Support from the Bernese Software for the EUREF–Reprocessing

Astronomical Institute, University of Bern, Bern, Switzerland
bernese@aiub.unibe.ch

7th EUREF Local Analysis Centres Workshop
Military University of Technology, Warsaw, Poland; 18 to 19 November 2010
Recent model updates in CODE–EPN solution (since week 1600):

- Use of VMF1 (instead of GMF) as troposphere mapping model.
- Consideration of three higher-order ionosphere correction terms:
 - second order term,
 - third order term,
 - ray bending/curvature term (according to IERS Conventions 2010).
- Refined GNSS orbit representation
 (by setting up stochastic pulses at noon).
- Applied OTL CMC correction.
<table>
<thead>
<tr>
<th></th>
<th>Version at AIUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troposphere modelling</td>
<td>GMF/GPT VMF1 Gradient: TAN(z)</td>
</tr>
<tr>
<td>Ionosphere modelling</td>
<td>HOI with scaling factor system–specific</td>
</tr>
<tr>
<td>PCV corrections</td>
<td>1/4 cycle shift considered GLONASS is possible</td>
</tr>
<tr>
<td>Ambiguity resolution</td>
<td>checks the RINEX header entries auto–adaption of options wrt bsl. length</td>
</tr>
<tr>
<td>Section</td>
<td>Version at AIUB</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Troposphere modelling</td>
<td>GMF/GPT
VMF1
Gradient: TAN(z)</td>
</tr>
<tr>
<td>Ionosphere modelling</td>
<td>HOI with scaling factor
system–specific
$\frac{1}{4}$ cycle shift considered
GLONASS is possible</td>
</tr>
<tr>
<td>PCV corrections</td>
<td></td>
</tr>
<tr>
<td>Ambiguity resolution</td>
<td>checks the RINEX header entries
auto–adaption of options wrt bsl. length</td>
</tr>
<tr>
<td>Individually calibrated antennas</td>
<td></td>
</tr>
<tr>
<td>Pre–processing</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- GMF/GPT: Global Mapping Functions/Generalized Polar Tropospheric Model
- VMF1: Vertical Mapping Function
- HOI: Hotening Outer Ionosphere
- PCV: Parametric Correction for Velocity
- GLONASS: Global Navigation Satellite System
<table>
<thead>
<tr>
<th>Feature</th>
<th>Version at AIUB</th>
<th>Version 5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troposphere modelling</td>
<td>GMF/GPT, VMF1, Gradient: TAN(z)</td>
<td>NMF</td>
</tr>
<tr>
<td>Ionosphere modelling</td>
<td>HOI with scaling factor, only first order</td>
<td>only antenna-dependent</td>
</tr>
<tr>
<td>PCV corrections</td>
<td>system–specific</td>
<td>system–specific</td>
</tr>
<tr>
<td>Ambiguity resolution</td>
<td>$\frac{1}{4}$ cycle shift considered, only GPS supported</td>
<td>only GPS supported</td>
</tr>
<tr>
<td>Individually calibrated</td>
<td>checks the RINEX header entries, only one setup for all</td>
<td>possible, but without any check</td>
</tr>
<tr>
<td>antennas</td>
<td></td>
<td>baselines</td>
</tr>
<tr>
<td>Pre–processing</td>
<td>auto–adaption of options wrt bsl. length</td>
<td>only one setup for all baselines</td>
</tr>
</tbody>
</table>
Implemented features relevant for an (EPN-)reprocessing

- FODITS: Find Outliers and Discontinuities in Time Series
- create a campaign for each session in case of a multi-session BPE
- flexible selection of files of an interval in the menu
- update to IERS2010 conventions
 DE405, OTL-CMC, mean pole, S1/S2 ATL, and others
- handling of equipment changes when generating weekly solutions
- ADDNEQ2 repeatability computation for regional networks
- review ADDNEQ2 station pre-elimination procedure
- optimize the memory consumption for GPSEST and ADDNEQ2
What options for developments do we have?

1. Continue working on the full multi–GNSS version.
 - expected time frame: two to three years
What options for developments do we have?

1. Continue working on the full multi-GNSS version.
 - expected time frame: two to three years
What options for developments do we have?

1. Continue working on the full multi–GNSS version.
 - expected time frame: two to three years

2. Upgrade version 5.0 with selected features
 - in particular troposphere modelling or system–specific PCV corrections require big reorganizations in the source code
 - expected time frame: four to five months
What options for developments do we have?

1. Continue working on the full multi–GNSS version.
 - expected time frame: two to three years

2. Upgrade version 5.0 with selected features
 - in particular troposphere modelling or system–specific PCV corrections require big reorganizations in the source code
 - expected time frame: four to five months
What options for developments do we have?

1. Continue working on the full multi–GNSS version.
 - expected time frame: two to three years

2. Upgrade version 5.0 with selected features
 - in particular troposphere modelling or system–specific PCV corrections require big reorganizations in the source code
 - expected time frame: four to five months

3. Make the currently running version ready for distribution
 - preparation to release a version 5.2
 - still without multi–GNSS and without the redesigned coordinate and station information file formats
What options for developments do we have?

1. Continue working on the full multi-GNSS version.
 - expected time frame: two to three years
2. Upgrade version 5.0 with selected features
 - in particular troposphere modelling or system-specific PCV corrections require big reorganizations in the source code
 - expected time frame: four to five months
3. Make the currently running version ready for distribution
 - preparation to release a version 5.2
 - still without multi-GNSS and without the redesigned coordinate and station information file formats
What options for developments do we have?

1. Continue working on the full multi–GNSS version.
 - expected time frame: two to three years

2. Upgrade version 5.0 with selected features
 - in particular troposphere modelling or system–specific PCV corrections require big reorganizations in the source code
 - expected time frame: four to five months

3. Make the currently running version ready for distribution
 - preparation to release a version 5.2
 - still without multi–GNSS and without the redesigned coordinate and station information file formats
other potential interesting features

- GLONASS clock estimation (including PPP)
- Geophysical (deformation) models can be introduced as grids and validated by estimating scaling factors
- Receiver antenna parameters in ADDNEQ2 flexible multi–year GNSS–Satellite antenna offset estimation
- Adapt SINEX import program for ITRF2008 (also to extract coordinates/velocities for a given epoch)
- Processing SLR–Range data, not only to GNSS-Sat. but also LAGEOS (Bernese Software has passed the ILRS benchmark)
- Menu program goes QT4; it can also be used in a remote mode on slow data connections.
Planned updates of the processing examples:

- update the existing three examples to the latest models
- add more ambiguity resolution strategies
- extension by hourly processing and re-processing aspects
- prepare for a bigger number of stations
- new examples for LEO-processing and SLR-analysis
New file types

- grid files for VMF1 and geophysical models
- atmospheric tidal loading
- event list file, Earthquake file (used by FODITS)
- SLR corrections
New file types

- grid files for VMF1 and geophysical models
- atmospheric tidal loading
- event list file, Earthquake file (used by FODITS)
- SLR corrections

File types not supported anymore

- file formats prior version 5.0: NEQ, STN, HTR, TRN etc.
- ELE-file from version 5.0 cannot be integrated with version 5.2
Changed with converter

- station information file (conversion program: STA2STA)
- antenna phase center correction file (ATX2PCV generates the new format)
- satellite information file (download new version)
Bernese Software: file formats

Changed with converter
- station information file (conversion program: STA2STA)
- antenna phase center correction file (ATX2PCV generates the new format)
- satellite information file (download new version)

Changed but compatible
- normal equation
- standard orbit
- DCB-file (new types)
Milestones to prepare version 5.2 for delivery?

1. finish the software developments Jan. 2011
2. review and update all program input files and Apr. 2011
 the corresponding help files
3. update and extent the processing examples Jul. 2011
4. update and review all readme files Aug. 2011
5. develop the installation procedure Aug. 2011
6. test the installation and the software at different platforms Nov. 2011
Milestones to prepare version 5.2 for delivery?

1. finish the software developments Jan. 2011
2. review and update all program input files and Apr. 2011
 the corresponding help files
3. update and extent the processing examples Jul. 2011
4. update and review all readme files Aug. 2011
5. develop the installation procedure Aug. 2011
6. test the installation and the software at different platforms Nov. 2011

Version 5.2 can be expected by the end of next year.
Milestones to prepare version 5.2 for delivery?

1. finish the software developments Jan. 2011
2. review and update all program input files and Apr. 2011
 the corresponding help files
3. update and extent the processing examples Jul. 2011
4. update and review all readme files Aug. 2011
5. develop the installation procedure Aug. 2011
6. test the installation and the software at different platforms Nov. 2011

Version 5.2 can be expected by the end of next year. (Update the user manual later)
Announcement of the preparation of the distribution of a Bernese Software, Version 5.2 to the users is today.

Update fee same as for version 5.0:
Research site license CHF 1 500
Commercial site license CHF 4 500
dual workstation CHF 4 000
single workstation CHF 3 000

All users who have purchased a new license of version 5.0 or ordered an update to version 5.0 after November 1st, 2010 will get the update to version 5.2 for free.

Single and dual workstation licenses will not only offered for windows but also for UNIX/LINUX systems.
THANK YOU!