Impact of Earth rotation on the signal propagation
between CERN and Gran Sasso
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1 Introduction describes the particular rotation about the third coor-
dinate axis and angte. The resulting system s called

The slant rangd; associated with a signal traveling gquasi-inertial, because the geocenter, the origin of the

with speed of light from P; attimet to P; isthedis-  system is in accelerated motion about the Sun. Apart

tance betweer, at emission time andP, atrecep-  from that the coordinate array;; refers to the geo-

tion timet+ At, whereAt = d; /cis the propagation  centric, equatorial system.

time of the signal betweeR; and P».

P, and P, are assumed to be at rest in the Earth-3 Determining the Slant Range dj:
fixed coordinate system and to have the geographidMethod 1
coordinates;, \;, ¢;,7 = 1,2.d; is calculated in two

different ways, which both give the same result. 3.1 General Relation

2 Geographic and Quasi-inertial The slant range between betweBn and P; is de-
Coordinates fined as:

Let: di = |ra(t + At) — ()] - (5)

Tiy Giy Niy = 1,2 1) ¢ thusisthe distance in the quasi-inertial system be-

tween P; at transmission time ané, at reception

the spherical geographic coordinates, namely geolime: At is the signal traveling time. Assuming an
centric radius vector, latitude, and longitude, of the XPeriment in vacuum and neglecting the influence
signal transmitter aP, and the signal detector & of the geopotential we may approximate:
in the Earth-fixed coordinate system. o

The corresponding rectangular coordinates are: At =do/c, ©6)

wherec = 299792458 m/s is the speed of light in

TE; COS (; COS \; vacuo.
rEi= | ypi | =i | cosgisinA; | . (2) Let us now adopt a special quasi-inertial coor-
ZEi sin ¢; dinate system with its coordinate plafe;;,x3)

_ ] _ coinciding with the meridian of the transmitter at
The distance in the Earth-fixed system betwé&n  emjssion timet. For this special selection we have

andp; is: O(t) = 0 and therefore

do = \/(l’m —2g1)?+ (Yyp2 — ye1)? + (2B2 — 2E1)? ro(t) =re(t). ()
3) We have moreover

Assuming a simplified model for the rotation of the Ot + At) =w - At (8)
Earth (neglecting polar motion, precession and nuta-
tion) the Earth-fixed coordinates may be easily trans-wherew = 7.292115 - 10~ rad/s is the angular ve-
formed into a quasi-inertial coordinate system, seelocity of Earth rotation. We may thus establish the
(Beutler, 2005): coordinate transformation faP, at ¢t + At into the
inertial system as:

rri =R3(-0)rp;,i=1,2, (4)

coswAt —sinwAt 0
wherer;; are the coordinates in the quasi-inertial r5(t + At) = | sinwAt coswAt 0 | rEa. (9)
systemg@ is the Greenwich sidereal time, aBg («) 0 0 1



As wAt is a small angle we may use the approxima-

tion:
1 —wAt0
rrot+At) = [ wAt 1 0| rp (10)
0 0 1
or
Tpe — WAt ypo
ria(t+ At) = | yp2 + wAt g2 (11)

ZE2

Introducing this relation into Eq. (5) and neglecting
higher order terms we obtain:

(12)

Using Eg. (2) to further modify the above formula
and well-known trigonometric relations gives the fi-
nal result:

di = do +wAt - [xp1yE2 — TE2yE1] /do -

di = dy + wAt T;ﬂ oS 1 €o8 g sin(Aa — A1) .
0
(13)
Formula (13) shows that; = dy for A\ = A; and

that it is maximum if transmitter and detector are lo-

4 Determining the Slant Range d;:
Method 2

We introduce an equatorial Earth-fixed coordinate
system, with its zero meridian going through the Gran
Sasso laboratory. The spherical coordinateB,adind

Ps in this system are:

Py :rp = 6368000 M ¢ = 46.20° A = —7.40°
Py i 7y = 6368000 M ¢ = 42.47° Ay = 0.00°
17

wherel; = A\; — \o. The corresponding rectangular
coordinates are:

COS (1 COS 5\1 COS (2
TE1 =71 | cospysinh; | »TE2="T2 0
sin ¢ sin g2
(18)

In analogy to the deliberations in Sect. 3 we introduce
the inertial system coinciding with the new Earth-
fixed system at time. In this system the Gran Sasso

cated on the equator and separated by a certain longiaboratory has the velocity vector

tude difference. It is furthermore clear that > dj
for Ao > A1, i.e.,if Py islocated in the East df;, we
haved; — dy > 0, i.e. the slant range is larger than
the geometric distana&, betweenP; and Ps.

3.2 Application to the OPERA Experiment

Let us now calculate the differende—d,, if P; is the
CERN in Geneva anff, the Gran Sasso laboratory in

Italy. We assume the following spherical Earth-fixed

coordinates for?; and P»:

Py :r; =6368000 m ¢ = 46.20° A\ = 06.15°
P g = 6368000 M ¢pg = 42.47° Ay = 13.55° °

(14)

The mean Earth radius was takenfgri = 1, 2, and

rather approximate coordinates (from the internet)

0

COS @2
0

V2 =T W

(19)

The change of the length of the baseline vector be-
tweenP; att andP;, att + At consequently is:

di —do = vig - {rge —re1}/do At
{7’1 COS d)l sin 5\1} /d() At s
COS (1 €OS g sin(Ag — Aq)

(20)

—T'9 W COS o
w At B2

do

which is identical to the result (13) obtained with the
first method.

for the geographical coordinates of CERN and GranAcknovvledgements Hans Bebie contributed the indepen-

Sasso. The distane® corresponding to the adopted
and approximate coordinatesis = 718800 m. With
these values we obtain:

di —dy = 0.579m. (15)

This corresponds to a correction of the signal propa-

gation time due to Earth rotation of

d

At(Earth rotation = b= do 4 ggps. (16)
&

dent check in Sect. 4, what is gratefully acknowledged.
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The result corresponds to the crude coordinates (14).
Better coordinates have to be used for generating the
final result.



