GOCE Precise Science Orbits

Impact of GPS antenna phase center variations on the GOCE satellite orbits

H. Bock¹, A. Jäggi¹, U. Meyer¹, G. Beutler¹, M. Heinze², U. Hugentobler² ¹Astronomical Institute, University of Bern, Switzerland ²Institute of Astronomical and Physical Geodesy (IAPG), TU München, Germany

Outline

GOCE satellite mission

GOCE High-level Processing Facility (HPF)

• Orbit products

• Precise Science Orbits (PSOs)

Antenna phase center variations (PCVs)

· K 119

- Results
- Summary

GOCE satellite mission (1)

Courtesy:ESA

- Gravity and steady-state Ocean
 Circulation Explorer
- First Earth Explorer of the Living Planet Program of the European Space Agency
- Launch: 17 March 2009 from Plesetsk, Russia
- Sun-synchronous orbit with inclination of 96.5°
- Altitude: 254.9 km
- Mass: 1050 kg at launch
- 5.3 m long, 1.1 m² cross section

GOCE satellite mission (2)

- 3 axis stabilised, nadir pointing, aerodynamically shaped satellite
- Drag free attitude control (DFAC) in flight direction employing a proportional Xe electric propulsion system
- Very rigid structure, no moving parts
- Attitude control by magnetorquers

GOCE satellite mission (3)

Core Payload:

Electrostatic Gravity Gradiometer

- three pairs of accelerometers
- 0.5 m arm length

Main mission goals:

- Determination of the Earth's gravity field with an accuracy of 1mGal (= 10⁻⁵ m/s²) at a spatial resolution of 100 km
- Determination of the geoid on the 1 cm-level with a spatial resolution of 100 km

Courtesy:ESA

GOCE satellite mission (4)

Courtesy:ESA

Satellite to Satellite tracking instrument (SSTI)

- Dual frequency L1, L2
- 12 channel GPS receiver
- Real time position and velocity (3D, 3 sigma) < 100 m, < 0.3 m/s
- 1 Hz data rate
- Science and real time on board solution for navigation
- Hardly any data gaps

=> Mission requirement for precise science orbits: 2 cm (1D)

GOCE satellite mission (5)

GOCE High-level Processing Facility (HPF)

COSPAR 2010, PSD1, Bremen, 18-25 July, 2010

AIUB

EGG-C

GOCE High-level Processing Facility (HPF)

Institute of	National Space Research Center of the Netherlands (SRON)	Institute of Geophysics, University Copenhagen, Denmark (UCPH)	orbit generation:
Satellite Systems, Techn. University Delft, The Netherlands (FAE/A&S)		GeoForschungsZentrum Potsdam, Dept. 1 Geodesy and Remote Sensing,	DEOS:
Institute of Theoretical Geodesy, University Bonn, Germany (ITG)		Germany (GFZ) PI & Project Management:	Science Orbit)
Astronomical Institute, University Berne, Switzerland (AIUB)		Institute of Astronomical and Physical Geodesy, Techn. Univ. Munich, Germany (IAPG)	AIUB:
Centre Nationale d'Etudes Spatiales, Toulouse, France (CNES)			=> PSO (Precise Science Orbit)
Politechnico d Italy (POLIM	i Milano, I)	Institute for Navigation and Satellite Geodesy, Graz University of Techn., Austria (TUG)	IAPG: => Validation

COSPAR 2010, PSD1, Bremen, 18-25 July, 2010

11. 1114

GOCE orbit generation

	Orbit solution	Software	GPS Observ.	GPS products	Sampling	Data batches	Latency
	reduced- dynamic	GEODYN Acc	triple-diff Uracy re	igs equireme	<u>10 sec</u> ent:	30 h	1 day
RSO		50 cm					10
- Sector	kinematic	GHOST	zero-diff	CODE rapid	1 sec	24 h	1 day
1	reduced- dynamic	BERNESE	zero-diff	CODE	10 sec	30 h	7-10 days
DEO		Acc	uracy re				
F30	1000	2 cm				Ľ	
-	kinematic	BERNESE	zero-diff	final	1 sec	30 h	7-10 days

EGG-G

AIUB

GOCE PSO procedure

- Un-differenced processing
- Automated procedure
- 30 h batches => overlaps
- CODE final products
- Consequent use of antenna phase center variation (PCV) map
 - Final kinematic positions are only accepted, if five or more simultaneous observations were available
 - => on average **only** 0.5% positions missing

GOCE PSO procedure

- Tailored version of Bernese GPS Software used
- Un-differenced processing
- Automated procedure
- 30 h batches => overlaps
- CODE final products
- Consequent use of antenna phase center variation (PCV) map
 - Final kinematic positions are only accepted, if five or more simultaneous observations were available
 - => on average **only** 0.5% positions missing

- Antenna PCVs are the most important systematic error source in LEO GPS data processing.
- They have to be taken into account to achieve a high accuracy level for POD.
- Ground calibration for the GOCE antenna is available but no improvement of the orbits could be achieved.
- Therefore, we decided to do an in-flight calibration of the GOCE antenna PCVs.

20 July 2010: Mean values of carrier phase observation residuals (ionosphere-free linear combination) Generation of the PCV map:

- Mean values of 154 days 1. of carrier phase observation residuals from reduced-dynamic orbit determination => first PCV map Use of PCV map for 2. reduced-dynamic orbit determination of 154 days Mean values of 3 observation residuals => add-on to previous PCV
- 4. Back to 2.

map

=> 10 iterations

PCV map from first iteration

Generation of the PCV map:

1. Mean values of 154 days of carrier phase observation residuals from reduced-dynamic orbit determination => first PCV map Use of PCV map for 2. reduced-dynamic orbit determination of 154 days Mean values of 3 observation residuals => add-on to previous PCV map Back to 2. 4. => 10 iterations

PCV map from last iteration

Generation of the PCV map:

- 1. Mean values of 154 days of carrier phase observation residuals from reduced-dynamic orbit determination => first PCV map Use of PCV map for 2. reduced-dynamic orbit determination of 154 days Mean values of 3 observation residuals => add-on to previous PCV map 4. Back to 2.
 - => 10 iterations

Differences of PCV map from last to first iteration

Generation of the PCV map:

- 1. Mean values of 154 days of carrier phase observation residuals from reduced-dynamic orbit determination => first PCV map Use of PCV map for 2. reduced-dynamic orbit determination of 154 days Mean values of 3 observation residuals => add-on to previous PCV map
- 4. Back to 2.
 - => 10 iterations

GOCE PSO: Impact of PCV map

Orbit differences in **cross-track** direction between orbit generated without PCV map and the orbits from all iterations

GOCE PSO: Impact of PCV map

- GOCE SLR residuals as a function of the azimuth of the SLR stations
- Significant improvement of SLR residuals due to use of the PCV map
- Residuals from East/West-tracking at low elevations are significantly reduced
 - => cross-track direction

PSO: Comparison reduced-dynamic \Leftrightarrow kinematic orbits

PCV map not used

- Orbit differences between reduced-dynamic and kinematic PSO solutions
- Orbit differences > 1 m removed (only 60 positions for the entire period)

PSO: Comparison reduced-dynamic \Leftrightarrow kinematic orbits

PCV map used

- Orbit differences between reduced-dynamic and kinematic PSO solutions
- Orbit differences > 1 m removed (only 60 positions for the entire period)
- Consistency of reduced-dynamic and kinematic PSO is at 2 cm level => mean 3D-RMS 1.82 cm

PSO: Comparison reduced-dynamic \Leftrightarrow kinematic orbits

COSPAR 2010, PSD1, Bremen, 18-25 July, 2010

GOCE PSO: Overlaps reduced-dynamic orbits

COSPAR 2010, PSD1, Bremen, 18-25 July, 2010

Reduced-dynamic orbits, PCVs not used

Mean: 0.78 cm, RMS: 3.95 cm

COSPAR 2010, PSD1, Bremen, 18-25 July, 2010

Reduced-dynamic orbits, PCVs used

Mean: 0.88 cm, RMS: 2.05 cm

COSPAR 2010, PSD1, Bremen, 18-25 July, 2010

Kinematic orbit, PCVs not used

Mean: 0.85 cm, RMS: 4.61 cm

COSPAR 2010, PSD1, Bremen, 18-25 July, 2010

Kinematic orbit, PCVs used

Mean: 0.88 cm, RMS: 2.23 cm

COSPAR 2010, PSD1, Bremen, 18-25 July, 2010

COCE

Additional studies to guarantee quality and independency of PCV map:

- Generation of PCV map
 - from different time interval (20 d, 30 d, other period, ...)
 - from phase residuals from kinematic orbit determination
 - \Rightarrow qualitatively same result
- Use of PCV map for RSO computation with different software packages
 => improvement of orbit results

Summary

- GOCE, the first ESA Earth Explorer mission, is in orbit since 16 months and all science instruments are working excellently.
- Orbit generation is running fully automated.
- Antenna PCVs were generated in-flight and provide significant improvement for the orbits.
- Precise Science Orbits fulfil the mission requirement of 2 cm.

