SLR observations to spherical and GNSS satellites and their combined analysis with GNSS microwave observations

Daniela Thaller

Astronomical Institute, University of Bern, Switzerland

Séminaires "Temps & Espace" Observatoire de Paris, 4. June 2012

• SLR analysis for spherical satellites

SLR residual analysis for GNSS satellite orbits

Combined GNSS-SLR analysis

SLR analysis for spherical satellites

- Bernese GPS Software (BSW) has been extended:
 - Orbit modelling for spherical satellites
 - Handling / analysis of SLR observations
- Cooperation with BKG (Frankfurt/Main, Germany):
 - BKG is ILRS Analysis Center
 - Contribution of BKG to the ILRS is based³ on *BSW* since July 2010

analysis at AlUB

GNS

SLR analysis for spherical satellites

Typical parameter set-up in weekly SLR solutions:

- Station coordinates
- Earth Rotation Parameter:
 - Polar motion
 - Length of Day (LOD)
 - Satellite orbits:
 - 6 Osculating elements
 - Empirical orbit parameters:
 - Constant along-track acceleration
 - Once-per-revolution along-track parameters
 - Once-per-revolution cross-track parameters
 - Range biases (for selected sites)

AIUB

SLR analysis for spherical satellites: ERP

SLR analysis for spherical satellites: ERP

Astronomical Institute University of Bern

AIUB

Daniela Thaller: SLR and combined SLR-GNSS analysis at AIUB Séminaire at Observatoire de Paris, 4. June 2012

SLR analysis: «Blue-Sky Effect»

SLR observations are possible only at cloudless sky

- = usually high pressure
- \Rightarrow Systematic **atmospheric loading** on SLR stations: up to **2 mm**

Impact of atmospheric loading

–GNSS analysis at AIUB une 2012 Daniela Thaller: SLR and combined Séminaire at Observatoire de Paris,

SLR tracking of GNSS satellites

- Several GNSS satellites are tracked by SLR:
 - Independent validation of the orbit computation based on microwave data
 - Combined GNSS-SLR analysis (satellite co-location)
 - SLR residual computation at AIUB:
 - GNSS satellite orbits (and ERPs) computed at the CODE Analysis Center of the IGS
 - SLRF2008 station coordinates
 - A daily report is sent to the ILRS

SLR tracking of GNSS satellites

SLR tracking of GNSS satellites

- GPS: ~ 10 15
- GLONASS: ~ 20 30

But: Bias and RMS are station-dependent

Overall RMS = 21.6 mm

But: Bias and RMS are station-dependent

- Even time-dependent variations are visible:
 - Station upgrades
 - Seasonal

- Even time-dependent variations are visible:
 - Seasonal

Even time-dependent variations are visible:Daily

- Overall Mean Bias = -18.4 mm
 - Overall RMS = 38.9 mm

- Overall Mean Bias = -18.4 mm
 - Overall RMS = 38.9 mm

- Overall Mean Bias = -7.0 mm
 - Overall RMS = 40.3 mm

- Overall Mean Bias = -7.0 mm
 - Overall RMS = 40.3 mm

Satellite PRN-SVN	# SLR observations	Overall mean bias [mm]	Overall RMS [mm]
G06-36	37124	-33.21	21.58
G05-35	32981	-31.53	20.03
R22-791	30047	-18.42	38.86
R15-716	29899	- 7.03	40.33
R03-789	29059	-17.79	41.89
R07-712	21317	-12.30	38.64
R11-723	20873	-28.01	37.23
R08-729	20273	-33.15	32.04
R24-713	17626	-19.72	43.59
R23-732	7006	-16.77	31.87
R05-734	4245	-12.92	28.63
R18-724	3412	-12.83	30.84

What is influencing the SLR residuals?

- Errors in SLR station coordinates
- Errors in offsets of the laser reflector array (LRA)
- Un-calibrated SLR range biases for high satellites
- Quality of GNSS orbits:
 - Problems in satellite orbit modelling
 - Satellite antenna offsets (and phase center variations)
 - Network used to determine orbits (\Rightarrow GLONASS issue)
- Inconsistencies in GNSS and SLR reference frame

Combined analysis including estimation of parameters for possible error sources

Combined GNSS-SLR analysis: Co-locations

- Co-location at stations (e.g., for actual ITRF computation): \rightarrow Application of known local tie values \rightarrow GNSS observations of ground network \rightarrow SLR observations to LAGEOS etc.
- \rightarrow Independent of satellite tracked \rightarrow Local ties from terrestrial measurements

Combined GNSS-SLR analysis: Co-locations

Station co-location vs. Satellite co-location

- bad global distribution of co-located sites
- only few co-locations (37)
- questions concerning accuracy, transformation local→global

Combined GNSS-SLR analysis: Co-locations

Station co-location vs. Satellite co-location

"Space CoM Tie" LRA **SAO** Offset **PCV**

Co-location at GNSS satellites = Common orbit parameters from GNSS microwave and SLR range data

→ Vectors of GNSS and SLR reference points w.r.t. satellite CoM needed

Astronomical Institute University of Bern

–GNSS analysis at AIUB une 2012 4. June 201 SLR and combined SLR Paris Ð Daniela Thaller: SLR and cor Séminaire at Observatoire d

Combined GNSS-SLR analysis

Common parameters for combination:

- **Direct** combination
- **Indirect** combination by applying **correction** terms («Local ties») >

Parameter	GNSS microwave	SLR@GNSS	SLR spherical satellites
Station coordinates	GNSS	SLR	SLR
ERP	Х	Х	Х
Orbits GNSS satellites	Х	Х	
Orbits spherical satellites			Х
Geocenter	Х	Х	Х
Microwave SAO	Х		
LRA offsets		Х	
Range biases		Х	Х

Combined GNSS-SLR analysis

- Reprocessing 2000.0 2011.0:
 - CODE GNSS reprocessing using IGS08 models
 - SLR reprocessing
- Bernese GNSS Software for all processing steps:
 - Equivalent to combination at observation level

Combined GNSS-SLR analysis

	MW @GNSS	SLR @GNSS	SLR @Lageos
Radiation pressure	Problems in RPR	Problems in RPR	RPR well
\leftrightarrow Geocenter	moderning	modennig	modened
GNSS satellite	Problems in phase	independent	-
antenna phase center	center modelling		
↔ Scale			
Range biases	-	Decorrelated if	For a few sites
↔ Scale		different elevation	only
		angles	

SLR @GNSS:

 \Rightarrow **Geocenter** is affected as well \Rightarrow LAGEOS needed

 \Rightarrow Scale is transferred to GNSS \Rightarrow LAGEOS helps for decorrelation

Combined GNSS-SLR analysis: LRA

Astronomical Institute University of Bern

AIUB

Combined GNSS-SLR analysis: SAO

Astronomical Institute University of Bern

AIUB

Combined GNSS-SLR analysis: Range biases

- 1 RGB per station (for all satellites) estimated:
- Big differences between stations (+- few centimeters)
- Correlations with other parameters?

Combined GNSS-SLR analysis: Range biases

Correlations with other parameters?

- Additional estimation of SAO and LRA offset corrections causes differences in RGB estimates of a few mm only
 - Not critical

SLR and

halle

- Mainly annual signal visible
 Amplitudes are slightly different for (
 - Amplitudes are slightly different for GNSS and SLR series
 - Few periods in GNSS series seem to be artifacts

- Draconitic year is clearly visible: GNSS = 352 d, LAG-2 = 222 d
- Annual and draconitic signal are not distinguishable for GNSS
- Big amplitudes at harmonics of draconitic year for GNSS

Astronomical Institute University of Bern

 \succ

 \succ

Geocenter: Combined SLR-GNSS series

- Annual signal remains; draconitic GNSS signal vanishes
- Harmonics of draconitic GNSS year are reduced but not eliminated

Summary

- GNSS and SLR analysis is done at AIUB
- Identical software package for the analysis and the combination
 - \Rightarrow Combination at observation level
- SLR data to GNSS satellites included in the combination \Rightarrow «Space Tie»
- Components of the «Space Tie» can be evaluated:
 - Microwave antenna offsets (SAO)
 - Laser reflector array offsets (LRA)
- All parameters benefit from the combination (e.g. geocenter coordinates)

Acknowledgements

- Astronomical Institute, University of Bern (AIUB):
 - Krzysztof Sośnica
 - Adrian Jäggi
 - Rolf Dach
 - Gerhard Beutler
 - Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt/Main:
 - Maria Mareyen
 - Bernd Richter
 - Technische Universität München:
 - Peter Steigenberger

Thanks for your attention !

