular parameters of
the orbit model and the geocenter coordinate G3 using first-
order perturbation theory. Before revealing the motivation
for our investigations in Section 1.4 we briefly introduce
the solution series used in our analysis in Section 1.3.

1.3. GNSS solution series generated for this article

The series of geocenter coordinates analyzed in this arti-
cle are based on Meindl (2011), which contains a detailed
description of the data used, the analysis scheme applied,
and the solutions generated.

A global network of 92 combined GPS/GLONASS
receivers was selected, which in essence permanently col-
lected the observations of all active GPS and GLONASS
satellites in the years 2008–2011 (the data from 2011 was
added for this study). Special care was taken to keep the
GPS and GLONASS solutions comparable, to the
extent possible. Unfortunately, the GLONASS was still
far from being complete in 2008, which is why only the
years 2009–2011 resulted in high-quality solutions for
GLONASS. Nevertheless, the year 2008 was kept in the
analysis to rule out data quality as an explanation for some
excursions in the geocenter time series.

All calculations were performed with the latest develop-
ment version of the Bernese GPS Software (Dach et al.,
2007). Up-to-date models were applied and the data anal-
ysis closely followed the processing scheme used by the
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Center for Orbit Determination in Europe (CODE) for its
contribution to the IGS final product line.

1.4. Motivation

Fig. 1, showing the time series of the geocenter coordi-
nate G3, as estimated by GPS (top) and GLONASS (bot-
tom), motivated the present study. It is contained in this
form in Meindl (2011). From the fact that there is no sim-
ilarity between Fig. 1 (top) and (bottom) we must conclude
that there are artifacts at least in one of the solutions. In
view of the fact that the GLONASS-derived coordinates
G3 are much larger than those emerging from GPS and that
there is an eye-catching correlation between the big excur-
sions and the maximum and minimum values of bs, the
Sun’s elevation above/below the orbital planes, we con-
clude that the GLONASS estimates are dominated by
artifacts.

Fig. 1 (bottom) was the motivation to study the relation-
ship between the orbit parameters and the geocenter in
greater detail because the correlation between G3 and the
angle bs clearly suggests a correlation with one of the esti-
mated orbit parameters or with a linear combination
thereof.

Fig. 2 shows that the x- and y-coordinates of the geocen-
ter are consistent for GPS and GLONASS. The poor
GLONASS data quality in the year 2008 explains some
Fig. 1. Coordinate G3 estimated by GPS (top) and GLONASS (bottom)
and elevation bs of the Sun above/below the orbital planes.
discrepancies between the GPS- and GLONASS-derived
series. The noise is obviously significantly larger for the
GLONASS than for the GPS solution—this aspect is in
particular important in the year 2008. With the naked
eye one would claim to see an annual (or quasi-annual) sig-
nal but there are no obvious correlations with the angles bs.
For the time being, we therefore decided not to study the
correlations between the x- and y-coordinates of the geo-
center on one hand and the orbital parameters on the other
hand.

Fig. 2 (bottom) once again shows the unrealistically
large variations of the GLONASS-derived coordinates G3

compared to the GPS-derived values. Fig. 2 also contains
the results of a combined GPS/GLONASS solution, which
was established on the observation level (Meindl, 2011).
The combination follows more or less the GPS-only solu-
tion, indicating that GPS is much stronger for the purpose
Fig. 2. Geocenter coordinates estimated by GPS (red), GLONASS (blue),
and by a GPS/GLONASS combination (black): G1 (top), G2 (center), G3

(bottom).
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of geocenter estimation. Note, however, that the coordi-
nates G3 from the combined solution (Fig. 2, bottom) still
show traces of the GLONASS excursions. It is problematic
that an artifact of the GLONASS solution is present in the
combined solution—and as a matter of fact dominates the
signature of (the second half of) the time series.
2. Orbit parametrization and empirical solar radiation
pressure model

2.1. Orbit model

The six osculating orbital elements a; e; i; X; x, and
T 0 at the initial epoch t0 characterize a particular satellite
orbit. Fig. 3 illustrates the elements (showing the argument
of latitude u instead of T 0). The semi-major axis a and the
numerical eccentricity e define the size and shape of the
orbit; the orientation of the orbit is determined by the incli-
nation i w.r.t. the equatorial plane, the right ascension of
the ascending node X, and the argument of perigee x; the
perigee passing time T 0, or the initial argument of latitude
uðt0Þ, is required to define the satellite’s position within the
orbit at arbitrary times.

The empirical part of the orbit model used here and by
the CODE analysis center is based on the decomposition of
the solar radiation pressure (SRP) accelerations into three
orthogonal directions represented by the unit vectors

eD ¼
def rs � r

rs � rj j ; eY ¼
def� er � eD

er � eDj j ; and eX ¼
def

eD � eY; ð4Þ

where rs and r are the geocentric vectors of the Sun and the
satellite and er is the unit vector associated with vector r.
The unit vectors eD and eY point from the satellite to the
Sun and along the satellite’s solar panel axes, respectively.
The total acceleration of a satellite due to SRP is given by

asrp ¼ asrp;0 þ DðuÞeD þ Y ðuÞeY þ X ðuÞeX; ð5Þ

with
Fig. 3. The orbital elements a; e; i; X; x, and the argument of latitude u

(P marks the perigee of the orbit).
DðuÞ ¼ D0 þ Dc cos uþ Ds sin u;

Y ðuÞ ¼ Y 0 þ Y c cos u þ Y s sin u;

X ðuÞ ¼ X 0 þ X c cos uþ X s sin u:

ð6Þ

The decomposition (4) and the SRP model (5), (6) were first
proposed by Beutler et al. (1994) and are used since that time
by the CODE analysis center. The model was refined by
Springer et al. (1999) to contain a rather complex a priori
model asrp;0. The model contains nine parameters: constant
accelerations (D0; Y 0;X 0) and periodic once-per-revolution
(OPR) terms (Dc=s; Y c=s;X c=s) in each of the three directions
(4). Additional information is available in Dach et al. (2009).

We follow the standard adopted by CODE and param-
eterize each orbital arc with six osculating elements at the
initial epoch (cf. Fig. 3), with three constant SRP parame-
ters D0; Y 0, X 0, and with the two OPR parameters X c=s in
the eX-direction. Consequently, we estimate eleven orbit
parameters per satellite per arc. Note that we did not use
the a priori model neither for GPS nor for GLONASS
(i.e., asrp;0 ¼ 0 for all solutions) as experiments showed that
the a priori model has virtually no impact on the estimated
geocenter coordinates.
2.2. Decomposition of the solar radiation pressure

constituents

The perturbation equations in the Gaussian formulation
(see Beutler, 2005, Vol I, Eq. 6.88) assume that the perturb-
ing accelerations are expressed in an orbital system with its
first axis eR pointing from the geocenter to the satellite. The
second axis eS is normal to eR, lies in the orbital plane and
points (in particular for the almost circular GNSS orbits)
roughly in the direction of satellite motion. The third axis
eW is normal to the osculating orbital plane. The compo-
nents of a perturbing acceleration in this rotating coordi-
nate system are designated by R, S, and W. In this
section we provide the (R,S,W)-components associated
with the constant accelerations of the empirical SRP model
(6). The periodic OPR (R,S,W)-components might then be
derived easily if required.

The constant perturbing acceleration in eD-direction is
by far the dominating component of the empirical orbit
model with D0 � �0:9 � 10�7 m=s2 for GPS and
D0 � �1:5 � 10�7 m=s2 for GLONASS satellites. For refer-
ence we note that D0 � �3:2 � 10�9 m=s2 for the LAGEOS
satellites, i.e., about hundred times smaller than for the
GNSS satellites due to the much smaller area-to-mass ratio.

The D-component is dominated by the direct SRP act-
ing on the solar panels, which should always be perpendic-
ular to eD. This is why the component along eD is not
varying much over one year. Following Beutler (2005,
Vol. II, Eq. 3.151) we may write the direct SRP as

RD

SD

W D

0
B@

1
CA ¼ D

cos bs cosðu� usÞ
� cos bs sinðu� usÞ

sin bs

0
B@

1
CA; ð7Þ
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where �90� 6 bs 6 90� is the elevation angle of the Sun
above/below the orbital plane, us is the argument of lati-
tude of the Sun in the satellite’s orbital plane, and u is
the argument of latitude of the satellite. The geometry of
the perturbation is illustrated in Beutler (2005, Vol. II).
For bs ¼ �90� one has RD ¼ SD ¼ 0 and W D ¼ �D, i.e.,
the direct SRP becomes a net out-of-plane acceleration:

RD

SD

W D

0
B@

1
CA
�90�

¼ D

0

0

�1

0
B@

1
CA: ð8Þ

The maximum angles jbsj vary for different GNSS depend-
ing on the inclination i of the orbits. The general formula
reads:

jbsj 6 iþ �; ð9Þ

where � is the obliquity of the ecliptic. For GPS with
i ¼ 55� we therefore have

jbsj 6 78:5� ð10Þ

and for GLONASS with i ¼ 64:8� we get

jbsj 6 88:3�: ð11Þ

The direct SRP becomes almost uniquely an out-of-plane
acceleration for the maximum angles bs in the case of
GLONASS, whereas significant RD- and SD-accelerations
remain for GPS.

Using Eqs. (4) and (7) the (R,S,W)-decomposition for
the constant Y-acceleration may be easily calculated:

RY

SY

W Y

0
B@

1
CA ¼ Y

0
sin bsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�cos2 bs cos2ðu�usÞ
p

cos bs sinðu�usÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos2 bs cos2ðu�usÞ
p

0
BBB@

1
CCCA: ð12Þ

The pre-factor Y is commonly called Y-bias. The R-com-
ponent is zero by construction. The S-component is con-
stant in along-track direction for bs ¼ �90�,

RY

SY

W Y

0
B@

1
CA
�90�

¼ Y

0

�1

0

0
B@

1
CA; ð13Þ

and thus similar to drag—apart from the fact that, depend-
ing on the sign of bs, SY may either be an along-track accel-
eration or a deceleration.

For bs ¼ 0�, i.e., if the Sun lies in the orbital plane, the
constant Y-acceleration becomes:

RY

SY

W Y

0
B@

1
CA

0�

¼ Y

0

0
sinðu�usÞ
j sinðu�usÞj

0
B@

1
CA; ð14Þ

Note that

sinðu� usÞ
j sinðu� usÞj

¼
þ1; if 0� < us < 180�;

�1; if 180� < u� us < 360�:

�
ð15Þ
From Eqs. (14) and (15) we conclude that an OPR Y-term
of type 	 sinðu� usÞ causes an out-of-plane acceleration
W Y 	 j sinðu� usÞj, which is a superposition of a constant
and a twice-per-revolution term.

According to Eqs. (4), (7), and (12), the constant X-com-
ponent of the SRP model (6) is represented by:

RX

SX

W X

0
B@

1
CA ¼ X

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 bs cos2ðu� usÞ

p
� cos2 bs sinð2u�2usÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos2 bs cos2ðu�usÞ
p

sin 2bs cosðu�usÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos2 bs cos2ðu�usÞ
p

0
BBBB@

1
CCCCA: ð16Þ

The X-bias is a constant acceleration in radial direction for
bs ¼ �90�:

RX

SX

W X

0
B@

1
CA
�90�

¼ X

�1

0

0

0
B@

1
CA: ð17Þ

In summary we have found that for bs ¼ �90� the con-
stant direct SRP term corresponds to a constant out-of-
plane acceleration W D, the Y-bias to a constant along-
track component SY, and the X-bias to a constant radial
component RX.

From the results developed in this section it would be
easy to calculate the OPR accelerations of the empirical
orbit model in the (R,S,W)-directions. We indicated the
importance of the result for the OPR term in Y-direction,
which may generate a constant out-of-plane component
on top of a twice-per-revolution signal. More details are
provided in Section 5.1.

3. Solving the perturbation equations for a constant
acceleration in W-direction

Osculating satellite orbits are by definition particular
solutions of the equations of motion and therefore geocen-
tric. Consequently, it must be possible to obtain the geo-
center by intersecting the osculating planes of all satellites
included in an analysis. This procedure may be viewed as
a purely geometric method to reconstruct the geocenter.
It is the guiding principle of our investigation. Specific
dynamical conditions have to be met in addition (the geo-
center has to lie in the focus of the orbital ellipse) but we do
not make use of such conditions in our analysis.

The perturbation equations (Beutler, 2005, Vol I) tell
that only a non-vanishing W-component may alter an
osculating plane. To explore the correlation between geo-
center coordinates and the parameters of the empirical
orbit model (5) it is therefore sufficient to study the impact
of the W-components of the empirical accelerations (7),
(12), (16); the R- and S-components cannot affect the orbi-
tal planes. The osculating orbital planes are defined by the
right ascension of the ascending node X and by the inclina-
tion i of the orbits w.r.t. the equatorial plane. The orienta-
tion of the osculating ellipses within the plane is given by
the argument of perigee x.



1054 M. Meindl et al. / Advances in Space Research 51 (2013) 1047–1064
For subsequent use we provide the analytical solution of
the perturbation equations for a constant acceleration W in
the frame of first-order perturbation theory. The solution
becomes particularly simple when approximating the satel-
lite orbits as circles (e ¼ 0). In that case the argument of
perigee x can be identified with the node (i.e., x ¼ 0�)
and the perturbation equation for x may be replaced by
one for uðtÞ, the satellite’s argument of latitude, because
the elements a and e are not altered by a W-accelera-
tion—be it constant or not. The perturbations in u are thus
uniquely caused by x, because u ¼ xþ m, where m is the
true anomaly. For circular orbits we may even replace
the true anomaly m by the mean anomaly M. With
M ¼ nðt� T 0Þ, where n is the mean motion of the satellite
and T 0 the node crossing time, we finally get
u ¼ xþ nðt� T 0Þ. Consult Fig. 3 for the definition of the
argument of latitude u and the other osculating elements
mentioned here.

According to the perturbation equations in the Gaussian
form, the modified perturbation equations for the inclina-
tion i, the right ascension of the ascending node X, and
the argument of latitude u read as:

di
dt
¼ W

na
cos u;

_X ¼ W
na sin i

sin u;

_u ¼ n� cos i _X:

ð18Þ

First-order perturbation theory asks to consistently use the
osculating elements at t0 on the right-hand sides of Eqs.
(18). In order to disencumber the formalism, we use the
symbols i, a, . . . instead of i0; a0; . . . in Eqs. (18) and subse-
quently, wherever the difference between the perturbed and
the osculating elements does not matter, i.e., for the calcu-
lation of small quantities (typically perturbations).

The above equations may be solved for a constant out-
of-plane acceleration W:

iðtÞ ¼ i0 þ
W
n2a

sin uðtÞ;

XðtÞ ¼ X0 �
W

n2a sin i
ðcos uðtÞ � 1Þ;

uðtÞ ¼ u0ðtÞ þ
W

n2a tan i
ðcos uðtÞ � 1Þ;

ð19Þ

assuming that the initial epoch t0 ¼ T 0 ¼ 0 corresponds to
the satellite’s crossing of the ascending node. The argument
of latitude of the resulting perturbed orbit was designated
with uðtÞ, whereas u0ðtÞ is related to the osculating elements
at t0. The elements i0 and X0 are the osculating inclination
and the right ascension of the ascending node of the oscu-
lating orbit referring to t0 ¼ 0.

The first two of Eqs. (19) tell that the pole of the oscu-
lating orbits at times t moves with uniform angular velocity
_u ¼ n on a circle with radius

di ¼ W
n2a

ð20Þ
around a fictitious mean pole implicitly defined by the first
two of Eqs. (19). Note in particular that the mean pole does
not correspond to the pole (i0;X0) of the osculating orbit at
t0. The coordinates (im;Xm) of the mean pole may, how-
ever, be calculated using the osculating elements at t0. In
the case represented by Eqs. (19) the mean pole is given by:

ðim;XmÞ ¼ i0;X0 þ
W

n2a sin i

� �
: ð21Þ

With the mean orbital elements (21) the solution (19) may
be brought into the form:

iðtÞ ¼ im þ
W
n2a

sin uðtÞ;

XðtÞ ¼ Xm �
W

n2a sin i
cos uðtÞ;

uðtÞ ¼ umðtÞ þ
W

n2a tan i
cos uðtÞ;

ð22Þ

where obviously

umðtÞ ¼ u0ðtÞ �
W

n2a tan i
: ð23Þ

With Eqs. (22) we introduce a fictitious mean satellite Sm

moving on the plane defined by the elements ðim;XmÞ. As
Eq. (23) tells, its motion is synchronous to that of the satel-
lite S0 moving on the osculating orbit. The constant offset
(second term on the right-hand side of Eq. (23)) is due to
the difference of the ascending nodes of the fictitious mean
and the osculating orbits. The osculating and the fictitious
mean satellite, S0ðtÞ and SmðtÞ, respectively, lie in good
approximation on the same meridian of the fictitious mean
orbital plane defined by ðim;XmÞ because iðtÞ � i0 is a small
angle. The perturbed satellite SðtÞ lies on the same merid-
ian, as well. Note that the perturbed, the fictitious mean,
and the osculating orbits are all circles, and that the mean
(and true) motions in the three orbits are n, i.e., the con-
stant mean motion n of the original osculating orbit. The
mean motion is defined by the third of Eqs. (18) and refers
to the osculating orbit at time t.

Fig. 4 shows the osculating orbit referring to epoch t ¼ 0
(blue), the perturbed orbit (red), and the fictitious mean
orbit (black circular border of dark-shaded orbital plane),
as well as the corresponding satellites S0ðtÞ; SðtÞ, and
SmðtÞ at an arbitrarily chosen epoch t. Note that uðtÞ only
might be visualized in Fig. 4 if the osculating orbit referring
to epoch t would be drawn, as well. In the interest of clarity
we resisted to do that in Fig. 4.

At this point one may wish to consult Appendix A pro-
viding a solution of the perturbation equations for a con-
stant W-acceleration in rectangular coordinates (thus
bypassing the perturbation equations in the orbital ele-
ments) and Appendix B solving the perturbation equations
in rectangular coordinates for the term C10 (corresponding
to the coordinate G3 of the geocenter).

Let us explicitly state the following important result:
The motion of the osculating poles around the fictitious
mean pole is synchronous to the motion of the satellite,



Fig. 4. Perturbed orbit due to a constant out-of-plane acceleration (red),
osculating orbit (blue), and mean orbit (black).
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which in turn implies that the envelope of all osculating
ellipses referring to arbitrary epochs t, i.e., the perturbed
orbit, is a circle parallel to the fictitious mean orbit at a
distance of

dw ¼ W
n2
ðin units of metersÞ: ð24Þ
Note that this particular result as well as the values of the
mean elements im and Xm are independent of the location
of the osculation epoch. The motion of the satellite within
the perturbed orbit is given by the third of Eqs. (19).

The perturbed motion seems to take place in a plane at a
distance dw, given by Eq. (24), from the geocenter.
Depending on the sign of the acceleration W , the perturbed
orbit may lie above or below the mean orbit. Fig. 4 corre-
sponds to a negative value of W, assuming that the Sun is
in the hemisphere above the satellite’s orbital plane.

According to Eq. (7) there is always a constant acceler-
ation W D associated with direct SRP—except for bs ¼ 0�.
For GNSS arcs spanning relatively short time intervals,
typically one day, the angle bs and thus the acceleration
W D ¼ D sin bs may be assumed as constant (at least for
our theoretical studies). A parallel shift of the orbit (repre-
sented by the envelope of all osculating orbits) w.r.t. the fic-
titious mean orbit is always associated with a constant SRP
parameter D0 in the empirical model (6).

It would be easy to generate approximate solutions for
the perturbation equations for the W-components of the
Y- and X-bias as given by Eqs. (12) and (16). Here we sim-
ply state that none but one of these accelerations generate
sizeable and constant offsets of the orbital planes. The
exception related to the OPR terms of the Y-bias was
already mentioned; as we did not include these terms in
our analysis, this aspect is not further considered from here
onwards (consult, however, Section 5.1).

We build our theory of the correlation between the
empirical orbit parameters and G3 uniquely on Eqs. (7),
(19), (20), and (24).

4. Explaining the spurious excursions in the coordinate G3 of
the geocenter

The problem of spurious excursions of the GLONASS-
derived G3 coordinates is discussed for three cases, namely
(1) single-satellite solutions when solving for three coordi-
nates of the geocenter referring to the inertial reference
frame (in addition to all orbit parameters); (2) single-satel-
lite solutions when only solving for the coordinate G3 of the
geocenter; (3) multi-satellite (multi-plane) solutions when
only solving for the coordinate G3. These cases are dealt
with in the first three Sections 4.1–4.3. Section 4.4 contains
the key result of our analysis, the representation of the G3

component of the geocenter as a function of the differences
of D0-values of all satellites from solution series with and
without solving for G3.

4.1. Single-satellite solution estimating three geocenter

coordinates

In Section 3 we showed that a constant out-of-plane
acceleration W inevitably generates a parallel shift of the
resulting perturbed orbit according to Eq. (22). Eq. (7) tells
that the direct radiation pressure D0 always contains a con-
stant out-of-plane component W D. This is not a problem,
because in general the acceleration caused by D0 also con-
tains non-vanishing components RD and SD. A problem
shows up, however, as soon as bs � 90� and geocenter
coordinates are estimated in addition to the parameters
D0 for each satellite of the constellation. The orbit determi-
nation problem would become truly singular if

� the GNSS would consist of only one orbital plane,
� the Sun would stand perpendicular above this orbital

plane, and if
� all three geocenter coordinates—referring to the inertial

coordinate system—were estimated together with the
direct SRP parameters.

Under these circumstances the shift of the orbital plane
caused by D0 might be completely absorbed by the three
geocenter coordinates without solving for the parameters
D0.

Fig. 5 illustrates the situation: If one solves for a per-
turbing acceleration W D normal to the osculating orbital
plane, but not for geocenter coordinates, the envelope of
the orbital planes would be parallel shifted (from the solid
to the dashed orbital plane). According to Eq. (24) the two
orbital planes are separated by dw ¼ W D

n2 . Obviously, the
dashed curve may also be obtained without solving for
the parameter W D, but instead for all three geocenter



Fig. 5. Shift dz of orbit in ez-direction caused by a shift dw normal to the
orbital plane.
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coordinates in the inertial system. The estimated geocenter
would be shifted along the orbit normal eW by a value of
dw. Under the assumptions made, we would thus have a
true linear dependence between the three inertial geocenter
coordinates on one hand and the parameters D0 related to
the orbital plane on the other hand—when making the
attempt to solve for both. Consult also Appendix A to
explicitly see the relation between the geocenter coordi-
nates and a constant acceleration normal to the orbital
plane.
4.2. Single-satellite solution estimating only G3

In the procedure of the CODE analysis center, in the
analysis performed by Meindl (2011), and here, the three
estimated coordinates of the geocenter refer to the Earth-
fixed system. This fact implies that, unintentionally, coordi-
nate G3 of the geocenter in the inertial system is estimated,
as well, because the transformation between the Earth-
fixed and the inertial system consists in essence of a rota-
tion about the ez-axis leaving all z-coordinates (of station
and geocenter vectors) unaffected.

The restricted set of parameters—one instead of three
geocenter coordinates—removes the singularity of the gen-
eralized orbit determination problem. A strong correlation
between the coordinate G3 and the parameters W D of the
orbital plane may, however, remain: The parameter W D

of the orbit may move the envelope of the shifted plane
from the solid to the dashed orbit; a geocenter z-shift of

dz ¼ dw
cos i

ðin units of metersÞ ð25Þ

can move the orbital plane back to the initial (solid) plane.
The procedure is illustrated by Fig. 5.

In order to get more insight into the correlation between
the geocenter offset G3 and the shift in dz caused by the esti-
mation of the SRP parameter D0, a strap-down simulation
was performed in Appendix C. The equatorial coordinates
ðx; y; zÞ of an elliptical orbit (for every minute over one day)
served as observations to determine the six orbital elements
and the parameter D0 related to a Sun at a constant eleva-
tion angle bs above the orbital plane. The center of the
ellipse was shifted by one meter in the z-direction, corre-
sponding to G3 ¼ 1 m in the underlying reference frame.

When ignoring this offset, solving for D0 (in addition to
the six osculating elements), and converting the resulting
estimate into an offset dz according to Eqs. (25), (24), (7),
one gets an impression of how well formula (25) is met in
practice for bs ¼ 90� and how rapidly the approximation
deteriorates with bs decreasing. The second column of
Table C.1 shows that the effect is as predicted for
bs ¼ 90� and that dz rapidly decreases with decreasing bs.
The third column of Table C.1 stems from a parameter esti-
mation including the six orbital elements, D0 and G3. A
very high degree of correlation results for bs ¼ 90�, which
is rapidly reduced with a decreasing angle bs. The last col-
umn of Table C.1 shows that biases remain in the system if
only the six orbital elements and the parameter D0 are esti-
mated: For a perfect a priori model the root-mean-square
(RMS) value a posteriori should be close to zero (error-free
observations assumed). The RMS varies between 15 cm for
bs ¼ 90� to about 36 cm for bs ¼ 0�. The simulation is a
very coarse approximation of the actual problem but
reveals the key characteristics of the original problem.

4.3. Multi-satellite/plane solution estimating only G3

In reality we do not only have one, but three or six orbi-
tal planes in the cases of GLONASS and GPS, respectively.
The additional orbital planes in principle remove the singu-
larity problem discussed above. The correlation between
parameters D0 and G3 in the single-satellite case tell, how-
ever, that the observations of the satellites in the original
plane cannot contribute (much) to the determination of
G3. With only slight exaggeration we may therefore state
that G3 is determined with the observations of only two
orbital planes for GLONASS when bs � 90� for one plane.
Fig. 6 illustrates the situation with three orbital planes (to
be interpreted either as building blocks of the GPS or as the
complete GLONASS). The ez-axis points to the North
pole.

The six orbital planes of the GPS are evenly spaced by
60� (in the equatorial plane) and labeled by A, B, . . ., F.
Only the planes A, C, and E and their normal vectors
eA; eC, and eE are provided in Fig. 6. In the case of the
GPS, with an inclination i � 55� and a separation of planes
A, C, and E of 120� in the equator, the three orbital planes
are mutually orthogonal—and so are the orbit normal
vectors. The three planes may thus be interpreted as the
three faces of a cube intersecting in one of its vertices.
The ez-axis, pointing to the North pole, corresponds to
the (continuation of the) space diagonal of this cube. Note
that the normal vector of one of the orbital planes is the
intersection of the other two orbital planes.

For the GPS the weakening of the G3 solution, e.g., due
to a large angle bs over plane A, is mitigated by the three



Fig. 6. Orbital planes A, C, and E of the GPS and the corresponding orbit
normal vectors; unit vector ez points to the North pole.
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planes B, D, and F. If plane A has a quasi-singularity with
a large bs, all other planes, in particular B, D, and F, have
rather small angles bs. These facts explain why G3 is well
determined with the GPS when using the CODE empirical
SRP model (5), (6)—even when bs � 80� for one of the
orbital planes.

In the case of GLONASS with inclinations of i � 65�,
Fig. 6 has to be used with some caution: The three
GLONASS planes are not mutually orthogonal, neither
are the corresponding orbit normal vectors. Therefore,
the orbit normal of one plane does not lie in the other
two orbital planes. The inclination angles of the orbit nor-
mal vector of one plane w.r.t. the two other planes remain,
however, small.

The Galileo system will be similar to GLONASS by hav-
ing only three orbital planes. It will be similar to the GPS
by having an inclination of about 55�. Galileo is thus well
described by Fig. 6.

4.4. The geocenter shift G3 as a function of D0-differences

Is it possible to relate the estimated geocenter offset G3

to the differences of the D0-estimates for all satellites in
the solution series with and without the estimation of G3?
To answer this question we perform a thought experiment,
assuming that (a) the observations of a three-plane GNSS
are uniquely contaminated by small normally distributed
random errors; and (b) that the a priori model of the obser-
vations is perfect, apart from a sizeable geocenter offset G3.
The outcome of the experiment will be the following:

� The solution series including the estimation of G3 will
provide the correct values for all D0 and for G3 (some-
what weakened because one orbital plane is not contrib-
uting to this estimate).
� The solution series which does not include the estima-

tion of G3 will contain systematic errors. This implies
in particular that the estimates of D0 will be biased.
The biases will be large for those satellites having large
angles bs. Appendix C gives more details.

Based on this thought experiment and based on the dis-
cussion of a GNSS with only one satellite (orbital plane)
earlier on in this section, we postulate that the estimate
of the geocenter coordinate G3 must be explained by the
differences of the direct SRP parameters in both solution
series: Let D and D0 be the direct SRP parameter estimates
for a particular orbital plane from a solution including the
estimation of G3 and keeping this estimate constrained to
zero, respectively. Assuming satellites of the same type
(surface properties, mass, attitude control) within the orbi-
tal plane, the best values for the parameters D and D0 are
the mean values over all s satellites in the plane:

D ¼ 1

s

Xs

k¼1

Dk and D0 ¼ 1

s

Xs

k¼1

D0k; ð26Þ

where the Dk and D0k are the constant direct SRP parame-
ters associated with the satellite k of the plane.

According to Eq. (7), the difference

DD ¼def D� D0 ð27Þ

generates a constant acceleration DW ¼ DD sin bs. By virtue
of Eq. (24) this constant acceleration causes an orbit dis-
placement of dw ¼ DD sin bs=n2 normal to the orbital plane,
where n stands for the mean motion of the satellites. The
orbital plane is thus shifted in the z-direction by
dz ¼ dw= cos i ¼ DD sin bs=ðn2 cos iÞ. The total theoretical
shift dz of the geocenter induced by the plane-specific DD‘

values, ‘ ¼ 1; 2; . . . ; p, of all p orbital planes, thus simply is:

dz ¼
Pp

‘¼1DD‘ sin bs‘

n2 cos i
; ð28Þ

where the mean motion n as well as the inclination i are as-
sumed to be the same for all satellites of the system. The
angle bs‘ is assumed to be the same for all satellites of plane
‘. Our hypothesis, namely that the estimate of coordinate
G3 compensates dz, implies that we should have

dzþ G3 � 0: ð29Þ

Fig. 7 shows that our hypothesis is approximately true
for the GLONASS system. The red and the black curves
correspond to the estimated G3-values and to the values
�dz, where dz was calculated according to Eq. (28). The
black curve in Fig. 7 (bottom) shows dzþ G3, which we
suspected to be close to zero. The signal is not exactly zero,
but it has greatly reduced amplitudes when compared to
either G3 or dz.

Fig. 8 provides the individual constituents of dz in Eq.
(28) related to the three GLONASS orbital planes. The



Fig. 7. Coordinate G3 from GLONASS: estimated (red) and recon-
structed (black) from DD-components according to Eq. (28); bottom:
difference.

Fig. 9. Coordinates G3 from GLONASS using one-day arcs (blue), three-
day arcs (red), and seven-day arcs (green).
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resulting total signal near the maxima and minima is in
most cases dominated by exactly one contributing orbital
plane. This fact indicates that one needs at least three orbi-
tal planes without near-singularities when trying to deter-
mine G3 with a particular GNSS.

So far, we only considered GLONASS arcs of one day
for the creation of the geocenter time series. One may sus-
pect that longer arcs would reduce the artifacts in Fig. 7.
Fig. 9, showing the time series of G3-estimates based on
one-day and (overlapping) three- and seven-day arcs, indi-
cates that the arc length is an important aspect for geocen-
ter determination. The three-day arcs (red curve) result in
moderately reduced excursions. The seven-day arcs (green)
significantly reduce the excursions, particularly those
caused by the plane with the maximum bs-values. Seven-
day arcs correspond to the length of SLR arcs (see Sec-
tion 5.2). Longer arcs would thus be recommendable for
geocenter determination. For other parameters, in particu-
lar for orbit parameters and station coordinates, one- or
three-day arcs are clearly preferable, because currently
our GLONASS orbit models are not sufficient to generate
longer than three-day arcs with only few parameters. Sys-
tematic errors in the orbits and other parameters would
result. The CODE final products are, e.g., based on
Fig. 8. Plane-specific constituents of dz (solid) and corresponding angles
bs (dashed) for GLONASS.
three-day arcs, which is a well established practice since
more than twenty years.

Let us now apply Eq. (28) to the GPS time series of geo-
center estimates. A first inspection of the coordinates G3

determined with the GPS in Fig. 1 of Section 1.4 did not
reveal a strong correlation of the geocenter time series with
the angles bs of the individual orbital planes. Fig. 10 corre-
sponds to Fig. 7, but compares G3-estimates and dz-values
based on GPS observations. Formula (28) predicts the
behavior of G3 even much better than in the case of
GLONASS and the sum dzþ G3 (Fig. 10, bottom) differs
from zero only by fractions of one centimeter. Our theory
therefore may be applied to both fully deployed GNSS.
5. Geocenter determination using a generalized empirical

orbit model

5.1. GNSS-derived geocenter coordinates

The article (Thaller et al., in press) has the focus on the
combination of GNSS- and SLR-observations for the esti-
mation of the geocenter. The solutions of the GNSS-
related NEQs were artificially weakened by solving not
only for the OPR parameters associated with eX, but for
Fig. 10. Coordinate G3 from GPS: estimated (red) and reconstructed
(black) from DD-components according to Eq. (28); bottom: difference.



Fig. 11. Coordinate G3 from GPS using the CODE orbit model (black),
the CODE model plus the OPR terms along eD (red), and the CODE
model plus the OPR terms along eY (blue).

Fig. 12. Angles bs of the GPS constellation (same line style for planes
separated by 180� in the equator).
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all three directions eD; eY, and eX (in addition to the three
constant components) in the empirical model (5), (6). As a
consequence the GNSS-only estimates of the coordinate G3

became really bad with excursions up to �15 cm. Adding
the SLR observations to LAGEOS subsequently greatly
improved the bad solutions.

In view of the theory developed in the previous sections it
seems clear that the OPR parameters in the eD-direction (see
Eq. (7)) cannot be guilty for the massive quality loss. In
order to clarify this aspect we generated two more solution
series with the GPS data used in our analysis, one including
the OPR estimates along eD, one including the OPR esti-
mates along eY—both times in addition to the parameters
of the standard CODE model. Fig. 11 confirms our theory:
The OPR terms along eD have virtually no impact on the
geocenter. The impact of adding the OPR terms along eY,
on the other hand, is absolutely devastating.

How can this effect be explained despite the fact that we
have six orbital planes in the GPS? Eqs. (12) and (14)
answer this question: As mentioned, the OPR terms along
eY are indeed able to generate a constant W-acceleration
(actually a non-zero mean in W-direction) for bs ¼ 0�. As
opposed to the effects caused by a constant acceleration
D0, where the maximum angle bs was limited by Eq. (10)
for the GPS, the case bs ¼ 0� occurs twice per (draconitic)
year for each orbital plane. The estimation of the OPR
parameters in eY is insofar worse than the estimation of
constant parameters in eD, because if there is a small angle
bs associated with, e.g., plane A, bs is also small for plane
D. The same is true for the other pairs of orbital planes
separated by 180� in the equator. For orbital planes with
X ¼ 0� and X ¼ 180� the cases where bs ¼ 0� even occur
simultaneously. The geometry is illustrated by Fig. 12,
where the angles bs of the planes separated by 180� in the
equator have the same line style.

The curves with the same line style all intersect at
jbsj < 15� (shaded area in Fig. 12), i.e., at small angles.
We may therefore say with only slight exaggeration that
we have critical situations with small angles bs simulta-
neously in two orbital planes separated by 180� in the equa-
tor about every two months. The situation is particularly
pronounced for the orbital planes with X � 0� and
X � 180� (dotted curves in Fig. 12).

As quasi-singularities occur simultaneously in the two
building blocks A/C/E and B/D/F of the GPS (see
Fig. 6), the GPS can no longer profit from its six orbital
planes—two of them may be disregarded for bs � 0� due
to the parametrization used in this section.

5.2. SLR-derived geocenter coordinates

SLR solutions based on spherical satellites are known to
be very well suited for geocenter estimation (see Sec-
tion 1.1). As we were successfully producing bad GNSS-
derived estimates of G3 by generalizing our empirical
SRP model (5), the question arose whether the SLR-
derived estimates of G3 are sensitive to similar changes in
the SRP model. The LAGEOS data 2008–2010 from Thal-
ler et al. (in press) were re-analyzed for that purpose and
different solutions were generated with different sets of
empirical accelerations estimated per 7-day arc:

� a constant along-track acceleration S0,
� S0 and a constant direct acceleration D0,
� S0 and a constant out-of-plane acceleration W 0.

Once-per-revolution parameters in along-track eS- and
out-of-plane eW-directions were estimated in addition in
all three solution types. The first solution type represents
our standard SLR solution, which may serve as reference.
The resulting coordinates G3 of the geocenter are shown
in Fig. 13. The estimation of an additional acceleration
D0 for the direction eD to the Sun obviously has almost
no impact on the estimated geocenter coordinates. The esti-
mation of an acceleration W 0 in the out-of-plane direction
eW, however, clearly weakens the SLR-derived geocenter
estimates. The blue curve therefore shows what might hap-
pen for the SLR solution in the worst case.

The insensitivity of the geocenter w.r.t. the parameter D0

may be explained with the angles bs for the two LAGEOS
satellites (see Fig. 14): The maximum bs for LAGEOS-2 is
76� and in most cases jbsj < 40�; a maximum of jbsj � 90�



Fig. 13. Coordinate G3 estimated by SLR with empirical accelerations S0

(black), S0 and D0 (red), S0 and W 0 (blue).

Fig. 14. Top: elevation bs of the Sun above/below the orbital planes of the
LAGEOS-1 (black) and LAGEOS-2 (gray) satellites; bottom: range of bs

within each 7-day arc.
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is possible for LAGEOS-1, but this is counterbalanced by
LAGEOS-2.

The D0-estimates (corrections w.r.t. the a priori value)
are below 0:5 � 10�9 m=s2 for LAGEOS-2. If we apply Eq.
(28) for the maximum angle bs ¼ 76�, we obtain a maxi-
mum theoretical effect on the geocenter of only
dz ¼ 3:6 mm. The D0-estimates are usually below
1:0 � 10�9 m=s2 for LAGEOS-1, resulting in a maximum
theoretical effect of dz ¼ 13:6 mm for bs ¼ 90�.

If we compute a single-satellite solution based only on
LAGEOS-1 (with estimating D0), the variations in the geo-
center are negligible except for periods when jbsj reaches its
maximum values. During these time spans, the impact on
the component G3 of the geocenter may reach about
2 cm, confirming the theoretical value derived above. In
the case of a LAGEOS-2 solution, the variations in the
geocenter series are negligible (always below 1 mm), con-
firming the theoretical value derived above, as well.

The third reason for the insensitivity of the geocenter
w.r.t. the estimation of D0-parameters resides in the length
of the LAGEOS orbital arcs (i.e., 7 days), which also
implies a significant change of the angles bs during this time
span. Fig. 14 (bottom) shows that bs varies within one week
by up to 5� and 10� for LAGEOS-1 and LAGEOS-2,
respectively. This range of values de-correlates the relation-
ship between a constant DD and dz in Eq. (28). The angles
bs for the GNSS satellites change within one orbital arc
(one day) by about 1�, only. A simulation based on the
method outlined in Appendix C, but with a Sun moving
with 1�=day in the ecliptic, revealed, as well, that the arc
length plays a key role: The correlation rapidly decreases
when the arc length increases.

As the angle bs does not matter for the relationship
between a constant acceleration in W-direction and the
geocenter (cf. Eqs. (24) and (25)), we see an impact on
the geocenter series when estimating a W 0-parameter
(Fig. 13). The differences are up to about 2 cm. But thanks
to the mean motion n of the satellite in Eq. (24), the differ-
ences are much smaller for the LAGEOS satellites than for
the GNSS satellites.

From these experiments we conclude that the LAGEOS-
based geocenter solutions greatly benefit from the orbit
characteristics resulting in an insensitivity w.r.t. the estima-
tion of D0-parameters, and only a small sensitivity w.r.t. a
W 0-parameter. In addition, the SRP is much better known
for the LAGEOS satellites than for the GNSS satellites,
which is why D0 usually needs not to be estimated.
Together with the theoretical considerations concerning
the SLR and GNSS observation types given in Section 1.1,
the experiments in this section clearly show the superiority
of SLR compared to GNSS for the estimation of meaning-
ful geocenter series.
6. Summary and conclusions

Our investigations were motivated by Fig. 1 (bottom)
showing the estimates of the coordinate G3 of the geocenter
and the elevation angles bs of the Sun above or below the
three GLONASS orbital planes. The correlation of G3 with
bs is so obvious that a detailed analysis of the correlations
between G3 and the orbit parameters seemed appropriate.

For this purpose the constant constituents of the SRP
model (5), (6) were decomposed into (R,S,W)-components
(radial, along-track, out-of-plane) in Section 2.2. We found
that the acceleration associated with the parameter D0 in
Eq. (6) gives rise to a constant W-component (assuming
bs as constant over the arc length). We found furthermore
that for jbsj ¼ 90� the R- and S-components related to the
parameter D0 are zero (see Eq. (8)) and that, according to
Eq. (11), the Sun regularly almost assumes this elevation
for GLONASS. According to Eq. (10) the maximum eleva-
tion of the Sun above the GPS planes is about 78:5�, imply-
ing that even for the maximum bs-angles there are still
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sizeable R- and S-components associated with direct radia-
tion pressure, which helps de-correlating the geocenter
coordinate G3 and the SRP parameters D0 for GPS. It is
important to note that only a constant D-component and
an OPR component in Y are capable of generating non-
zero mean values in the W-component over one revolution.

In Section 3 the essential results of first-order perturba-
tion theory were put together. This theory says that a con-
stant perturbation normal to an orbital plane causes the
perturbed orbit seemingly to lie in a plane which does
not contain the geocenter. The distance of the geocenter
from the perturbed orbital plane is given by Eq. (24).
The geometry of the perturbation is illustrated by Fig. 4.

In Section 4 we first studied a hypothetical GNSS with
only one orbital plane and assumed a constant perturbing
acceleration perpendicular to this plane (Sun normal to the
orbital plane). The orbit determination problem becomes
singular, if the parameter D0 and the three geocenter coor-
dinates in the inertial system are determined in the same
parameter estimation procedure. If only the inertial com-
ponent G3 of the geocenter is estimated in addition to D0,
a high correlation remains between the parameters G3

and D0.
If two orbital planes are added to the one-plane-GNSS

(for which jbsj � 90�) in such a way that the three planes
are separated by 120� in the equator, the determination
of the geocenter remains weak.

The total shift of the geocenter due to the differences of
the constant parameters D0 in the solutions without and
with the estimation of G3, respectively, is given by Eq.
(28), which may be viewed as the core result of our work.
The equation predicts the geocenter offsets almost perfectly
for the GPS and rather accurately for the GLONASS (see
Figs. 10 and 7).

A comparison of Figs. 7 and 10 clearly tells that the
GLONASS-derived coordinates G3 are artifacts. What is
the nature of the excursions in the GPS-derived geocenter
as shown in Fig. 10? From the fact that Eq. (28) perfectly
describes the excursions in terms of the differences (27)
we are not allowed to conclude that the excursions in
Fig. 10 are artifacts: We might have started our investiga-
tion from an arbitrarily chosen origin of the terrestrial net-
work (e.g., offset by one meter w.r.t. the ITRF origin), in
which case the estimated components G3 of the geocenter
would have removed this wrong value. But formula (28)
still would describe the estimated coordinates G3 correctly
as a function of the values (27). This is why a discussion of
the nature of the GPS-derived geocenter variations would
have to involve the SLR time series as reference. We
decided not to conduct such an investigation here, because
our GPS-derived geocenter time series is based on a global
network of only 92 combined GPS/GLONASS receivers
and not on the much larger network of GPS receivers used,
e.g., by the CODE or other IGS analysis centers.

Section 5.1 tells that the orbit parametrization plays a
key role when studying artifacts in the components G3 of
the geocenter. When adding the two OPR parameters asso-
ciated with the Y-component of the empirical SRP model
(6) to the standard model used in the previous sections,
the quality of the GPS-derived coordinates G3 breaks down
completely. The artifacts are almost as bad as for the
GLONASS-derived results (see Fig. 11). The reason for
this behavior was clearly identified: For bs � 0� the SRP
model contains a non-zero mean W-component caused
by the two OPR terms in Y.

Having said that orbit parametrization plays an impor-
tant role one might conclude that the problems encoun-
tered in this article are uniquely caused by the CODE
orbit model (5), (6). This is not true, however: Alternative
models, like, e.g., box-wing models, cannot live without
model parameters, which have to be determined in the
parameter estimation process. Our theory asks that each
empirical acceleration standing behind such a free parame-
ter has to be decomposed into the (R,S,W)-components—
along the lines presented in Section 2.2. As soon as W-
components with non-zero means over a revolution result,
there is the danger of generating artifacts.

In Section 5.2 we checked whether our theory also
applies to geocenter series determined with SLR. The ques-
tion can by answered by “yes, but . . .”: When adding a con-
stant acceleration in eW (and estimating the associated
parameter W 0), the SLR solutions are considerably weak-
ened (blue curve in Fig. 13), but not to the same extent
as the GLONASS solutions (see Fig. 7). One might have
expected a much stronger degradation of the SLR solu-
tions, because they are based only on two satellites. The
blue curve is a worst case scenario for LAGEOS, showing
what would happen when solving for a constant out-of-
plane acceleration for each arc. In the assumptions under-
lying our theory (bs assumed constant over the arc length)
the solution when solving for a constant D0 (red curve)
should be the same as the blue curves if bs ¼ 90�. The fact
that this is not the case indicates that the change of the
angle bs within the arc plays an important role. The results
of Section 5.2 confirm that SLR, applied to the geodetic
LAGEOS satellites, is an excellent tool to determine geo-
detic datum parameters like the geocenter.

One might believe that a GNSS with satellites equipped
with 3-D accelerometers, measuring the surface accelera-
tions along three spacecraft-fixed axes, would remove the
problem associated with the SRP models. This actually
would be true for accelerometers with infinite bandwidth.
Unfortunately, such devices do not exist, implying that at
the minimum one offset parameter has to be determined
per accelerometer component in the analysis. For
jbsj ¼ 90� this is equivalent to determining a constant accel-
eration along eW (and two other accelerations)—so we are
back to where we started. Let us point out, however, that
accelerometry on GNSS satellites would be very useful,
because it would take care of all the time-varying aspects
of solar radiation pressure. It is, however, also clear that
it would not resolve all problems.

Let us conclude with a few remarks about the future, in
particular about Galileo. This system will be based on only
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three orbital planes like GLONASS. One therefore might
expect a rather bad performance for the determination of
the geocenter component G3. The inclinations of the Gali-
leo orbits will, however, be essentially the same as those of
the GPS, implying that the maximum angle bs is below 80�,
which greatly reduces the correlation between the parame-
ters D0 and G3. We therefore predict that the coordinates
G3 estimated with Galileo will have a signature like those
in Fig. 7, but with substantially reduced amplitudes.

From the perspective of geocenter determination we
would advocate a hypothetical GNSS with, let us say, 30
satellites with only one satellite per equally spaced orbital
plane. The separation of the orbital planes would then be
12� in the equator. This system design would result in a
much better sampling of the SRP parameters as a function
of bs at each point in time. Such a GNSS would be much
less prone to the kind of quasi-singularities as discussed
in this work.
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Appendix A. Solving the perturbation equations for W in
Cartesian coordinates

In their original form, the perturbation equations
including the 1=r-potential and an acceleration W normal
to the unperturbed orbital plane read as:

€r ¼ �GM
r

r3
þ W eW: ðA:1Þ

Note that W ¼ D0 for bs ¼ 90� (see Eq. (8)). One therefore
may view this appendix also as a treatment of direct solar
radiation pressure if the Sun is perpendicular above the
orbital plane.

Let us now assume that the unperturbed orbit is circular
with radius r ¼ a. Eq. (A.1) may then be brought into the
form

€r ¼ �GM
r� Wa3=ðGMÞeW

r3
¼ �GM

r� W =n2 eW

r3
: ðA:2Þ

Performing the transformation

r0 ¼def
r� W =n2 eW ðA:3Þ

in Eq. (A.2) leads to the equations of motion
€r0 ¼ �GM
r0

r03
: ðA:4Þ

Eq. (A.4) says that the satellite moves on a Keplerian orbit
with the unperturbed semi-major axis, with center W =n2 eW,
and with the orbital plane parallel to the original plane. We
made use of the fact that the mean motion n of the satellite
is not affected by a force normal to the orbital plane and
that r0 � r.

The latter relation does not hold strictly in the mathe-
matical sense, because

r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ W 2

n4

s
� r 1þ 1

2

W 2

n4a2

� �

� r 1þ 1:3 � 10�14
� �

; ðA:5Þ

where we used typical values W ; a, and n for a GPS satel-
lite. The approximation is thus certainly allowed—at least
for the arc lengths we have to deal with.
Appendix B. Solving the perturbation equations for C10 in

Cartesian coordinates

It is well known that the terms C10; C11, and S11 of the
development of the Earth’s gravity potential into spherical
harmonics are related to the coordinates ðG1;G2;G3Þ of the
Earth’s center of mass through the equations (see Beutler,
2005, Vol. I):

C10 ¼
G3

ae

; C11 ¼
G1

ae

; S11 ¼
G2

ae

; ðB:1Þ

where ae is the equatorial radius of the Earth. Instead of
solving for a common offset of the network of observing
sites, it is thus also possible to solve for the first-degree
coefficients of the spherical harmonics expansion. The per-
turbation equations for C10 read:

€r ¼ �GM
r

r3
þ $V 10; ðB:2Þ

where

V 10ðr;/Þ ¼ C10

GMae

r2
P0

1ðsin /Þ ðB:3Þ

and where / is the latitude of the satellite. The Legendre
polynomial of first degree is given by:

P0
1ðnÞ ¼

1

2

d

dn
n2 � 1
� �

¼ n: ðB:4Þ

As n ¼ sin / ¼ z
r, the geopotential term (B.3) may be writ-

ten as:

V 10ðr; zÞ ¼ C10 GMae

z
r3
: ðB:5Þ

Note that r ¼ rðx; y; zÞ. From the above equation we obtain
the perturbing force as
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$V 10 ¼ C10 GMae$
z
r3

n o
¼ C10 GMae

�3 xz
r5

�3 yz
r5

�3 z2

r5 þ 1
r3

0
B@

1
CA: ðB:6Þ

After some algebra one obtains the representation of this
gradient in the (R,S,W)-system as

$V 10 ¼ C10

GMae

r3

�2 sin i sin u

þ sin i cos u

cos i

0
B@

1
CA: ðB:7Þ

Let us now introduce this representation into the equations
of motion (B.2). Without loss of generality we may inter-
pret this equation as a coordinate equation with the plane
of the unperturbed orbit as fundamental coordinate plane
(we thus have i ¼ 0�), which results in:

€r ¼ �GM
r

r3
þ GM ae C10

r3
eW: ðB:8Þ

Using G3 ¼ ae C10 from Eq. (B.1) we may write

€r ¼ �GM
r� G3 eW

r3
: ðB:9Þ

Note that Eq. (B.9) is the same as (A.2) (apart from the
pre-factor of vector eW). There is one subtle difference:
Thanks to the pre-factor 1=r3 in (B.7) the above equation
does not only hold for circular orbits, but for any eccentric-
ity e. Proceeding in the analogous way as in Appendix A
and performing the substitution

r0 ¼def
r� G3 eW ðB:10Þ

in Eq. (B.9) finally leads to the equations of motion

€r0 ¼ �GM
r0

r03
: ðB:11Þ

Our conclusions are analogous to those of Appendix A:
Eq. (B.11) says that the satellite moves on a Keplerian orbit
with the unperturbed semi-major axis a, with center G3 eW,
and with the orbital plane parallel to the original plane.
Again we used r � r0, knowing already that this approxi-
mation is no issue, in practice.

Comparing Eqs. (A.4) and (B.11) we may conclude that
for circular orbits there is a correlation of 100% between
the parameter D0 for jbsj ¼ 90� and the estimation of the
three geocenter offsets in the inertial system!
Appendix C. A parameter estimation based on simulated

observations

The correlation between the geocenter coordinate G3

and the direct radiation pressure parameter D0 may be
illustrated by a simple parameter estimation problem pre-
serving, however, the key features of the original one. Its
characteristics are:
� The Cartesian coordinates of the position vector of a
GPS-like satellite are used as observations. One day
worth of error-free observations, separated by one min-
ute, is assumed.
� The orbit of the satellite solves the two-body problem.

Its origin is, however, not in the origin of the selected
coordinate system, but shifted in z-direction by
G3 ¼ þ1m.
� The orbit is reconstructed for bs ¼ 0�; 10�; . . . ; 90�. The

G3-offset of one meter is ignored; instead a SRP coeffi-
cient D0 is solved for together with the six osculating ele-
ments. The unit vector eD was assumed to lie in the
plane defined by the z-axis of the coordinate system
and the orbit normal vector. The partial derivatives
w.r.t. D0 are obtained by numerical integration; the a
priori orbit and its partial derivatives w.r.t. to the oscu-
lating elements are obtained analytically based on the
formulas of the two-body problem. There are seven
parameters in the adjustment.
� In order to study the correlation between G3 and D0 an

additional eight-parameter adjustment is performed,
where both, D0 and G3 are determined.

The results may be found in Table C.1: Column 1 con-
tains the elevation bs of the Sun above the orbital plane;
column 2 the offsets dz derived from the estimated D0 using
Eq. (28); column 3 the correlation coefficient j of the
parameters G3 and D0 from the eight-parameter adjust-
ment; and column 4 the root-mean-square (RMS) errors
a posteriori of the observations calculated using the stan-
dard formulas of the adjustment.

The first line of Table C.1 shows that the parameter D0

cannot absorb any fraction of the geocenter offsset G3 if the
Sun lies in the orbital plane. This is underlined by the cor-
relation coefficient j � 0%. The RMS error a posteriori is
about a third of the offset. The case bs ¼ 0� also corre-
sponds to an adjustment solving only for the six osculating
orbit elements. An inspection of the residuals (not provided
here) shows a clear systematic behavior with an once-per-
revolution signature.

The last line shows that the entire effect of 1 m can be
absorbed by D0 for bs ¼ 90�. The correlation coefficient
j � �91% indicates that the two critical parameters are
almost linearly dependent.

The other lines of Table C.1 show that the correlation
and the fraction of the offset absorbed by D0 rapidly
decrease from bs ¼ 90� to bs ¼ 0�. For GNSS constellations
one may safely state that a geocenter offset induced by D0 is
dominated by the orbital plane with the largest jbsj.

What would happen in a multi-satellite adjustment
involving s > 1 satellites with different angles bs (and differ-
ent vectors eD)? Based on the simulation documented by
Table C.1 we give the following answers:

� An adjustment keeping the geocenter fixed at the wrong
position will result in exactly the same D0-estimates for
every satellite as in the single-satellite adjustments,



Table C.1
Results of the adjustments.

bs in degrees dz in mm j in % RMS in mm

0 0 �1.5 363
10 1 �3.6 363
20 3 �5.7 363
30 6 �8.2 362
40 13 �11.1 361
50 25 �15.1 359
60 49 �21.0 355
70 113 �31.4 345
80 348 �54.4 300
90 1000 �91.2 150
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because there are only satellite-specific parameters in the
adjustment—implying that the combined NEQ system
de facto breaks up into s separate systems.
� An adjustment where all s direct SRP parameters and

the geocenter offset G3 are estimated would result in
the correct D0-values for every satellite and in the correct
value for G3. In the previously described experiment,
these values would be G3 ¼ 1 m and D0 ¼ 0, thus also
dz ¼ 0, for all s satellites.
� The differences of the D0-estimates from the two above

adjustments (without and with estimating G3) would
therefore yield the offsets dz of Table C.1 (column 2),
underlining the correctness of formula (28).

Table C.1 also supports the remarks in the main text:
With longer arcs the variation in the angles bs and thus
the de-correlation of the two key parameters becomes
substantial.
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