

Localisation précise par moyens spatiaux

Global GNSS Processing at CODE

Rolf Dach

rolf.dach@aiub.unibe.ch Astronomical Institute, University of Bern

Ecole d'Eté 2012, HEIG-VD, Yverdon-les-Bains (CH), 3-7 septembre 2012

Introduction

- IGS: International GNSS Service
- CODE one of the global IGS analysis centers
- Introducing some formats: RINEX, SP3, SINEX
- Orbit Determination (at CODE)
- Code Biases: DCB, ISB, IFB

Introduction

Orbit Determination (at CODE)

- Development of the IGS tracking station network
- Orbit quality as a function of the tracking network and observation modeling (reprocessing)
- Length of an orbital arc in the GNSS processing
- Methods for orbit validation
- Handling of GPS repositioning events

Code Biases: DCB, ISB, IFB

- Introduction
- Orbit Determination (at CODE)

Code Biases: DCB, ISB, IFB

- GNSS observation equation as starting point
- Dependencies of components in the observation equation from GNSS, frequency and observation type and resulting biases
- DCBs in a GPS, GLONASS, GPS/GLONASS network solution
- How DCBs can be computed?
- Bonus: GLONASS-GPS translation bias

IGS: Motivation

- Repeatability (north, east, up) when processing 90 days of GPS observations at Graz (Austria) and Onsala (Sweden) (1200 km baseline) with broadcast orbits
- Towards the end of the 1980ties it was recognized that the error of the broadcast orbit was the accuracy limiting factor.
- As orbit determination for a satellite system is not a trivial business which can be done on a case-by-case basis, this was the motivation for the creation of a scientific orbit determination service.

Rule of thumb by Baueršíma

 $\frac{\Delta_{Baseline}}{\Delta_{Orbit}} \approx \frac{Length \ of \ the \ baseline}{Height \ of \ the \ orbit}$

with *Height of the orbit* $\approx 25000 km$

Errors in baseline components due to orbit errors (Baueršíma, 1982)

Orbit error	Baseline length	Baselir	ne error
2.50 m	1 km	0.1 ppm	0.1 mm
2.50 m	10 km	0.1 ppm	1 mm
2.50 m	100 km	0.1 ppm	10 mm
2.50 m	1000 km	0.1 ppm	100 mm
0.05 m	1 km	0.002 ppm	≈0 mm
0.05 m	10 km	0.002 ppm	<0.1 mm
0.05 m	100 km	0.002 ppm	0.2 mm
0.05 m	1000 km	0.002 ppm	2.0 mm

IGS: History and first steps

August 1989, IAG Scientific Assembly in Edinburgh first ideas to establish a service to support users with highest requirements in the GPS data processing

February 1991 Call for Participation with more than 100 responses

August 1991–March 1992 IGS Campaign Oversight Committee planned a two weeks test campaign in Summer 1992

21. June 1992 test campaign started activities never stopped again

November 1992 activities named now "IGS Pilot Service"

01. January 1994 IGS starts as an official service of the IAG

IGS: What does it mean?

- International GPS Service for Geodesy and Geodynamics January 1994
- **International GPS Service** May 1998
- **International GNSS Service** March 2005

IGS: Main components

- GNSS–Stations of the IGS–Tracking Network basis for IGS activities; contributions from many different organizations
- Regional and Global Data Centers provide the data to the users and analysis centers
- Analysis Centers

compute the products from the data of the IGS-stations

Analysis Center Coordinator

combines the contributions from the analysis centers to IGS-products

- Product Databases
 provide the IGS products to the users
- IGS Central Bureau day-to-day management of the IGS
- IGS Governing Board policy guidance of the IGS
- IGS Working groups for many different topics

IGS: Product lines

Final series – ORB, ERP, CLK (300/30 sec. sampling), CRD

- available about two weeks after the end of the week
- GPS and GLONASS in compatible but independent series

Rapid series – ORB, ERP, CLK

- available at the day after the measurements, 17:00 UTC
- quality very close to the final products

Ultra-rapid series - ORB, ERP, (CLK, 300 sec. sampling)

- four updates per day, latency 3 hours
- contains 24 hours estimated and 24 hours predicted orbits
- GLONASS series on an experimental stage

IGS: Orbit combination

- 1. An unweighted mean orbit between the Analysis Centers is computed.
- 2. The standard deviation of each contribution to this mean orbit is computed to assign a weight to each Analysis Center.
- 3. The combined IGS orbit consists of the satellite positions computed as the weighted mean of the positions contributed by the Analysis Centers.
- 4. The mean errors and the transformation parameters of the individual solutions with respect to the IGS orbit are made available every week for each day of the (preceding) week.

Combined IGS orbit

IGS: Consistency of the final GPS orbits

GRGS Ecole d'Eté 2012

IGS: Consistency of the final GPS orbits

GRGS Ecole d'Eté 2012

IGS: Product quality

Quality of the IGS core products at end of 2011 (see http://acc.igs.org/erp/egu12-igu-erps.pdf)

Series	Product Type	Accuracy	
Ultra-Rapid (predicted)	GNSS Orbits GPS satellite clocks EOPs	GPS: 5 cm (1D) RMS: 3 ns PM: 250 µas	GLONASS: 10 cm (1D) SDev: 1.5 ns dLOD: 50 µs
Ultra-Rapid (observed)	GNSS Orbits GPS satellite clocks EOPs	GPS: 3 cm (1D) RMS: 150 ps PM: <150 µas	GLONASS: 10 cm (1D) SDev: 50 ps dLOD: 10 µs
Rapid	GNSS Orbits GPS sat. & rec. clocks EOPs	GPS: 2.5 cm (1D) RMS: 75 ps PM: <40 µas	SDev: 25 ps dLOD: 10 µs
Final	GNSS Orbits GPS sat. & rec. clocks EOPs Terrestrial Frame	GPS: 2.5 cm (1D) RMS: 75 ps PM: <30 µas N&E: 2 mm	GLONASS: <5 cm (1D) SDev: 20 ps dLOD: 10 µs U: 5 mm

CODE: What does it mean?

CODE, Center for Orbit Determination in Europe, is one of at present ten Analysis Centers of the IGS.

CODE is formed as a joint venture of

- the Astronomical Institute of the University of Bern (AIUB),
- the Swiss Federal Office of Topography (swisstopo),
- the Institut f
 ür Kartographie und Geod
 äsie (BKG), and
- the Institut f
 ür Astronomische und Physikalische Geod
 äsie of TU M
 ünchen (IAPG, TUM).

Bundesamt für Kartographie und Geodăsie

AIUB

Technische Universität München

CODE: Analysis Center of the IGS

- CODE is located at the AIUB in Bern.
- CODE started operating on 21 June 1992.
- Initially about 20, today about 250 stations are processed daily.
- All results are generated using the Bernese GNSS Software.
- CODE provides products for the final, rapid, and ultra-rapid IGS products.

All of them (except clocks) are based on a fully combined GPS/GLONASS data analysis.

CODE started with this approach in May 2003. Meanwhile also other analysis centers join this a strategy.

International exchange formats

Within the IGS lots of data, products and meta information be exchange:	ation need to Format
 Meta data (equipment at the stations) 	
 Observations data and navigation data from the stations 	RINEX
 Orbit products 	SP3c
 Solutions with full covariance information 	SINEX
 Clock products 	Clock RINEX
 Miscellaneous information: e.g., antenna phase center corrections 	ANTEX

International exchange formats

W	ithin the IGS lots of data, products and meta inforn be exchange:	nation need to Format
•	Meta data (equipment at the stations)	
•	Observations data and navigation data from the stations	RINEX
•	Orbit products	SP3c
•	Solutions with full covariance information	SINEX
•	Clock products	Clock RINEX
•	Miscellaneous information: e.g., antenna phase center corrections	ANTEX

RINEX: observations

RINEX = Receiver INdependent EXchange format

GNSS observation data in text format, independent from any internal receiver/manufacturer format

Contains (among others):

- Meta information (GNSS: equipment, antenna phase center offsets)
- List of observation types

Maintained by RINEX working group of IGS and RTCM-SC 104 (Chair: K. MacLeod, NRCan)

2.11	OBSERVATION	DATA M (MIXED)	RINE	X VERSION / TYPE
SBase 2.73 3713	· nhen	31-Aug-12	23:59:44 PGM	/ RUN BY / DATE
IM2	, VNSC	Ivauvu	MARF	ER NAME
4001M008			MARK	ER NUMBER
PSBASE	SWISSTOPO		OBSE	RVER / AGENCY
4646K03180	TRIMBLE NETR	5 4.48	REC	# / TYPE / VERS
0			RCV	CLOCK OFFS APPL
50369	TRM59800.00	NONE	ANT	# / TYPE
0.0000	0.0000	0.0000	ANTE	NNA: DELTA H/E/N
4331300.1490	567537.0850 46	33133.5110	APPF	OX POSITION XYZ
1 1	0		WAVE	LENGTH FACT L1/2
10 C1 P	1 P2 C2	L1 L2 S1	S2 D1# /	TYPES OF OBSERV
D2			# /	TYPES OF OBSERV
30.000			INTE	RVAL
2012 9	1 0 0	0.0000000 GI	PS TIME	OF FIRST OBS
			END	OF HEADER
12 9 1 0 0	0.000000 0 21	G16G08G20G32G23G1	3G10G04G07R10R1	2R19
]	R17R13R11R01G30R1	3R02G02R03	
24765656.063		24765661.480		130144380.32603
101411252.65546	37.000	21.000	1872.578	1459.152
25309764.430		25309774.457		133003675.58304
103639299.76746	39.000	21.000	3726.313	2903.620
••				
22260626.523		22260632.324		116980423.31206
91153636.17647	47.000	40.000	3056.719	2381.859
24153130.023	24153128.371	24153137.082		128749703.74306
100138756.39447	43.000	36.000	-4041.707	-3149.382
20868394.672	20868393.488	20868400.883		111475539.59707
86703023.00948	51.000	48.000	3137.008	2444.422
••				
2 9 1 0 0 30	.0000000 0 21G	16G08G20G32G23G130	G10G04G07R10R12	R19
]	R17R13R11R01G30R1	3R02G02R03	
24755002.898		24755008.742		130088397.67704
101367629.86146	38.000	21.000	1859.422	1448.900
•••				
cole d'Eté 2012				

Header part

Data part

2.11 GPSBase 2.73 3713 ZIM2	OBSERVATION	DATA M (MIXED) 31-Aug-12	RIN 23:59:44 PGM MARI	EX VERSION / TYPE / RUN BY / DATE KER NAME	
14001M008	SMISSTODO		MAR	KER NUMBER	Ivieta information
4646K03180	TRIMBLE NETR	5 4 4 8	UBS. REC	# / TYPE / VERS	station
0		5 1.10	RCV	CLOCK OFFS APPL	• receiver
60369	TRM59800.00	NONE	ANT	# / TYPE	
0.0000	0.0000	0.0000	ANT	ENNA: DELTA H/E/N	antenna
331300.1490 50	67537.0850 46	33133.5110	APPI	ROX POSITION XYZ	position
1 1 0			WAV	ELENGTH FACT L1/2	• observation types
10 C1 P1	P2 C2	L1 L2 S1	S2 D1# /	TYPES OF OBSERV	
D2			# /	TYPES OF OBSERV	
30.000	0 0	0.000000	INT:	ERVAL	
2012 9 1	0 0	0.0000000 G	PS TIM. FND	OF HEADED	Enoch
12 9 1 0 0 0	.0000000 0 21	G16G08G20G32G23G1	3G10G04G07R10R	12R19	Lboon
		R17R13R11R01G30R1	8R02G02R03		List of satellites
24765656.063		24765661.480		130144380.32603	G: GPS / R: GLONASS
101411252.65546	37.000	21.000	1872.578	1459.152	Observation record
25309764.430		25309774.457		133003675.58304	Observation record
103639299.76746	39.000	21.000	3726.313	2903.620	per satellite
•••					(empty field: no obs.)
22260626.523		22260632.324		116980423.31206	
91153636.17647	47.000	40.000	3056.719	2381.859	
24153130.023 24	4153128.371	24153137.082	4041 707	21/0 202	
20868394 672	20868393 488	20868400 883	-4041.707	111475539 59707	
86703023.00948	51.000	48.000	3137.008	2444.422	
 12 9 1 0 0 30.0 24755002.898 101367629.86146	0000000 0 21G 38.000	16G08G20G32G23G13 R17R13R11R01G30R1 24755008.742 21.000	G10G04G07R10R1 8R02G02R03 1859.422	2R19 130088397.67704 1448.900	
 Ecole d'Eté 2012					

RINEX: observations

RINEX = Receiver INdependent EXchange format

Deficiencies of the currently used RINEX 2 format:

- For all satellites of all GNSS the full list of observations is expected. (if, e.g., Galileo is added much more empty fields in GPS and GLONASS fill appear)
- Not all necessary tracking information can be provided. (How the code on the 2nd frequency for GPS has really been constructed?)

A new format for multi-GNSS purposes has been developed: RINEX 3.

3.00 OBSERVATION DATA Mixed(MIXED)	RINEX VERSION / TYPE
CNVTTORINEX 2.11.0 PNAC 02-Sep-1	00:04 UTC PGM / RUN BY / DATE
	MARKER NAME
14001M008	MARKER NUMBER
GEODETIC	MARKER TYPE
AGNES SWISSTOPO	OBSERVER / AGENCY
4646K03180 TRIMBLE NETR5 4.48	
60369 TRM59800.00 NONE	ANT # / TYPE
	ANTENNA: DELTA H/E/N
4331300.1490 567537.0850 4633133.5110	APPROX POSITION XYZ
G IZ CIC CZW C5X LIC LZW L5X DIC DZW D5X SIC S	S5X SIS / $\#$ / OBS IIPES
	S_{2P} S_{1S} / $\#$ / OBS $IIPES$
2012 9 1 0 0 0.000000	FND OF HEADER
	END OF HEADER
G02 22589950 273 8 22589954 789 6	118711006 383 8 92502128 899 6
G04 20794711.078 9 20794716.625 7	109276975.064 9 85150980.972 7
G32 25935591.992 6 25935599.738 3	136292508.49916 106202065.95713
R01 21052556.016 8 21052555.535 8 21052562.56	7 112537843.451 8 112538056.461 8 87529675.075 7
R02 19716255.945 9 19716254.879 9 19716260.27	8 105210168.624 9 105209910.632 9 81829916.303 8
> 2012 9 1 0 0 30.000000 0 21	
G02 22575960.852 8 22575964.965 6	118637493.230 8 92444845.965 6
	Data part
> 2012 9 1 7 1 30.000000 0 19	
G09 19965745.773 9 19965751.992 8	104920706.722 9 81756429.961 8
····	
G22 24240409.445 7 24240415.559 4	127384301.240 7 99260425.976 4
G25 25663278.844 6 25663288.87	7 134861381.18616 1 <mark>00708253.85317</mark>
G26 23574927.578 7 23574937.262 5	123887081.627 7 96535400.917 5
G27 20694508.273 8 20694515.051 7	108750288.713 8 84740590.529 7
R05 22466635.914 8 22466634.613 7 22466645.12	7 120096860.310 8 120096999.316 7 93408779.111 7
•••	

CRUETORINEY 2 11 0 DNAC 02 COD 12 00:04 UTC DCM / DIN DINEY 2 DINEY 2	
CIVETORINEX 2.11.0 PNAC 02-Sep-12 00.04 OIC PGM / ROT RINEX 3 RINEX 2	
14001M008 MARKER NZ	
GEODETIC MARKER TY	
AGNES SWISSTOPO OBSERVER C2C C2P C2 P2	
4646K03180 TRIMBLE NETR5 4.48 REC # /]	
60369 TRM59800.00 NONE ANT # /] L1P L1C L1	
0.0000 0.0000 0.0000 ANTENNA:	
4331300.1490 567537.0850 4633133.5110 APPROX PC L2P L2C L2	
G 12 C1C C2W C5X L1C L2W L5X D1C D2W D5X S1C S2W S5X SYS / # /	
R 12 CIC CIP C2P LIP L2P DIC DIP D2P LIC SIC SIP S2P SYS / # /	
ZUIZ 9 I U U U.UUUUUUU GPS IIME OF I	
> 2012 9 1 0 0 0.0000000 0 21	
G02 22589950.273 8 22589954.789 6 118711006.383 8 92502128.899 6	
G04 20794711.078 9 20794716.625 7 109276975.064 9 85150980.972 7	
G32 25935591.992 6 25935599.738 3 136292508.49916 106202065.95713	
R01 21052556.016 8 21052555.535 8 21052562.563 7 112537843.451 8 112538056.461 8 87529675.075 7	
R02 19716255.945 9 19716254.879 9 19716260.273 8 105210168.624 9 105209910.632 9 81829916.303 8	
> 2012 9 1 0 0 30.000000 0 21 Observation records	
G02 22575960.852 8 22575964.965 6	
- observation types are CNSS aposit	io
- Observation types are GNSS-speci	
G09 19965745.773 9 19965751.992 8 104920706.722 9 81756429.961 8	
G22 24240409.445 7 24240415.559 4 127384301.240 7 99260425.976 4	
G25 25663278.844 6 25663288.879 7 134861381.18616 100708253.85317	
G26 23574927.578 7 23574937.262 5 123887081.627 7 96535400.917 5	
G27 20694508.273 8 20694515.051 7 108750288.713 8 84740590.529 7	
R05 22466635.914 8 22466634.613 7 22466645.121 7 120096860.310 8 120096999.316 7 93408779.111 7	

RINEX: navigations

RINEX = Receiver INdependent EXchange format

GNSS navigation data in text format, independent from any internal receiver/manufacturer format

Contains:

- GPS broadcast ephemerides
- GLONASS broadcast records

Maintained by RINEX working group of IGS and RTCM-SC 104 (Chair: K. MacLeod, NRCan)

SP3c: orbit products

- Positions (and velocities) for a list of satellites in a given sampling
- Given in the Earth fixed frame
- IGS provides positions of the GNSS satellites every 15 minutes
- Additional information:
 - Satellite clock corrections
 - Accuracy information
- Maintained by S. Hilla, NGS in cooperation with the services

#cP2012 9 1 0 0.0000000 96 IGS08 FIT AIUB ## 1703 518400.0000000 900.0000000 900.0000000000000000000000000000000000	- Header part
/* CENTER FOR OPETT DETERMINATION IN EUDODE (CODE)	
/* THIS IS THE OFFICIAL CODE BADID 3-DAY SOLUTION	
/* SOLUTION BA 12245 BROADCAST CLOCKS INCLUDED	
/* PCV:IGS08 OL/AL:FES2004 NONE YN ORB:CON CLK:BRD	
* 2012 9 1 0 0 0.0000000	
PG01 16921.819384 13762.982632 -15202.395305 271.857250	
PG02 6208.829840 -14772.286352 21274.094077 401.527621	
PG03 -7224.820983 23955.152521 -9009.156949 95.599331	
PG04 20531.101557 -7550.693238 15011.814108 291.056000	
PG05 20.922404 -23887.653372 11452.131597 -348.304864	
•••	
PG32 7182.271388 25850.246047 411.196956 -482.934993	
PR01 9731.130403 17494.038662 15827.805141 9999999.999999	
PR02 11052.323721 -1421.381696 22956.219651 9999999.999999	
PR03 5933.793449 -18146.407263 16971.112864 9999999.999999	
PR04 -2659.650571 -25358.097929 880.122287 9999999.999999	 Data part
PR05 -9706.254994 -17595.301374 -15711.481816 9999999.999999	
•••	
PR23 10611.600018 5347.134862 -22580.924142 9999999.999999	
PR24 20600.231106 -7703.540430 -12945.789422 9999999.999999	
* 2012 9 1 0 15 0.0000000	
PG01 15071.494033 13670.235123 -17110.203126 271.858580	
PG02 8563.990796 -14388.582237 20661.659093 401.528644	
PG03 -7926.802370 24508.671306 -6386.290163 95.603833	
PG04 22113.397104 -7092.797771 12902.234432 291.066129	
PG05 785.658449 -22630.418015 13756.073853 -348.307627	
Ecole d'Eté 2012	

#cP2012 9 1 0 0 0.00000000 96 d ## 1703 518400.0000000 900.00000000 56171 0 + 55 G01G02G03G04G05G06G07G08G09G10G11G120 0 </th <th>IGS08 FIT AIUB 0.0000000000000 313G14G15G16G17 331G32R01R02R03 816R17R18R19R20 0 0 0 0 0 0 0 0 0 0</th> <th>Defines interval and samplin</th> <th>ng</th>	IGS08 FIT AIUB 0.0000000000000 313G14G15G16G17 331G32R01R02R03 816R17R18R19R20 0 0 0 0 0 0 0 0 0 0	Defines interval and samplin	ng
/* CENTER FOR ORBIT DETERMINATION IN EUROPE (C	CODE)		
/* SOLUTION RA 12245. BROADCAST CLOCKS INCLUDE		Four comment lines	1
/* PCV:IGS08 OL/AL:FES2004 NONE YN C	DRB:CON CLK:BRD		
* 2012 9 1 0 0 0.0000000 🧲		Epoch	
PG01 16921.819384 13762.982632 -15202.395305	271.857250	Satellites	
PG02 6208.829840 -14772.286352 21274.094077	401.527621		
PG03 -7224.820983 23955.152521 -9009.156949	95.599331	G: GPS / R: GLONASS	
PG04 20531.101557 -7550.693238 15011.814108	3 291.056000		
PG05 20.922404 -23887.653372 11452.131597	-348.304864		
 PG32 7182 271388 25850 246047 411 196956	-482 934993	Satellite positions (km)	
PR01 9731.130403 17494.038662 15827.805141	999999,999999		
PR02 11052.323721 -1421.381696 22956.219651	999999.999999		
PR03 5933.793449 -18146.407263 16971.112864	4 999999.999999		
PR04 -2659.650571 -25358.097929 880.122287	7 999999.999999		、
PR05 -9706.254994 -17595.301374 -15711.481816	5 999999.999999	Satellite clock corrections (JS)∣
••••			
PR23 10611.600018 5347.134862 -22580.924142	2 999999.999999		
PR24 20600.231106 -7703.540430 -12945.789422	2 999999.999999		
* 2012 9 1 0 15 0.00000000 pc01 15071 404022 12670 225122 17110 202126			
PG01 15071.494035 15070.235123 -17110.203126 PG02 8563 990796 -14388 582237 20661 650003	271.858580 3 401 528644		
PG03 -7926.802370 24508 671306 -6386 290163	3 95,603833		
PG04 22113.397104 -7092.797771 12902.234432	2 291.066129		
PG05 785.658449 -22630.418015 13756.073853	3 -348.307627		_

GRGS Ecole d'Eté 2012

SINEX: solutions

SINEX = Solution INdependent EXchange format

Software- and technique independent

Contains:

- List of stations (Abbreviation, full name, description)
- Meta information (GNSS: equipment, antenna phase center offsets)
- List of parameters (description, time interval)
- Different options to deliver the solution
 - normal equation, observation vector, apriori values
 - solution vector, solution covariance matrix, apriori constraints

Maintained by IERS working group (Chair: D. Thaller, AIUB)

Introduction

Orbit Determination (at CODE)

- Development of the IGS tracking station network
- Orbit quality as a function of the tracking network and observation modeling (reprocessing)
- Length of an orbital arc in the GNSS processing
- Methods for orbit validation
- Handling of GPS repositioning events

Code Biases: DCB, ISB, IFB

GRGS Ecole d'Eté 2012

Statistics from Fritzsche et al. (2012)

GRGS Ecole d'Eté 2012

Statistics from Fritzsche et al. (2012)

Number of active IGS tracking stations

GRGS Ecole d'Eté 2012

IGS tracking network

- The tracking network of the IGS consists of 370 (out of 440)¹ active stations contributed by many organizations on a voluntary basis.
- The continuous densification of the IGS network allowed an impressive improvement of the quality of the IGS orbits and other products.
- Currently the IGS network is in a transition phase from a GPS-only to a combined GPS/GLONASS(/Galileo/...) tracking network. In this context two contradictory requirements need to be balanced:
 - to have quickly as many new receivers/antennas in place as possible as
 - to keep an installed antenna as long as possible without any changes to support a good long-term stability for reference frame establishment
- Nevertheless, we have to notice that many of these stations primary serve other goals than been an IGS station.

The maintenance of such a network is difficult and the data have to be used with care.

¹Status: 27. August 2012

Coordinate time series for Ankara

Coordinate time series for Ankara

Coordinate time series for Ankara

Reprocessing of the IGS series by CODE was performed at Institut für Astronomische und Physikalische Geodäsie Technische Universität München

Time interval:1996-2010

Includes GPS and GLONASS since May 2003

Statistics: 392 Stations

- 5,753 Daily solutions
- 1,278,571 Observation files
- 4,190,689,049 Original observations
 - 63,066,190 Parameters
 - ≈5 years CPU-time

	Number of parameters in daily	
Parameter Type	solutions	
Station coordinates	3,064,737	
Site-specific troposphere parameters	17,268,978	
Scaling factor for APL model	3,064,737	
Orbital elements	3,001,095	
Stochastic orbit parameters	599,582	
Earth rotation parameters	698,875	
Geocenter coordinates	16,773	
Satellite antenna offset parameters	599,582	
Satellite antenna pattern	3,199,408	
Scaling factor for higher-order ionosphere	16,773	
Ambiguity parameters	31,535,650	
Total	63,066,190	

- Station coordinates
- Site-specific troposphere parameters
- Scaling factor for APL model
- Orbital elements
- Stochastic orbit parameters
- Earth rotation parameters
- Geocenter coordinates
- Satellite antenna offset parameters
- Satellite antenna pattern
- Scaling factor for higher-order ionosphere
- Ambiguity parameters

	Number of parameters in daily	
Parameter Type	solutions	
Station coordinates	3,064,737	
Site-specific troposphere parameters	17,268,978	
Scaling factor for APL model	3,064,737	
Orbital elements	3,001,095	
Stochastic orbit parameters	599,582	
Earth rotation parameters	698,875	
Geocenter coordinates	16,773	
Satellite antenna offset parameters	599,582	
Satellite antenna pattern	3,199,408	
Scaling factor for higher-order ionosphere	16,773	
Ambiguity parameters	31,535,650	
Total	63,066,190	

	Number of parameters in daily weekly	
Parameter Type	solutions	
Station coordinates	3,064,737	
Site-specific troposphere parameters	17,268,978	
Scaling factor for APL model	3,064,737	
Orbital elements	3,001,095	
Stochastic orbit parameters	599,582	
Earth rotation parameters	698,875	
Geocenter coordinates	16,773	
Satellite antenna offset parameters	599,582	
Satellite antenna pattern	3,199,408	
Scaling factor for higher-order ionosphere	16,773	
Ambiguity parameters	31,535,650	
Total	63,066,190	

	Number of parameters in daily weekly	
Parameter Type	solutions	
Station coordinates	3,064,737	457,896
Site-specific troposphere parameters	17,268,978	14,656,864
Scaling factor for APL model	3,064,737	457,896
Orbital elements	3,001,095	3,001,095
Stochastic orbit parameters	599,582	599,582
Earth rotation parameters	698,875	652,795
Geocenter coordinates	16,773	2,391
Satellite antenna offset parameters	599,582	86,340
Satellite antenna pattern	3,199,408	457,058
Scaling factor for higher-order ionosphere	16,773	2,391
Ambiguity parameters	31,535,650	31,535,650
Total	63,066,190	51,909,958

Reprocessing

	Number of parameters in daily weekly	
Parameter Type	solutions	
Station coordinates	3,064,737	457,896
Site-specific troposphere parameters	17,268,978	14,656,864
Scaling factor for AF Reduction due to the o	different 064,737	457,896
Orbital elements boundaries for the pier	ce-wise ,001,095	3,001,095
Stochastic orbit para linear representation	599,582	599,582
Earth rotation parameters	698,875	652,795
Geocenter coordinates	16,773	2,391
Satellite antenna offset parameters	599,582	86,340
Satellite antenna pattern	3,199,408	457,058
Scaling factor for higher-order ionosphere	16,773	2,391
Ambiguity parameters	31,535,650	31,535,650
Total	63,066,190	51,909,958

Reprocessing

	Number of parameters in daily weekly	
Parameter Type	solutions	
Station coordinates	3,064,737	457,896
Site-specific troposphere parameters	17,268,978	14,656,864
Scaling factor for APL model	3,064,737	457,896
Orbital elements	3,001,095	3,001,095
Stochastic orbit parameters	599,582	599,582
Earth rotation parameters	698,875	652,795
Geocenter coordinates	16,773	2,391
Satellite antenna offset parameters	599,582	86,340
Satellite antenna pattern	3,199,408	457,058
Scaling factor for higher-order ionosphere	16,773	2,391
Ambiguity parameters	31,535,650	31,535,650
Total	63,066,190	51,909,958

Coordinate time series for Zimmerwald

Coordinate time series for Zimmerwald

Coordinate time series for Ankara

Coordinate time series for Ankara

Coordinate time series for Reykjavik

Coordinate time series for Reykjavik

GNSS data processing

- A certain set of parameters need to be estimated in a GNSS-data analysis independent from the real purpose of the solution:
 - Mandatory: station coordinates, troposphere parameters (25%), ambiguities (50%)
 - Optional for GNSS orbit determination: GNSS orbit and Earth rotation parameters, geocenter coordinates
- GNSS-derived times series (e.g., station coordinates) reflect
 - 1. data analysis model and their changes, reference frame updates,
 - 2. equipment changes (antennas, receivers or even firmware), and
 - 3. real geophysical events or processes.
- A consistent reprocessing of the complete GNSS time series helps to eliminate (1st group) or reduce (2nd group) the influence from the GNSS data processing on the resulting time series.
- We have looked at station coordinate series so far. What about the orbits?

Better orbit due to reprocessing

Better orbit due to reprocessing

Better orbit due to reprocessing A J O AJOJ A J O A J O A J O 2003 2004 ΑJΟ J JΟ AJO **GPS satellites (oper.)** Median of RMS in cm

MJD

Operational/reprocessed series from CODE

GRGS Ecole d'Eté 2012

CODE processing changes in 2011

CODE processing changes in 2011

IGS-MGEX campaign

IGS-MGEX: IGS Multi-GNSS Experiment

• August 2011: Call for Participation:

This Call for Participation for the IGS Multi-GNSS Experiment – IGS-MGEX – recognizes the availability of new additional GNSS signals and new constellations on the horizon. The IGS is preparing for this next phase in the evolution of the IGS to eventually generate products for all GNSS available.

- available.
 October 2011: Proposal deadline
- December 2011/January 2012: Evaluation of the proposals by the IGS' GNSS working group
- IGS-MGEX runs from 01-February until 31-August 2012 extended to the end of 2013
- First results have been presented at the IGS workshop in Olsztyn, Poland (end of July 2012).

CODE contribution to IGS-MGEX

CODE has contributed a triple-GNSS solution (the only?): GPS+GLONASS+Galileo

(Presented at the IGS workshop by Dr. Lars Prange)

- The solution has been derived from the IGS rapid procedure at CODE considering in addition available Galileo-tracking data (insufficient COMPASS and QZSS tracking data in May 2012).
- Technical details (for completeness):
 - Specific cluster containing all Galileo data has been processed to consider all correlations for the Galileo measurements in a optimal way.
 - No ambiguity resolution for Galileo observations has been done so far.
 - Orbit solutions for four weeks have been presented at the IGS workshop.
- A lot of data format problems have been sorted out together with IGS database and station managers before the IGS MGEX data could be processed.

CODE-MGEX: station distribution

Number and distribution of tracking stations contributing to the CODE-MGEX solution

Number of stations that could theoretically track the satellites of the **Galileo** constellation; sampling 15 min; **DOY 150**

Ecole d'Eté 2012

Number of stations that could theoretically track the satellites of the **Galileo** constellation; sampling 15 min; **DOY 151**

Number of stations that could theoretically track the satellites of the **Galileo** constellation; sampling 15 min; **DOY 152**

 smoothed day boundary discontinuities (in particular if the satellite was only weakly observed)

Number of stations that could theoretically track the satellites of the **Galileo** constellation; sampling 15 min; **DOYs 150-152**

Methods for orbit validation

- Orbit overlaps 1.
 - Orbit solution day n-1 ____ Orbit solution day n ____ Orbit solution day n+1

 Day boundary discontinuities cannot be used as a real quality indicator anymore.

CODE-MGEX solution: 3-day orbit fit

(mean: G01: 0.9 cm; R24: 1.5 cm; Galileo: 2.0 – 3.4 cm)

- 3. Comparison with independent measurements (e.g., SLR)
 - Consistency of the station coordinates between GNSS and SLR is required.
 - Biases of both techniques need to be known.
 - In case of problems an identification must be implemented to define which technique has caused the problem.

GNSS data are typically provided in observation files of one day. A one-day orbit solution is, therefore, native.

Why longer orbital arcs?

- With longer satellite arcs deficiencies in the tracking network can be compensated. The solution becomes more robust for poorly observed satellites.
- The orbit model must be good enough to represent the satellite trajectory during the longer satellite arc.

Why not longer orbital arcs?

- The consecutive days are not independent anymore.
 - need to be considered when validating the orbits
 - problems in the analysis from one day may degrade also the orbits from other days.
 - the measurements are used more than once.

The receiver are continuously measuring but the ambiguities from one satellite pass are artificially cut due to processing batches.

An orbit arc is affected by poorly determined ambiguities at its boundaries.

This can be compensated

- extracting the orbit for day n from a long arc over three (or more) days.
- increase the length of the processing batch.

The receiver are continuously measuring but the ambiguities from one satellite pass are artificially cut due to processing batches.

An orbit arc is affected by poorly determined ambiguities at its boundaries.

This can be compensated

- extracting the orbit for day n from a long arc over three (or more) days.
- increase the length of the processing batch.

The receiver are continuously measuring but the ambiguities from one satellite pass are artificially cut due to processing batches.

An orbit arc is affected by poorly determined ambiguities at its boundaries.

This can be compensated

- extracting the orbit for day n from a long arc over three (or more) days.
 - Each observation is used exact three times.
 - Can easily be generated on normal equation level. (each observation needs only be processed once)
- increase the length of the processing batch.
 - Orbital arcs are shorter less smoothing.
 - Observation files need to be re-organized (from daily files).
 - The processing for each arc starts from the original observation what increases the processing load.

GPS satellite repositioning events

CODE determines the repositioning events for the GPS satellites.

- Two independent satellite arcs are assumed (before and after the event)
- The smallest distance between both arcs gives the epoch and magnitude of the event.

GPS satellite repositioning events

As computed by CODE

GRGS Ecole d'Eté 2012

GPS satellite repositioning events

As computed by CODE

GRGS Ecole d'Eté 2012

Outline

- Introduction
- Orbit Determination (at CODE)

Code Biases: DCB, ISB, IFB

- GNSS observation equation as starting point
- Dependencies of components in the observation equation from GNSS, frequency and observation type and resulting biases
- DCBs in a GPS, GLONASS, GPS/GLONASS network solution
- How DCBs can be computed?
- Bonus: GLONASS-GPS translation bias

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

 $\overrightarrow{x^k}$

position vector of satellite *k* related to its center of mass

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

 $\overrightarrow{\Delta x^k}$, $\overrightarrow{\Delta \chi^k}$

position vector of satellite k related to its center of mass

vector from the center of mass of the satellite *k* to the antenna signal emission point for code and phase observations

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot \left(\delta^{k} + a^{k} \right)$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot \left(\delta^{k} + \alpha^{k} \right)$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

$$\overrightarrow{x^k}$$

 δ^k

 $\overline{\Delta x^k}$, $\overline{\Delta \chi^k}$

position vector of satellite *k* related to its center of mass

vector from the center of mass of the satellite *k* to the antenna signal emission point for code and phase observations

clock correction of the satellite k with respect to GPS time

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

 $\overrightarrow{x^k}$

 $\overrightarrow{\Delta x^k}$, $\overrightarrow{\Delta \chi^k}$

 δ^k

 a^k, α^k

position vector of satellite *k* related to its center of mass

vector from the center of mass of the satellite *k* to the antenna signal emission point for code and phase observations

clock correction of the satellite *k* with respect to GPS time

hardware delay in the satellite *k* for code and phase measurements

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

signal delay in the ionosphere signal delay in the troposphere

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

signal delay in the ionosphere signal delay in the troposphere

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

hardware delay in the receiver at the station *i* for code and phase measurements

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

hardware delay in the receiver at the station *i* for code and phase measurements

clock correction of the receiver at the station *i* with respect to GPS time

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

phase ambiguity (one and the same for one pass)

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

phase ambiguity (one and the same for one pass)

initial phase shift between the oscillators at station *i* and satellite *k*

$P_i^k = \left \left(\overline{x^k} \right) \right $	$\vec{k} + \overrightarrow{\Delta x^{k}} - (\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}}) + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$
$L_i^k = \left \left(\overline{x^k} \right) \right $	$\left + \overrightarrow{\Delta \chi^{k}} \right - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta \chi_{i}} \right) \right + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$
	$+\lambda^k \cdot N_i^k + \lambda^k \cdot \Delta \varphi_i^k$
P_i^k , L_i^k	code/phase observation of station <i>i</i> to satellite <i>k</i>
$\overrightarrow{x^k}$, $\overrightarrow{x_i}$	position vector of station <i>i</i> and satellite <i>k</i> , respectively
$\overrightarrow{\Delta x^k}$, $\overrightarrow{\Delta \chi^k}$	vector from the center of mass of the satellite <i>k</i> to the antenna signal emission point for code and phase observations
$\overrightarrow{\Delta x_i}, \ \overrightarrow{\Delta \chi_i}$	vector from the marker of the station <i>i</i> to the antenna signal reception point for code and phase observations
_b_b	
$T_i^{\kappa}, I_i^{\kappa}$	signal delay in the troposphere and ionosphere
<u>T</u> ^κ , I ^κ Warı Ther that a	signal delay in the troposphere and ionosphere ning: e are many further terms like multi-path, relativistic corrections, etc. are not relevant in this context. They will be introduced tomorrow.
$T_i^{\kappa}, I_i^{\kappa}$ Wari Ther that a	signal delay in the troposphere and ionosphere ning: e are many further terms like multi-path, relativistic corrections, etc. are not relevant in this context. They will be introduced tomorrow. speed of light
$T_i^{\kappa}, I_i^{\kappa}$ Wari Ther that a C N_i^{k}	signal delay in the troposphere and ionosphere ning: e are many further terms like multi-path, relativistic corrections, etc. are not relevant in this context. They will be introduced tomorrow. speed of light phase ambiguity (one and the same for one pass)
$T_i^{\kappa}, I_i^{\kappa}$ Wari Ther that a C N_i^{k} $\Delta \varphi_i^{k}$	signal delay in the troposphere and ionosphere ning: e are many further terms like multi-path, relativistic corrections, etc. are not relevant in this context. They will be introduced tomorrow. speed of light phase ambiguity (one and the same for one pass) initial phase shift between the oscillators at station <i>i</i> and satellite <i>k</i>

Dependency of the terms

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

GNSS: (GPS or GLONASS or ...)

Dependency of the terms

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

GNSS: (GPS or GLONASS or ...) $\overrightarrow{\Delta x_i}$ Code: $\overrightarrow{\Delta\chi_i}$ Phase:

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

GNSS: (GPS or GLONASS or ...) $\overrightarrow{\Delta x_i}$ a_i Code: $\overrightarrow{\Delta\chi_i}$ α_i Phase:

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot \left(\delta^{k} + a^{k} \right)$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot \left(\delta^{k} + \alpha^{k} \right)$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

GNSS: (GPS or GLONASS or ...) $\overrightarrow{\Delta x_i}$ a_i δ^k Code: $\overrightarrow{\Delta\chi_i}$ α_i δ^k Phase:

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot \left(\delta^{k} + a^{k} \right)$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot \left(\delta^{k} + \alpha^{k} \right)$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

GNSS: (GPS or GLONASS or ...) $\overrightarrow{\Delta x_i}$ a_i Code: $\overrightarrow{\Delta\chi_i}$ α_i Phase:

ISB: Inter-system bias

 δ^k

 δ^k

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

- **GNSS**: (GPS or GLONASS or ...) $\overrightarrow{\Delta x_i}$ δ^k Code: a_i **ISB: Inter-system bias** $\overrightarrow{\Delta\chi_i}$ α_i δ^k Phase:
- **Frequency**: $(f_1 \text{ or } f_2 \text{ or } f_n \text{ for GLONASS or } ...)$

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

- **GNSS**: (GPS or GLONASS or ...) $\overrightarrow{\Delta x_i}$ δ^k Code: a_i $\overrightarrow{\Delta \chi_i}$ α_i δ^k Phase:
- **Frequency**: (f₁ or f₂ or f_n for GLONASS or ...) Code: $\overrightarrow{\Delta x^{k}}$ $\overrightarrow{\Delta x_{i}}$ Phase: $\overrightarrow{\Delta \chi^{k}}$ $\overrightarrow{\Delta \chi_{i}}$

ISB: Inter-system bias

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

- **GNSS**: (GPS or GLONASS or ...) $\overrightarrow{\Delta x_i}$ δ^k Code: a_i $\overrightarrow{\Delta \chi_i}$ α_i δ^k Phase:
- **Frequency**: (f₁ or f₂ or f_n for GLONASS or ...) Code: $\overrightarrow{\Delta x^k}$ $\overrightarrow{\Delta x_i}$ a_i a^k Phase: $\overrightarrow{\Delta \chi^k}$ $\overrightarrow{\Delta \chi_i}$ α_i α^k

ISB: Inter-system bias

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

- **GNSS**: (GPS or GLONASS or ...) Code: $\overrightarrow{\Delta x_i}$ a_i δ^k Phase: $\overrightarrow{\Delta \chi_i}$ α_i δ^k **ISB: Inter-system bias**
- Frequency: $(f_1 \text{ or } f_2 \text{ or } f_n \text{ for GLONASS or } ...)$ Code: $\overrightarrow{\Delta x^k}$ $\overrightarrow{\Delta x_i}$ a_i a^k (I_i^k) Phase: $\overrightarrow{\Delta \chi^k}$ $\overrightarrow{\Delta \chi_i}$ α_i α^k (I_i^k)

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

- **GNSS**: (GPS or GLONASS or ...) Code: $\overrightarrow{\Delta x_i}$ a_i δ^k Phase: $\overrightarrow{\Delta \chi_i}$ α_i δ^k **ISB: Inter-system bias**
- Frequency: $(f_1 \text{ or } f_2 \text{ or } f_n \text{ for GLONASS or } ...)$ Code: $\overrightarrow{\Delta x^k}$ $\overrightarrow{\Delta x_i}$ a_i a^k Phase: $\overrightarrow{\Delta \chi^k}$ $\overrightarrow{\Delta \chi_i}$ α_i α^k IFB: Inter-frequency bias

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

- **GNSS**: (GPS or GLONASS or ...) Code: $\overrightarrow{\Delta x_i}$ a_i δ^k Phase: $\overrightarrow{\Delta \chi_i}$ α_i δ^k **ISB: Inter-system bias**
- Frequency: $(f_1 \text{ or } f_2 \text{ or } f_n \text{ for GLONASS or } ...)$ Code: $\overrightarrow{\Delta x^k}$ $\overrightarrow{\Delta x_i}$ a_i a_i^k Phase: $\overrightarrow{\Delta \chi^k}$ $\overrightarrow{\Delta \chi_i}$ α_i α^k

IFB: Inter-frequency bias

• **Signal type**: (C1P/C or C2P/C or ...)

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

- **GNSS**: (GPS or GLONASS or ...) Code: $\overrightarrow{\Delta x_i}$ a_i δ^k Phase: $\overrightarrow{\Delta \chi_i}$ α_i δ^k **ISB: Inter-system bias**
- Frequency: $(f_1 \text{ or } f_2 \text{ or } f_n \text{ for GLONASS or } ...)$ Code: $\overrightarrow{\Delta x^k}$ $\overrightarrow{\Delta x_i}$ a_i a^k Phase: $\overrightarrow{\Delta \chi^k}$ $\overrightarrow{\Delta \chi_i}$ α_i α^k

IFB: Inter-frequency bias

 Signal type: (C1P/C or C2P/C or ...) Code: a_i a^k

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

- **GNSS**: (GPS or GLONASS or ...) Code: $\overrightarrow{\Delta x_i}$ a_i δ^k Phase: $\overrightarrow{\Delta \chi_i}$ α_i δ^k **ISB: Inter-system bias**
- Frequency: $(f_1 \text{ or } f_2 \text{ or } f_n \text{ for GLONASS or } ...)$ Code: $\overrightarrow{\Delta x^k}$ $\overrightarrow{\Delta x_i}$ a_i a^k Phase: $\overrightarrow{\Delta \chi^k}$ $\overrightarrow{\Delta \chi_i}$ α_i α^k

IFB: Inter-frequency bias

Signal type: (C1P/C or C2P/C or ...)
Code: a_i a^k DCB: Differential code bias

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

- **GNSS**: (GPS or GLONASS or ...) Code: $\overrightarrow{\Delta x_i}$ a_i δ^k Phase: $\overrightarrow{\Delta \chi_i}$ α_i δ^k **ISB: Inter-system bias**
- Frequency: $(f_1 \text{ or } f_2 \text{ or } f_n \text{ for GLONASS or } ...)$ Code: $\overrightarrow{\Delta x^k}$ $\overrightarrow{\Delta x_i}$ a_i a^k Phase: $\overrightarrow{\Delta \chi^k}$ $\overrightarrow{\Delta \chi_i}$ α_i α^k IFB: Inter-frequency bias
- Signal type: (C1P/C or C2P/C or L2P/C or ...) Code: $a_i \quad a^k$ DCB: Differential code bias Phase: $\alpha_i \quad \alpha^k$ (Quarter cycle problem)

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

The following parameters depend on

• GNSS:

Code: Phase:	$\stackrel{\Delta x_i}{\overrightarrow{\Delta \chi_i}}$	$a_i \\ \alpha_i$	δ^{κ} δ^{k}	ISB: Inter-system bias
Frequency:				

Code:	$\overrightarrow{\Delta x^k}$	$\overrightarrow{\Delta x_i}$	a_i	a^k	IFB: Inter-frequency bias
Phase:	$\overrightarrow{\Delta\chi^k}$	$\overrightarrow{\Delta\chi_i}$	α_i	$lpha^k$	

 a^k

 Signal type: Code:

 a_i

DCB: Differential code bias

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

() ISB: Inter-system bias

IFB: Inter-frequency bias

DCB: Differential code bias

Biases when processing code data

If we focus on processing code measurements we have to consider:

- DCB: differential code bias different hardware delays for P- and C-Code bias at the receiver and satellite
- ISB: inter-system bias different hardware delays for measurements of different GNSS bias only at the *receiver*

IFB: inter-frequency bias

frequency-dependent hardware delays for the different GLONASSsignals bias at the *receiver* (also at the satellite when frequency is changed)

Relation between receiver code biases

We can only extract the sum of delays from a GPS/GLONASS data processing.

Why do we need these biases?

DCBs in a GPS network solution

Depending on the code measurements of the individual receivers we can get:

- C1P-C1C or P1-C1 DCBs for all GPS satellites,
- C2P-C2C or P2-C2 DCBs for Block IIR-M (or later) satellites,
- C2P-C2C or P2-C2 DCBs for receivers if it tracks GPS satellites with P- and C-code on the second frequency at the same time.

As soon as we get a mixture between all these observation types in one network solution we need

- either to correct the DCBs in the data processing
- or to estimate DCB parameters
 - P1-C1: Your reference clock only belongs to either the P- or C/A-code class – you need an additional reference for the satellite related biases.
 - P2-C2: You have these DCBs at the satellites and receivers at the same time – you need additional references for the satellite and receiver related biases.

DCBs in a GLONASS network solution

Depending on the code measurements of the individual receivers we can get:

- C1P-C1C or P1-C1 DCBs for all GLONASS satellites,
- C2P-C2C or P2-C2 DCBs for all GLONASS satellites.

As soon as we get a mixture between all these observation types in one network solution we need

- either to correct the DCBs in the data processing
- or to estimate DCB parameters
 - P1-C1 and P2-C2: Your reference clock only belongs to either the P- or C-code class – you need an additional reference for the satellite related biases.

Note that we need to consider in addition an inter-frequency bias (IFB) because each GLONASS satellite emits the signal on another frequency.

GRGS Ecole d'Eté 2012

 $+DCB^{l}(C1P - C1C)$

Bias in a GPS/GLONASS network solution

We can see all DCBs from a GPS and GLONASS network solution and the **GLONASS IFB** in a combine **GPS/GLONASS** network solution.

Note that we need to consider in addition an inter-system bias (ISB) at each combined GPS/GLONASS receiver.

All these biases are hardware related (with respect to the satellites or receivers). Consequently we can only assess them as one single parameter $a_i = DCB + IFB + ISB$.

- References are needed for
 - P1-C1 DCB for GPS satellites,
 - P2-C2 DCB for GPS satellites and GPS receivers tracking C2C,
 - ISB for combined GPS/GLONASS tracking receivers,
 - IFB for GLONASS tracking receivers.

Bias in a GPS/GLONASS network solution

In consequence the estimated biases depend on the realization of the reference (e.g., selection of a reference or list of stations in case of zero-mean conditions).

These biases need to be considered (estimated or corrected) at any time when different types of code measurements are involved.

Typical examples are:

- Receiver/satellite clock estimation in a zero-difference network solution.
- Melbourne-Wübbena linear combination for ambiguity resolution (even in the double-difference analysis).

An alternative approach to obtain the DCBs is to inspect RINEX observation files containing the full list of observations.

Direct access from RINEX files

If RINEX observation files contain all possible code measurements GPS: C1P C1C C2P C2C GLONASS: C1P C1C C2P C2C

the following differences can be evaluated to derive the DCBs: $(C1P)^{GPS} - (C1C)^{GPS} = DCB_{GPS} (P1-C1) - DCB^{GPS} (P1-C1)$ $(C2P)^{GPS} - (C2C)^{GPS} = DCB_{GPS} (P2-C2) - DCB^{GPS} (P2-C2)$ $(C1P)^{GLO} - (C1C)^{GLO} = DCB_{GLO} (P1-C1) - DCB^{GLO} (P1-C1)$ $(C2P)^{GLO} - (C2C)^{GLO} = DCB_{GLO} (P2-C2) - DCB^{GLO} (P2-C2)$

Because each observation contains the DCBs for the receiver and satellite we need again a convention regarding the reference (e.g., zero-mean condition for all satellites).

This direct DCB determination approach is the only way to get access to the GLONASS DCB values independent from the inter-system bias.

CODE's GNSS P1-C1 DCB monthly solution,

computed for December 2011 (directly from RINEX)

CODE's GNSS P2-C2 DCB monthly solution,

computed for December 2011 (directly from RINEX)

ISB/IFB from a GPS/GLONASS solution

Differences between ISB characteristic of the receivers

Difference		Number of stations	Mean in ns	Median in ns	RMS in ns
CODE	GFZ	52	-210.6	-209.4	4.9
CODE	ESA	39	-377.5	-377.6	5.1
GFZ	ESA	36	-167.7	-168.2	6.1
CODE	GRGS	50	-371.9	-372.1	18.7
GFZ	GRGS	46	-162.1	-163.0	19.2
ESA	GRGS	34	6.1	5.8	20.6

- High consistency (low RMS) with a proper IFB—handling (enough weight for the code measurements?)
- Test whether the ACs select the same type of code observations (CODE differs from ESA and GFZ)

Further biases

- When forming linear combinations from the P₁ and P₂ measurements LC = k₁ · P₁ + k₂ · P₂ the original P1-C1, P2-C2 DCB values have to be applied with the corresponding coefficients: DCB(LC) = k₁ · DCB(P1C1) + k₂ · DCB(P2C2)
- Alternative factors need to apply when P₂ or C₂ is not directly tracked (e.g., cross-correlation technique).
- When extracting the ionosphere information by a $P_1 P_2$ linear combination, the differences between the hardware delays for P_1 and P_2 at the receiver and satellite need to be considered as an additional type of DCBs: DCB(P1P2)
- With more GNSS and their new signals more groups of DCBs will become relevant (e.g, third frequency for GPS and GLONASS).

Dependency of the terms

$$P_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} + I_{i}^{k} + c \cdot (\delta_{i} + a_{i}) - c \cdot (\delta^{k} + a^{k})$$
$$L_{i}^{k} = \left| \left(\overrightarrow{x^{k}} + \overrightarrow{\Delta x^{k}} \right) - \left(\overrightarrow{x_{i}} + \overrightarrow{\Delta x_{i}} \right) \right| + T_{i}^{k} - I_{i}^{k} + c \cdot (\delta_{i} + \alpha_{i}) - c \cdot (\delta^{k} + \alpha^{k})$$
$$+ \lambda^{k} \cdot N_{i}^{k} + \lambda^{k} \cdot \Delta \varphi_{i}^{k}$$

GLONASS-GPS translation bias

A GNSS antenna should be individually calibrated for each GNSS to consider the system-dependency of the $\overrightarrow{\Delta \chi_i}$ term.

The coordinate GLONASS-GPS translation bias shall compensate for a potential deficiency in the GNSS-specific calibration of the antenna phase center offset.

- Station coordinate from GPS-only
- Station coordinate from GLONASS-only
- Vector between GPS- and GLONASS coordinates
- Two independent networks with independent datum definition
- Zero-mean condition over all GLONASS-GPS bias in XYZ

GPS/GLONASS-Bias

Differences between weekly coordinate solutions for GPS/GLONASS stations with and without estimating GLONASS-GPS translation biases

Receiver/satellite antenna model: IGS05

GPS/GLONASS-Bias

Differences between weekly coordinate solutions for GPS/GLONASS stations with and without estimating GLONASS-GPS translation biases

Receiver/satellite antenna model: IGS08

GLONASS-GPS translation bias

A GNSS antenna should be individually calibrated for each GNSS to consider the system-dependensy of the $\overrightarrow{\Delta \chi_i}$ term.

The troposphere GLONASS-GPS translation bias shall compensate for a potential deficiency in the GNSS-specific calibration of the antenna phase center variation.

- Troposphere estimates from GPS-only
- Troposphere estimates from GLONASS-only
- Difference between
 GLONASS- and GPS
 troposphere series
- No further condition is necessary.

GLONASS-GPS translation bias

CODE processing changes in 2011

Outline

- Introduction
- Orbit Determination (at CODE)
- Code Biases Mercipour
 Biases Mercipour</

