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1 Introduction

The slant ranged1 associated with a signal traveling
with speed of lightc fromP1 at timet toP2 is the dis-
tance betweenP1 at emission timet andP2 at recep-
tion timet+∆t, where∆t = d1/c is the propagation
time of the signal betweenP1 andP2.

P1 andP2 are assumed to be at rest in the Earth-
fixed coordinate system and to have the geographic
coordinatesri, λi, φi, i = 1, 2. d1 is calculated in two
different ways, which both give the same result.

2 Geographic and Quasi-inertial
Coordinates

Let:

ri, φi, λi, i = 1, 2 (1)

the spherical geographic coordinates, namely geo-
centric radius vector, latitude, and longitude, of the
signal transmitter atP1 and the signal detector atP2

in the Earth-fixed coordinate system.
The corresponding rectangular coordinates are:

rEi =





xEi

yEi

zEi



 = ri





cosφi cosλi

cosφi sinλi

sinφi



 . (2)

The distance in the Earth-fixed system betweenP1

andP2 is:

d0 =
√

(xE2 − xE1)2 + (yE2 − yE1)2 + (zE2 − zE1)2 .

(3)

Assuming a simplified model for the rotation of the
Earth (neglecting polar motion, precession and nuta-
tion) the Earth-fixed coordinates may be easily trans-
formed into a quasi-inertial coordinate system, see
(Beutler, 2005):

rIi = R3(−Θ) rEi , i = 1, 2 , (4)

whererIi are the coordinates in the quasi-inertial
system,Θ is the Greenwich sidereal time, andR3(α)

describes the particular rotation about the third coor-
dinate axis and angleα. The resulting system is called
quasi-inertial, because the geocenter, the origin of the
system is in accelerated motion about the Sun. Apart
from that the coordinate arrayrIi refers to the geo-
centric, equatorial system.

3 Determining the Slant Range d1:
Method 1

3.1 General Relation

The slant range between betweenP1 andP2 is de-
fined as:

d1 = |rI2(t+∆t)− rI1(t)| . (5)

d1 thus is the distance in the quasi-inertial system be-
tweenP1 at transmission time andP2 at reception
time. ∆t is the signal traveling time. Assuming an
experiment in vacuum and neglecting the influence
of the geopotential we may approximate:

∆t = d0/c , (6)

wherec = 299792458 m/s is the speed of light in
vacuo.

Let us now adopt a special quasi-inertial coor-
dinate system with its coordinate plane(xI1, xI3)
coinciding with the meridian of the transmitter at
emission timet. For this special selection we have
Θ(t) = 0 and therefore

rI1(t) = rE1(t) . (7)

We have moreover

Θ(t+∆t) = ω ·∆t , (8)

whereω = 7.292115 · 10−5 rad/s is the angular ve-
locity of Earth rotation. We may thus establish the
coordinate transformation forP2 at t + ∆t into the
inertial system as:

rI2(t+∆t) =





cosω∆t − sinω∆t 0
sinω∆t cosω∆t 0

0 0 1



 rE2 . (9)



As ω∆t is a small angle we may use the approxima-
tion:

rI2(t+∆t) =





1 −ω∆t 0
ω∆t 1 0
0 0 1



 rE2 (10)

or

rI2(t+∆t) =





xE2 − ω∆t yE2

yE2 + ω∆t xE2

zE2



 . (11)

Introducing this relation into Eq. (5) and neglecting
higher order terms we obtain:

d1 = d0 + ω∆t · [xE1yE2 − xE2yE1] /d0 . (12)

Using Eq. (2) to further modify the above formula
and well-known trigonometric relations gives the fi-
nal result:

d1 = d0 + ω∆t
r1r2
d0

cosφ1 cosφ2 sin(λ2 − λ1) .

(13)

Formula (13) shows thatd1 = d0 for λ2 = λ1 and
that it is maximum if transmitter and detector are lo-
cated on the equator and separated by a certain longi-
tude difference. It is furthermore clear thatd1 > d0
for λ2 > λ1, i.e., ifP2 is located in the East ofP1, we
haved1 − d0 > 0, i.e. the slant range is larger than
the geometric distanced0 betweenP1 andP2.

3.2 Application to the OPERA Experiment

Let us now calculate the differenced1−d0, if P1 is the
CERN in Geneva andP2 the Gran Sasso laboratory in
Italy. We assume the following spherical Earth-fixed
coordinates forP1 andP2:

P1 : r1 = 6368000 m φ1 = 46.20◦ λ1 = 06.15◦

P2 : r2 = 6368000 m φ2 = 42.47◦ λ2 = 13.55◦
.

(14)

The mean Earth radius was taken forri, i = 1, 2, and
rather approximate coordinates (from the internet)
for the geographical coordinates of CERN and Gran
Sasso. The distanced0 corresponding to the adopted
and approximate coordinates isd0 = 718800m. With
these values we obtain:

d1 − d0 = 0.579 m . (15)

This corresponds to a correction of the signal propa-
gation time due to Earth rotation of

∆t(Earth rotation) =
d1 − d0

c
= 1.93 ns. (16)

The result corresponds to the crude coordinates (14).
Better coordinates have to be used for generating the
final result.

4 Determining the Slant Range d1:
Method 2

We introduce an equatorial Earth-fixed coordinate
system, with its zero meridian going through the Gran
Sasso laboratory. The spherical coordinates ofP1 and
P2 in this system are:

P1 : r1 = 6368000 m φ = 46.20◦ λ̃1 = −7.40◦

P2 : r2 = 6368000 m φ = 42.47◦ λ̃2 = 0.00◦
,

(17)

whereλ̃1 = λ1 − λ2. The corresponding rectangular
coordinates are:

rE1 = r1





cosφ1 cos λ̃1

cosφ1 sin λ̃1

sinφ1



 , rE2 = r2





cosφ2

0
sinφ2



 .

(18)

In analogy to the deliberations in Sect. 3 we introduce
the inertial system coinciding with the new Earth-
fixed system at timet. In this system the Gran Sasso
laboratory has the velocity vector

vI2 = r2 ω





0
cosφ2

0



 . (19)

The change of the length of the baseline vector be-
tweenP1 at t andP2 at t+∆t consequently is:

d1 − d0 = vI2 · {rE2 − rE1} /d0 ∆t

= −r2 ω cosφ2

{

r1 cosφ1 sin λ̃1

}

/d0 ∆t

= ω ∆t r1r2

d0

cosφ1 cosφ2 sin(λ2 − λ1)

,

(20)

which is identical to the result (13) obtained with the
first method.
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