GOCE Precise Science Orbits and their Contribution to Gravity Field Recovery

A. Jäggi1, H. Bock1, U. Meyer1, M. Heinze2

1Astronomical Institute, University of Bern, Switzerland

2Institute for Astronomical and Physical Geodesy, Technische Universität München, Germany

PSD.1

39th COSPAR Scientific Assembly

14–22 July 2012

Mysore, India
GOCE satellite mission (1)

- Gravity and steady-state Ocean Circulation Explorer
- First Earth Explorer of the Living Planet Program of the European Space Agency
- Launch: 17 March 2009 from Plesetsk, Russia
- Sun-synchronous orbit with inclination of 96.5°
- Altitude: 254.9 km
- Mass: 1050 kg at launch
- 5.3 m long, 1.1 m² cross section

Courtesy: ESA
GOCE satellite mission (2)

- Three axes stabilized, nadir pointing, aerodynamically shaped satellite
- Drag-free attitude control (DFAC) in flight direction employing a proportional Xe electric propulsion system
- Very rigid structure, no moving parts
- Attitude control by magnetorquers
- Attitude measured by star cameras
- => used for orbit determination

Courtesy: ESA
GOCE satellite mission (3)

Core Payload:
Electrostatic Gravity Gradiometer
three pairs of accelerometers
0.5 m arm length

Main mission goals:
Determination of the Earth’s gravity field with an accuracy of 1mGal (= 10^{-5} m/s2) at a spatial resolution of 100 km
GOCE satellite mission (4)

- Satellite-to-Satellite Tracking Instrument (SSTI)
- Dual-frequency L1, L2
- 12 channel GPS receiver
- Real time position and velocity (3D, 3 sigma < 100 m, < 0.3 m/s)
- 1 Hz data rate
- => Primary instrument for orbit determination
- Antenna phase center variations amount up to ±3cm on ionosphere-free linear combination
- => Mission requirement for precise science orbits: 2 cm (1D RMS)

Courtesy: ESA
GOCE High-level Processing Facility (HPF)

- Responsibilities for orbit generation:
 - **DEOS:**
 => RSO (Rapid Science Orbit)
 - **AIUB:**
 => PSO (Precise Science Orbit)
 - **IAPG:**
 => Validation
GOCE PSO procedure

- Tailored version of Bernese GPS Software used
- Undifferenced processing
- Automated procedure
- 30 h batches => overlaps
- CODE final products
- Reduced-dynamic and kinematic orbit solutions are computed

Data pre-processing

- CODE products
- Preparation of GPS orbits, clocks and ERPs (30 hours)
- Auxiliary data

GOCE GPS data

- Pseudorange: first a priori orbit
- Receiver clock synchronization
- Phase: Iterative data screening
- GOCE attitude data

Auxiliary data

- CODE products
- GOCE GPS data
- Prepation of GPS orbits, clocks and ERPs (30 hours)
- Auxiliary data

Reduced-dynamic orbit solution (iterative)

Kinematic orbit solution

Piece-wise constant accelerations (6 min)
Overlaps of reduced-dynamic solutions

The results are based on 5h overlaps (21:30–02:30) and reflect the internal consistency of subsequent reduced-dynamic solutions.

<table>
<thead>
<tr>
<th>Year</th>
<th>RMS</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>6.7 mm</td>
<td>-1.5 mm</td>
</tr>
<tr>
<td>2010</td>
<td>6.8 mm</td>
<td>0.7 mm</td>
</tr>
<tr>
<td>2011</td>
<td>6.8 mm</td>
<td>0.2 mm</td>
</tr>
<tr>
<td>2012</td>
<td>7.1 mm</td>
<td>1.5 mm</td>
</tr>
</tbody>
</table>
Differences reduced-dynamic vs. kinematic

The results show the consistency between both orbit-types and mainly reflect the quality of the kinematic orbits. It is, however, not a direct measure of orbit quality.

<table>
<thead>
<tr>
<th>Year</th>
<th>RMS (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>1.7</td>
</tr>
<tr>
<td>2010</td>
<td>2.2</td>
</tr>
<tr>
<td>2011</td>
<td>3.4</td>
</tr>
<tr>
<td>2012</td>
<td>4.3</td>
</tr>
</tbody>
</table>

RMS shows high correlation with ionosphere activity and L2 data losses. Partly reflected in the formal errors of the kinematic positions.
Differences reduced-dynamic vs. kinematic

Ascending arcs (RMS)

Descending arcs (RMS)

2009

2010

2012
Orbit validation with SLR

Improved modeling of SLR observations:

- use of SLRF2008 coordinate set
- application of azimuth- & nadir-dependent range corrections

Range corrections exhibit total variations of 5-7mm about the mean value. Details may be found in a Technical Note about the „Range Correction for the CryoSat and GOCE Laser Retro-reflectors Arrays“ (Montenbruck & Neubert, 2011, DLR/GSOC TN 11-01).
Improved modeling of SLR observations:

- use of SLRF2008 coordinate set
- application of azimuth- & nadir-dependent range corrections

SLR validation (cm) of red.-dyn. solutions (DOYs 251,2010 – 226,2011):

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>0.37</td>
<td>1.62</td>
</tr>
<tr>
<td>(B)</td>
<td>0.52</td>
<td>1.45</td>
</tr>
<tr>
<td>(C)</td>
<td>0.01</td>
<td>1.44</td>
</tr>
</tbody>
</table>
Orbit validation with SLR

Reduced-dynamic orbit

Mean: 0.24 cm, RMS: 1.62 cm

2009:
RMS: 1.61 cm
Mean: 0.46 cm

2010:
RMS: 1.44 cm
Mean: 0.13 cm

2011:
RMS: 1.99 cm
Mean: 0.25 cm

2012:
RMS: 2.05 cm
Mean: 0.13 cm
Orbit validation with SLR

Kinematic orbit

Mean: 0.15 cm, RMS: 2.23 cm

2009:
- RMS: 1.89 cm
- Mean: 0.49 cm

2010:
- RMS: 1.76 cm
- Mean: 0.10 cm

2011:
- RMS: 2.63 cm
- Mean: 0.15 cm

2012:
- RMS: 3.00 cm
- Mean: -0.24 cm
Gravity field recovery

- Kinematic GOCE positions contain independent information about the long-wavelength part of the Earth’s gravity field
- 1-sec kinematic positions serve as pseudo-observations together with covariance information to set-up an orbit determination problem, which also includes gravity field parameters
- Non-gravitational forces are absorbed by empirical parameters in the course of the generalized orbit determination problem, accelerometer data are not used
- Gravity field coefficients are either solved for up to d/o 120 or d/o 160 without applying any regularization
Impact of polar gap

\[\delta d_i = \sqrt{\sum_{m=0}^{i} (\Delta \tilde{C}_{i,m}^2 + \Delta \tilde{S}_{i,m}^2)} \]

- \(\delta d_i \) is dominated by zonal and near-zonal terms, degradation depends on max. d/o
- \(\Rightarrow \) exclusion according to the rule of thumb by van Gelderen & Koop (1997)
Impact of maximum resolution

- Omission errors are avoided, ...
- ..., but artifacts appear at low degrees
- Artifacts are restricted to near-zonal coefficients. Rule of thumb needs to be enlarged

Stronger artifacts in 2010, ...

..., but again mostly related to near-zonal coefficients, which are very sensitive to the increasing data problems such as the L2 losses
Solution characteristics

Differences to ITG-GRACE2010
unfiltered, d/o 100

increased noise over polar regions

300 km Gauss-filtered

magnetic equator visible

- 2009:
 RMS (unfiltered): 113.3 cm
 RMS (filtered): 4.9 cm

- 2009-10:
 RMS (unfiltered): 76.1 cm
 RMS (filtered): 3.1 cm

- 2009-11:
 RMS (unfiltered): 38.9 cm
 RMS (filtered): 2.0 cm
Differences reduced-dynamic vs. kinematic

Ascending arcs (mean)
Descending arcs (mean)

2009

2011
Missing L2 data

Zero L2 observations during middle of a pass mostly occur at geomagnetic poles as well as on both sides of the geomagnetic equator.
Comparison with CHAMP gravity field recovery

- Better recovery of high degrees from GOCE due to lower orbital altitude
- Better recovery of low degrees from CHAMP due to longer data period
Combination with CHAMP multi-year solution

- Down-weighting of the GOCE normal equations is required due to an only marginal contribution of the 1-sec data wrt 5-sec sampled data.
- No degradation due to the polar gap in the combined solution.
- Small degradation when including the most recent GOCE data.

Zonals and near-zonals not excluded.
Impact on gradiometer solution

- 8 months of GPS and gradiometer data used
- GPS dominates the combination up to about degree 20 and contributes up to about degree 70
- No omission artifacts in the combined solution when using GPS beyond degree 120. No need to artificially down-weight the GPS contribution
Conclusions

- Precise Science Orbits are of excellent quality
 - 1.62 cm SLR RMS for reduced-dynamic orbits
 - 2.23 cm SLR RMS for kinematic orbits

- Orbit quality is correlated with ionosphere activity
 - L2 losses over geomagnetic poles
 - Systematic effects around geomagnetic equator

- GPS-only gravity field solutions
 - Sensitivity at least up to d/o 120
 - Contribution to gradiometer solution up to d/o 70