The space tie between GNSS and SLR

D. Thaller, K. Sośnica, R. Dach, A. Jäggi, C. Baumann

Astronomical Institute, University of Bern, Switzerland

International Technical Laser Workshop 2012, Frascati, Italy
Overview

- Determination of LRA offsets from SLR data only:
 - «Zero estimation» for a new satellite

- LRA offsets estimated from combined GNSS–SLR solutions:
 - Corrections to official values
LRA offset estimated for a new satellite

- GLONASS–125 (GLONASS–K), launched February 2011
- First assumption: \(\text{LRA}_0 = (0, 0, 0) \)

306 SLR NP;
Mean residual w.r.t. microwave orbit:
\(-1394.2 \text{ mm} \) (RMS 112.5 mm)

Remark:
Microwave antenna offset was not known accurately as well
LRA offset estimated for a new satellite

- Estimation based only on SLR data:
 - Orbit + ERPs fixed to microwave solution
 - Station coordinates fixed to SLRF2008
 - Assumption: No range biases

Solution 1: estimate offset for z-direction (nadir) only

Solution 2: estimate offset for x-, y-, z-direction

<table>
<thead>
<tr>
<th>Date</th>
<th># NP</th>
<th>Z [mm]</th>
<th>Z [mm]</th>
<th>X [mm]</th>
<th>Y [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 30</td>
<td>306</td>
<td>1400 ±16.7</td>
<td>1393 ±19.6</td>
<td>-127 ±196.4</td>
<td>-85 ±140.6</td>
</tr>
<tr>
<td>June 5</td>
<td>383</td>
<td>1417 ±13.4</td>
<td>1402 ±16.8</td>
<td>-231 ±155.4</td>
<td>-30 ±117.9</td>
</tr>
<tr>
<td>June 12</td>
<td>494</td>
<td>1442 ± 4.9</td>
<td>1432 ± 5.9</td>
<td>-148 ± 51.5</td>
<td>-19 ± 42.5</td>
</tr>
<tr>
<td>June 21</td>
<td>577</td>
<td>1451 ± 5.4</td>
<td>1448 ± 6.7</td>
<td>-55 ± 59.1</td>
<td>81 ± 47.7</td>
</tr>
</tbody>
</table>

- Official value for 90°: 1473.02 mm
- Official value for 75°: 1469.59 mm
LRA offset estimated for a new satellite

- SLR residuals using z-offsets for LRA:
 - **Type 1:** own estimated offset (1450.8 mm)
 - **Type 2:** official value (1471.3 mm)

Mean Residual = -1.6 mm, RMS = 135.5 mm

Mean Residual = 37.1 mm, RMS = 133.5 mm
LRA offset estimated for a new satellite

Summary (part 1):

- **LRA Z–offsets** can be determined from SLR data
- Level of accuracy reached: ~ 2 cm
- A few hundreds of SLR NP are needed
- **X–, Y–offsets** are more difficult to determine
- But: Estimation mainly depends on the quality of the orbit based on microwave data
- Estimation could be improved in a fully combined GNSS–SLR analysis (see next part…)
Connection of SLR and GNSS at the GPS / GLONASS satellites ("satellite co-location")

No local ties applied

2000 – 2010
Satellite co-location GPS / GLONASS

Satellite co-locations usable:

2 GPS satellites

+

2–6 GLONASS satellites
Co-location at GNSS satellites =

Common orbit parameters from GNSS microwave and SLR range data

1) Microwave part:
Offset of microwave transmitting antenna (SAO)

2) SLR part:
Offset of laser retro-reflector array (LRA)
LRA estimated from multi-year solution

GNSS–SLR solution (A73_6)

- Mean GPS = −1.4 mm
- Mean GLONASS = −16.1 mm

Mean correction w.r.t. the ILRS values:

GPS: −1.4 mm
GLONASS: −16.1 mm
SAO estimated from multi-year solution

Corrections to IGS08 values:

- GPS: -86.1 mm
- GLONASS: -110.4 mm
Updated IGS08 values (week 1706, 16. Sept 2012):

GPS:
-86.1 mm reduced to **-84.7 mm**

(GLONASS: only new satellites affected by the update)
Comb 1: Range bias per station, per satellite considered
Comb 2: RGB, SAO, LRA corrections considered

⇒ **Bias** at mm-level (mainly in z-component)
Conclusions

- **Two components** of space tie: SAO, LRA
- Validated within **combined GNSS–SLR solution** (11 years)
- Mean correction for SAO:
 - GPS = -84.7 mm, GLONASS = -110.4 mm
- Mean correction for LRA are small:
 - GPS = -1.4 mm, GLONASS = -16.1 mm
- Impact on other parameters!
- Improvement of the validation / estimation is expected by an **extension** until «now»: several stations are tracking the full GLONASS constellation since mid-2011

D. Thaller et al.: The Space tie between GNSS and SLR
ILRS Workshop 2012, Frascati