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Outline  

 Global Navigation Satellite Systems 

 

 Combined GPS/GLONASS analysis 

 

 Summary 
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Principle of Navigation  

 Satellite as fixed point in space 

 Distance satellite → observer 

 Measurement of signal travel time 

 

 

 1 satellite 

 Position: surface of sphere  
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Principle of Navigation  

 Satellite as fixed point in space 

 Distance satellite → observer 

 Measurement of signal travel time 

 

 

 2 satellites 

 Position: circle  
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Principle of Navigation 

 Satellite as fixed point in space 

 Distance satellite → observer 

 Measurement of signal travel time 

 

 

 3 satellites 

 Position: point  
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Principle of Navigation 

 Clocks not perfectly synchronized 

 Biased distance satellite → observer 

 Difference of two distances 

free of receiver clock error 

 

 

 2 satellites 

 Position: hyperboloid 
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Principle of Navigation 

 Clocks not perfectly synchronized 

 Biased distance satellite → observer 

 Difference of two distances 

free of receiver clock error 

 

 

 3 satellites 

 Position: intersection line 
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Principle of Navigation 

 Clocks not perfectly synchronized 

 Biased distance satellite → observer 

 Difference of two distances 

free of receiver clock error 

 

 

 4 satellites 

 Position: point 

Slide 12  Astronomical Institute, University of Bern 

Observation Equation 

 Modeling „distance“ satellite → observer 
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Observation Equation 

 Modeling „distance“ satellite → observer 

 

 

 

 Signal reception point 

 Position of observer 

 Antenna eccentricity 

 Antenna phase center 
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Observation Equation 

 Modeling „distance“ satellite → observer 

 

 

 

 Signal transmission point 

 Position of satellite 

 Antenna eccentricity 

 Antenna phase center 
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Observation Equation 

 Modeling „distance“ satellite → observer 

 

 

 

 Reception and transmission point 

 Given in same system 

 Transformation Earth-fixed ↔ inertial 

 Earth orientation parameters 
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Observation Equation 

 Modeling „distance“ satellite → observer 

 

 

 

 Clock synchronization errors 

 Station and satellite 

 Order of magnitude: < milliseconds 
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Observation Equation 

 Modeling „distance“ satellite → observer 

 

 

 

 Biases 

 Caused by station and satellite hardware 

 Order of magnitude: nanoseconds 
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Observation Equation 

 Modeling „distance“ satellite → observer 

 

 

 

 Atmospheric effects  

 Troposphere, ionosphere 

 Order of magnitude: meters 
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Observation Equation 

 Modeling „distance“ satellite → observer 

 

 

 

 Other effects 

 Relativistic effects 

 Multipath, reflected signals 

 ... 
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Observation Equation 

 Modeling „distance“ satellite → observer 

 

 

 

 Combined analysis of different GNSS 

 GNSS-specific parameters 

 Models fitting the different GNSS 

 Consideration of all bias parameters 
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System Overview 

 Global systems 

 USA  Global Positioning System 

 Russia  GLObal NAvigation Satellite System 

 EU  Galileo 

 China  Compass 

 

 Regional and augmentation systems 

 Quasi-Zenith Satellite System 

 Indian Regional Navigation Satellite System 

 WAAS, EGNOS, MSAS, GAGAN, SDCM 
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System Overview 

 GNSS satellites 

 Weight  ~ 1 ton 

 Size  ~ 2 x 2 x 2 meters 

 Panel span ~ 10 meters 

GPS (Block IIF)                   GLONASS (K)                            Galileo (IOV 
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System Overview - GPS 

 32 operational satellites 

 6 orbital planes 

 Semi-major axis: 26'560 km 

 Inclination: 55° 

 Revolution period: 1/2 sidereal day (11h 58min) 

 2 (3) frequencies, CDMA 
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System Overview - GLONASS 

 24 operational satellites 

 3 orbital planes 

 Semi-major axis: 25'510 km 

 Inclination: 64.8° 

 Revolution period: 8/17 sidereal days (11h 16min) 

 2 reference frequencies, FDMA 
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System Overview - Galileo 

 2 test satellites, 2 IOV satellites 

 3 orbital planes 

 Semi-major axis: 29'600 km 

 Inclination: 56° 

 Revolution period: 10/17 sidereal days (14h 05min) 

 5 frequencies, CDMA 
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System Overview - Comparison 
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Why Multi-GNSS? 

 Position Dilution Of Precision (PDOP) 

 Quality indicator for navigation solution 

 Smaller = better 

Mean daily PDOP 

(GPS-only) 

Mean PDOP improvement 

(when adding GLONASS and Galileo) 
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Why Multi-GNSS? 

 PDOP spectrum for a mid-latitude station 
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Why Multi-GNSS? 

 Increased number of satellites, improved orbit geometry 

 Major improvement for kinematic applications 

 Especially in mid-latitude regions 

 In difficult environment (restricted view of sky) 

 

 Main benefits for scientific-grade applications 

 Additional signals and frequencies 

 Different orbit characteristics of GNSS 
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Outline  

 Global Navigation Satellite Systems 

 

 Combined GPS/GLONASS analysis 

 

 Summary 
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Motivation of the Study 

 Data analyzed in post-processing mode for high-accuracy 

applications 

 Data recorded over a certain amount of time 

 Joint data analysis in processing batches 

 24-hour session length widely used 

 All GNSS show specific periods 

 Batch length close to system-specific repeat cycles may 

effect solution 

 E.g., averaging or amplification of umodelled errors 

 A GNSS may be „favored“ or „penalized“ 
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Motivation of the Study 

 Examine the impact of the session length on estimated 

parameters 

 

 Quality assessment of GPS-only, GLONASS-only, and 

combined GPS/GLONASS solutions 
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Design and Setup 

 Data from 2008–2010 

 92 GPS/GLONASS stations 

 Globally distributed 

 Availability at least 75% of the three years 

 GPS and GLONASS fully consistent and comparable 

 in particular concerning station selection 
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Design and Setup 
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Design and Setup 

Number of stations Number of satellites 
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Design and Setup 

 Batch length specification 
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Design and Setup 

 Solution type specification 
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Available Observations 

GPS 

GLONASS 
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Results 

 Quality of solutions 

 Time series of parameters 

 Parameter types 

 Station coordinates 

 Satellite orbits 

 Geocenter coordinates 
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Results – Station Coordinates 

 Coordinate time series 

 3-year solution coordinates/velocities 

 3 translation and 3 rotation conditions 

 Comparison to session-specific results 

 RMS of residuals → repeatability 

 Realistic accuracy measure 
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Results – Station Coordinates 

 Repeatability: one station, batch length DAY (24 hours) 

GPS GLONASS 
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Results – Station Coordinates 

 Repeatability: all stations, median 
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Results – Station Coordinates 

 Expected improvement 

       -law 

 with number of satellites: 31 GPS, 16 GLONASS 

n
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Results – Station Coordinates 

 Periodic variations, batch length DAY (24 hours) 

CMB NEQ 

GPS GLO 
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Results – Orbits 

 Orbit overlap differences 

 Position difference at session boundaries computed 

from two subsequent orbits 

 Absolute or in radial, along-track, cross-track direction 

 Good quality measure 
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Results – Orbits 

 Orbit overlap differences (cm), batch length DAY 

G03 R17 
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Results – Orbits 

 Orbit overlap differences (cm), mean values 
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Results – Orbits 

 Periodic variations 

GPS-only GLONASS-only 
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Results – Orbits 

 Periodic variations 

GPS-only GLONASS-only 
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Results – Geocenter Coordinates 

 Geocenter 

 Center of mass of the Earth 

 Reference point for satellite orbits 

 Moves wrt reference frame due to geophysical effects 

 Can be estimated with satellite geodetic methods 

 Geocenter coordinates 

 Offset of geocenter wrt origin of the reference frame 
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Results – Geocenter Coordinates 

 Geocenter coordinates, batch length DAY 

GPS X-component GLONASS X-component 
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Results – Geocenter Coordinates 

 Geocenter coordinates, batch length DAY 

GPS Y-component GLONASS Y-component 
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Results – Geocenter Coordinates 

 Geocenter coordinates, batch length DAY 

GPS Z-component GLONASS Z-component 
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Results – Geocenter Coordinates 

 Geocenter coordinates, batch length DAY 

GPS Z-component GLONASS Z-component 
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Results – Geocenter Coordinates 

 Large variations in the GLONASS-only geocenter 

Z-component 

 30 cm peak-to-peak 

 Absolutely unexpected 

 Striking correlation with the elevation of the Sun above 

the orbital planes 

 Implies a correlation with orbital parameters 

 in particular with the radiation pressure parameters 

 

Slide 56  Astronomical Institute, University of Bern 

Results – Geocenter Coordinates 

 From perturbation theory (Gerhard’s presentation) 

 W-component causes a tilting of the orbital plane 
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Results – Geocenter Coordinates 

 From perturbation theory (Gerhard’s presentation) 

 W-component causes a tilting of the orbital plane 
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Results – Geocenter Coordinates 

 From perturbation theory (Gerhard’s presentation) 

 W-component causes a tilting of the orbital plane 
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Results – Geocenter Coordinates 

 From perturbation theory (Gerhard’s presentation) 

 W-component causes a tilting of the orbital plane 
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Results – Geocenter Coordinates 

 From perturbation theory (Gerhard’s presentation) 

 W-component causes a tilting of the orbital plane 

 Satellite seemingly moves on a parallel shifted plane with 
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Results – Geocenter Coordinates 

 Direct (constant) radiation pressure      is estimated in the 

orbit determination process 

 Decomposition of      in RSW yields 

D
e



0
D

0
D
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Results – Geocenter Coordinates 

       estimates with GCC (blue) and without GCC (red) 0
D

GPS (G29) GLONASS (R20) 
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Results – Geocenter Coordinates 

       difference (with GCC minus without GCC) 

GPS (G29) GLONASS (R20) 

0
D

Slide 66  Astronomical Institute, University of Bern 

Results – Geocenter Coordinates 

 GCC Z-component: estimated (blue) 

GPS GLONASS 
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Results – Geocenter Coordinates 

 GCC Z-component: estimated (blue), reconstructed (red) 

GPS GLONASS 
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Outline  

 Global Navigation Satellite Systems 

 

 Combined GPS/GLONASS analysis 

 

 Summary 
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Summary 

 GNSS 

 Are based on the same principles 

 Differences: frequencies, signals, orbit characteristics 

 In a few years: at least 4 GNSS and several regional 

systems 

 Multi-GNSS will be a major issue 

 Combined multi-GNSS analysis is non-trivial 

 Especially correct bias handling is important 
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Summary 

 Combined multi-GNSS analysis example 

 4 different batch lengths 

 GPS-only, GLONASS-only, combined solutions 

 Coordinates and orbits 

 Combined solution always gives the best results 

 Especially GLONASS profits 

 GNSS-specific periods are visible 

 Selection of batch length is not trivial 

 



36 

Slide 71  Astronomical Institute, University of Bern 

Summary 

 Geocenter 

 Large variations of Z-component for GLONASS 

 Highly correlated with the elevation of the Sun wrt the 

orbital planes 

 No geophysical interpretation 

 Explained by perturbation theory 

 Variations are caused by a constant force in W-

direction → direct solar radiation pressure 

 Experimental results impressively confirm theory 


