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1 Introduction

Contributed thoughts by (Ramakrishna, 2011) and
(Elburg, 2011) seem to indicate that the observation
equations used since about thirty years in the sci-
entific (and other high accuracy) exploitation of the
Global Navigation Satellite Systems (GNSS) contain
gross errors. In our brief review we show that this is
not true.

The differences between the observation equa-
tions actually used, and well documented, e.g., in
Beutler (2005), and the above mentioned alternatives
are caused by basically the same incorrect interpreta-
tion of the GNSS observation equation by (Ramakr-
ishna, 2011) and (Elburg, 2011).

In Section 2 we reproduce the slightly simplified,
but otherwise correct GNSS observation equations.
In Section 3 we derive a simplified version of these
equations, which is identical with the original equa-
tions up and including the terms of first order in the
flight times of the signals. The result may now be eas-
ily compared to the alternative formulations in Sec-
tion 4. In Section 5 we draw the conclusions.

2 The GNSS Observation Equations

According to (Beutler, 2005), Vol. I, Eq. (8.85)
the non-relativistic version of the GNSS observation
equations for the GNSS code observable (C/A- (clear
access) or P- (precise) code) read as:

pji = ρji − c∆tj + c∆ti + ∆ρjiion
+ ∆ρjitrop

+ ǫjicod
,

(1)

where

c is the speed of light.
pji = c

(

(ti +∆ti)− (τ j +∆tj)
)

the so-called
pseudorange, the difference between the clock
readings at reception of the signal at the receiver
and emission of the signal at the satellite, respec-
tively.

j is the satellite index,i the receiver index.
ρji

.
= |r(τ j)−R(ti)|, is the geometric distance be-
tween the satellite at signal emission timeτ j and

the receiver at signal reception timeti (ρji also
is referred to asslant range between satellite and
receiver),

∆tj is the offset of the satellite clock w.r.t. GNSS
time at emission time,

∆ti the offset of the receiver clock w.r.t. GNSS time
at signal reception time;

∆ρjitrop
is the tropospheric range correction,

∆ρjiion
the ionospheric range correction, and

ǫjicod
the measurement error of the observation.

ti+∆ti andτ j +∆tj are the readings of the receiver
clock and of the satellite clock, at the reception and
emission of one and the same signal, respectively.

For common view time transfer using the code ob-
servation equations one assumes∆tj = 0. In prac-
tice this is equivalent to adopting the GNSS satel-
lite clock corrections to GNSS time from the Inter-
national GNSS Service (IGS).

In scientific applications, when “hunting the mm
and the ps (picosecond)” in the receiver positions and
clock corrections, respectively, the ionospheric cor-
rection, the tropospheric range correction and the er-
ror term have to be studied carefully. One also would
have to include the phase observation equation. Here
we are “hunting” differences between the correct and
the alternative approaches of the order of 60 ns cor-
responding to about20 m. It is therefore perfectly al-
lowed to assume an Earth without atmosphere (!) and
satellite clocks perfectly synchronized to GNSS time.
The simplified observation equation then read as:

pji = ρji + c∆ti , (2)

where

pji = c
(

ti + c ∆ti − τ j
)

.

ρji has the same definition as in Eq. (1).
In GNSS data analysis using real data one has

to account for special and general relativistic effects.
This implies in particular that the parameterized post-
Newtonian (PPN) version of the equations of motion
has to be used to derive the satellite trajectoryr(t).
The relativistic effects in the satellite clock are ap-
proximately dealt with by applying a common fre-
quency offset to all satellite clocks. They also cause a



small time-varying term in the observation equations
(1) and (2). As these effects are very small, numer-
ically, and have nothing whatsoever to do with the
problem treated here we simply refer the interested
reader to (Petit and Luzum, 2010), Sections 10.2 and
10.3, for more information. Using Eqs. (2) we obtain
the result of the common view time-synchronization
for two receiversi = 1, 2 using one and the same
satellitej:

∆t1 −∆t2 =
1

c

[

pj1 − pj2 −
(

ρj1 − ρj2

)]

(3)

Our result is consistent with Lombardi et al (2001).

3 Approximate Version of the GNSS
Observation Equations

Despite the fact that there is no necessity whatsoever
to do that, we approximate the propagation paths as
follows:

ρji
.
= |r(τ j)−R(ti)|

= |r(ti − ρji/c)−R(ti)|

≈ |r(ti)− ρji/c · ṙ(ti)−R(ti)|

= |r(ti)−R(ti)− ρji/c · ṙ(ti)|.
= |ρj

i0 − ρji/c · ṙ(ti)|

≈
[

(ρji0)
2 − 2 ρji/c (ρ

j
i0(ti) · ṙ(ti))

]1/2

≈ ρji0 ·
[

1− 2/(ρji0 · c) (ρ
j
i0 · ṙ(ti))

]1/2

≈ ρji0 −
ρ
j

i0
·ṙ(ti)

c

(4)

As in Eq. (1) the receiver index isi and the satellite
indexj. ρj

i0
.
= r(ti)−R(ti) is the topocentric vector

of the satellite referring to observation timeti of sta-
tion i. In the transition from Eq. (4)6 to (4)7 we used
the approximationρji0 = ρji , which is correct up to
the terms of the first order inρji .

4 The GNSS Observation Equations and
Proposed Alternatives

We easily see that Eq. (4)8 corresponds to Eqs. (4)
and (5) in Ramakrishna (2011): If we divide the left-
and right-hand sides of EQ.(4)8 by the speed of light
c, it becomes identical with the above mentioned
equations in Ramakrishna (2011) – apart from the
pre-factor1/

√

1− v2/c2, which was recognized by
(Ramakrishna, 2011) as irrelevant for “our” problem.

5 Conclusions

1. The analysis in Ramakrishna (2011) is basically
correct.

2. The analysis is, however, based on wrong as-
sumptions: No GNSS receiver manufacturer and
no GNSS analyst striving to achieve the highest
possible accuracy with GNSS would use Eq. (1)
in Ramakrishna (2011) as observation equations.
A serious analysis has to start from equations of
motion of the type (1) in our treatment of the
problem.

3. The analysis by (Elburg, 2011) is based on the
same basic mis-interpretation of the GNSS obser-
vation equation.

4. The issue raised by (Elburg, 2011) and (Ra-
makrishna, 2011) therefore is a non-issue.
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