Bahnen und Schwere

Adrian Jäggi

AIUB Astronomical Institute University of Bern

IAPG III

GOCE projektbüro deutschland Herrsching, 31.05 - 04.06. 2010

GOCE Orbit Characteristics (1)

GOCE projektbüro deutschland

GOCE "History":

17 March:

Launch into a sun-synchronous (i \sim 97°), dusk-dawn orbit at an altitude of 287.9 km

7 May: First drag-free flight

26 May:

Second drag-free flight with various activities on gradiometer calibration

13/14 September:

Arrival at final orbital altitude of 259.6 km (254.9 km), start of drag-free flight for first Measurement and Operational Phase (MOP-1)

GOCE Orbit Characteristics (2)

Ground-track coverage on 2 Nov, 2009

GOCE projektbüro deutschland

IAPG

Complete geographical coverage after 979 revolutions (repeat-cycle of 61 days)

GOCE-SUMMER SCHOOL

Bahnen und Schwere

Introduction to GPS

GPS: Global Positioning System

Characteristics:

IAPG

- Satellite system for (real-time) **Positioning** and **Navigation**
- Global (everywhere on Earth, up to altitudes of 5000km) and at any time
- **Unlimited** number of users

GOCE projektburo deutschland

- Weather-independent (radio signals are passing through the atmosphere)
- **3-dimensional position**, **velocity** and **time** information

Herrsching, 31.05 - 04.06. 2010

GPS Segments

The GPS consists of **3 main segments**:

- **Space Segment**: the satellites and the constellation of satellites
- **Control Segment**: the ground stations, infrastructure and software for operation and monitoring of the GPS
- User Segment: all GPS receivers worldwide and the corresponding processing software

We should add an important **4th segment**:

GOCE projektbüro deutschland

- **Ground Segment**: all civilian permanent networks of reference sites and the international/regional/local services delivering products for the users

Space Segment

- The space segment nominally consists of **24 satellites**, presently: **30** active GPS satellites
- Constellation design: at least **4 satellites** in view from **any location** on the Earth at **any time**

IAPG

Herrsching, 31.05 - 04.06. 2010

Control Segment

GOCE projektbüro deutschland

User Segment and Ground Segment

User Segment:

- All **GPS receivers** on land, on sea, in the air and in space
- Broad user community with applications of the GPS for positioning and navigation, surveying, geodynamics and geophysics, atmosphere, ...

Ground Segment:

GOCE projektbúro deutschland

IAPG

- Global network of the International GNSS Service (IGS: ~ 400 stations)
- Regional and local permanent networks (Europe, Japan, US): densification of the reference frame, positioning services

Global Network of the IGS

Herrsching, 31.05 - 04.06. 2010

Analysis Centers (ACs) of the IGS

CODE (Center for Orbit Determination in Europe):

CODE is a joint-venture between:

GOCE projektbüro deutschland

- Astronomical Institute of the University of Bern (AIUB), Bern, Switzerland
- Swiss Federal Office of Topography (swisstopo), Wabern, Switzerland
- German Federal Office for Cartography and Geodesy (BKG), Frankfurt, Germany
- Institute of Astronomical and Physical Geodesy (IAPG) of the Technische Universität München (TUM), Munich, Germany

IAPG

Schweizerische Eidgenossenschaf Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Kartographie und Geodäsie

Technische Universität München

GOCE-SUMMER SCHOOL

Computation of Final Orbits at CODE

Computation of Final Clocks at CODE

The final clock product with 5 min sampling is based on undifferenced GPS data of at maximum 120 stations of the IGS network

The IGS 1 Hz network is finally used for clock densification to 5 sec

The 5 sec clocks are interpolated to 1 sec as needed for GOCE orbit determination

GPS Signals

Signals driven by an **atomic clock**

Two carrier signals (sine waves):

- **L1**: f = 1575.43 MHz, λ = 19 cm
- **L2**: f = 1227.60 MHz, λ = 24 cm

GOCE projektbüro deutschland

IAPG

Bits encoded on carrier by phase modulation:

- **C/A-code** (Clear Access / Coarse Acquisition)
- **P-code** (Protected / Precise)
- Broadcast/Navigation Message

Pseudorange / Code Measurements

Code Observations P_i^k are defined as:

$$P_i^k \doteq c \ (T_i - T^k)$$

- *c* Speed of light (in vacuum)
- T_i Receiver clock reading at signal reception (in receiver clock time)
- T^k GPS satellite clock reading at signal emission (in satellite clock time)
- No actual "range" (distance) because of clock offsets
- **Measurement noise**: ~ 0.5 m for GOCE P-code

GOCE projektburo

Code Observation Equation

$$P_i^k = \rho_i^k - c \cdot \Delta t^k + c \cdot \Delta t_i$$

- $t_{i,t}$ describes the of reception and emission
- Δt^k Satellite clock offset $T^k t^k$
- Δt_i Receiver clock offset $T_i t_i$
- ρ_i^k Distance between receiver and satellite $c (t_i t^k)$

Known from ACs or IGS:

IAPG

- satellite positions $(x^{k_j}, y^{k_j}, z^{k_j})$

GOCE projektbüro deutschland

- satellite clock offsets Δt^{k_j}

4 unknown parameters:

- receiver position (x_i, y_i, z_i)
- receiver clock offset Δt_i

Basic Positioning and Navigation Concept (1)

Simplified model for ρ_i^k : atmospheric delay missing, exactly 4 satellites, ...

$$P_i^{k_1} = \sqrt{(x^{k_1} - x_i)^2 + (y^{k_1} - y_i)^2 + (z^{k_1} - z_i)^2} - c \cdot \Delta t^{k_1} + c \cdot \Delta t_i$$

$$P_i^{k_2} = \sqrt{(x^{k_2} - x_i)^2 + (y^{k_2} - y_i)^2 + (z^{k_2} - z_i)^2} - c \cdot \Delta t^{k_2} + c \cdot \Delta t_i$$

$$P_i^{k_3} = \sqrt{(x^{k_3} - x_i)^2 + (y^{k_3} - y_i)^2 + (z^{k_3} - z_i)^2} - c \cdot \Delta t^{k_3} + c \cdot \Delta t_i$$

$$P_i^{k_4} = \sqrt{(x^{k_4} - x_i)^2 + (y^{k_4} - y_i)^2 + (z^{k_4} - z_i)^2} - c \cdot \Delta t^{k_4} + c \cdot \Delta t_i$$

More than 4 satellites: best receiver position and clock offset with least-squares or filter algorithms

GOCE projektbüro deutschland

Basic Positioning and Navigation Concept (2)

Herrsching, 31.05 - 04.06. 2010

Carrier Phase Measurements (1)

The **satellite** generates with its clock the phase signal ϕ^k . At emmission time T^k (in satellite clock time) we have

$$\phi^k = f \cdot T^k$$

The same phase signal, e.g., a wave crest, propagates from the satellite to the receiver, but the receiver measures only the fractional part of the phase and does not know the **integer number of cycles** N_i^k (phase ambiguity):

$$\phi_i^k = \phi^k - N_i^k = f \cdot T^k - N_i^k$$

GOCE projektburo deutschland

Carrier Phase Measurements (2)

The **receiver** generates with its clock a **reference phase**. At time of reception T_i of the satellite phase ϕ_i^k (in receiver clock time) we have:

$$\phi_i = f \cdot T_i$$

The actual **phase measurement** is the difference between receiver reference phase ϕ_i and satellite phase ϕ_i^k :

$$\psi_{i}^{k} = \phi_{i} - \phi_{i}^{k} = f \cdot T_{i} - (f \cdot T^{k} - N_{i}^{k}) = f \cdot (T_{i} - T^{k}) + N_{i}^{k}$$

Multiplication with the wavelength $\lambda = c/f$ leads to the **phase observation** equation in meters:

$$L_i^k = \lambda \cdot \psi_i^k = c \cdot (T_i - T^k) + \lambda \cdot N_i^k$$
$$= \rho_i^k - c \cdot \Delta t^k + c \cdot \Delta t_i + \lambda \cdot N_i^k$$

Difference to the pseudorange observation: integer ambiguity term N_i^k

GOCE projektbüro deutschland Herrsching, 31.05 - 04.06. 2010

Improved Observation Equation

$$L_i^k = \rho_i^k - c \cdot \Delta t^k + c \cdot \Delta t_i + \mathbf{X}_i^k + \mathbf{X}_i^k + \lambda \cdot N_i^k + \Delta_{rel} - c \cdot b^k + c \cdot b_i + m_i^k + \epsilon_i^k$$

 ρ_i^k Δt^k Δt_i $\frac{T^k_i}{T^k_i}$ $I_i^{\check{k}}$ N_i^k Δ_{rel} b^k b_i m_i^k ϵ_i^k

IAPG

Distance between satellite and receiver Satellite clock offset wrt GPS time Receiver clock offset wrt GPS time Tropospheric delay Ionospheric delay Phase ambiguity Relativistic corrections Delays in satellite (cables, electronics) Delays in receiver and antenna Multipath, scattering, bending effects Measurement error

GOCE projektburo

Satellite positions and clocks

are known from ACs or IGS

Not existent for LEOs Cancels out (first order only) when forming the ionospherefree linear combination:

$$L_c = \frac{f_1^2}{f_1^2 - f_2^2} L_1 - \frac{f_2^2}{f_1^2 - f_2^2} L_2$$

Time Systems and Reference Systems

Time Systems:

- **TAI** (Temps Atomic International): ensemble of atomic clocks
- **UT1** (Universal Time 1): time defined by the Earth's rotation
- **UTC** (Universal Time Coordinated): differs from TAI only by leap seconds (adjusted to UT1: |UT1 - UTC| < 0.9 sec)
- GPS time: constant difference TAI GPS = 19 sec
- **GPS-UTC = 15 sec** at present

GOCE projektbüro deutschland

Reference Systems:

IAPG

- ITRF (International Terrestrial Reference Frame): combination of global VLBI, SLR, GPS and DORIS solutions. Best Earth-fixed reference frame, at present still ITRF2005
- ICRF (International Celestial Reference Frame): inertial frame, realized by coordinates of extragalactic radio sources

(GOCE Standards, 2009)

Geometric Distance

Geometric distance ρ_{leo}^k is given by:

$$\rho_{leo}^{k} = |\boldsymbol{r}_{leo}(t_{leo}) - \boldsymbol{r}^{k}(t_{leo} - \tau_{leo}^{k})|$$

 $m{r}_{leo}$ Inertial position of LEO antenna phase center at reception time

- r^k Inertial position of GPS antenna phase center of satellite k at emission time
- au_{leo}^k Signal traveling time between the two phase center positions

Different ways to represent r_{leo} :

- **Kinematic** orbit representation

GOCE projektbüro deutschland

IAPG

- Dynamic or reduced-dynamic orbit representation

Herrsching, 31.05 - 04.06. 2010

Kinematic Orbit Representation (1)

Satellite position $r_{leo}(t_{leo})$ (in inertial frame) is given by:

$$\boldsymbol{r}_{leo}(t_{leo}) = \boldsymbol{R}(t_{leo}) \cdot (\boldsymbol{r}_{leo,e,0}(t_{leo}) + \delta \boldsymbol{r}_{leo,e,ant}(t_{leo}))$$

RTransformation matrix from Earth-fixed to inertial frame $r_{leo,e,0}$ LEO center of mass position in Earth-fixed frame $\delta r_{leo,e,ant}$ LEO antenna phase center offset in Earth-fixed frame

Kinematic positions $r_{leo,e,0}$ are estimated for each measurement epoch:

- Measurement epochs **need not** to be identical with nominal epochs
- Positions are independent of models describing the LEO dynamics
 Velocities cannot be provided

GOCE projektbüro deutschland

Herrsching, 31.05 - 04.06. 2010

Kinematic Orbit Representation (2)

Kinematic positions are fully independent on the force models used for LEO orbit determination (Svehla and Rothacher, 2004)

GOCE-SUMMER SCHOOL

A kinematic orbit is an ephemeris at **discrete** measurement epochs

GOCE projektburo deutschland

IAPG

Kinematic Orbit Representation (3)

Excerpt of kinematic GOCE positions at begin of 2 Nov, 2009 GO_CONS_SST_PKI_2 20091101T235945 20091102T235944 0001 Times in UTC

IAPG '

ПΠ

Herrsching, 31.05 - 04.06. 2010

Measurement Epochs

Fractional parts of measurement epochs:

GOCE projektburo deutschland

The measurement sampling is 1 Hz, but the internal clock is not steered to integer seconds (fractional parts are shown in the figure for the midnight epochs).

Dynamic Orbit Representation (1)

Satellite position $r_{leo}(t_{leo})$ (in inertial frame) is given by:

 $\boldsymbol{r}_{leo}(t_{leo}) = \boldsymbol{r}_{leo,0}(t_{leo}; a, e, i, \Omega, \omega, u_0; Q_1, ..., Q_d) + \delta \boldsymbol{r}_{leo,ant}(t_{leo})$

$m{r}_{leo,0}$	LEO center of mass position
$\delta m{r}_{leo,ant}$	LEO antenna phase center offset
a,e,i,Ω,ω,u_0	LEO initial osculating orbital elements
$Q_1,,Q_d$	LEO dynamical parameters

GOCE projektbüro deutschland

Satellite trajectory $r_{leo,0}$ is a particular solution of an equation of motion

One set of initial conditions (orbital elements) is estimated per arc
 Dynamical parameters of the force model on request

Dynamic Orbit Representation (2)

Equation of motion (in inertial frame) is given by:

$$m{\ddot{r}} = -GMrac{m{r}}{r^3} + m{f}_1(t,m{r},m{\dot{r}},Q_1,...,Q_d)$$

with initial conditions

IAPG

$$oldsymbol{r}(t_0) = oldsymbol{r}(a, e, i, \Omega, \omega, u_0; t_0)$$

 $oldsymbol{\dot{r}}(t_0) = oldsymbol{\dot{r}}(a, e, i, \Omega, \omega, u_0; t_0)$

The acceleration f_1 consists of gravitational and non-gravitational perturbations taken into account to model the satellite trajectory. Unknown parameters $Q_1, ..., Q_d$ of force models may appear in the equation of motion together with deterministic (known) accelerations given by analytical models.

Osculating Orbital Elements (1)

IAPG TIM

Herrsching, 31.05 - 04.06. 2010

Osculating Orbital Elements of GOCE (2)

Semi-major axis:

GOCE projektbüro deutschland

IAPG

Twice-per-revolution variations of about ± 10 km around the mean semi-major axis of 6632.9km, which corresponds to the 254.9 km mean altitude used by ESA

Osculating Orbital Elements of GOCE (3)

Numerical eccentricity:

IAPG

Small, short-periodic variations around the mean value of about 0.0025, i.e., the orbit is close to circular

Herrsching, 31.05 - 04.06. 2010

Osculating Orbital Elements of GOCE (4)

Inclination:

IAPG

Twice-per-revolution and longer variations around the mean inclination of about 96.6° (sun-synchronous orbit)

Herrsching, 31.05 - 04.06. 2010

Osculating Orbital Elements of GOCE (5)

Right ascension of ascending node:

GOCE projektbüro deutschland

IAPG

Twice-per-revolution variations and linear drift of about +1°/day (360°/365days) due to the sun-synchronous orbit

Dynamic Orbit Representation (3)

Dynamic orbit positions may be computed at **any epoch** within the arc

> GOCE projektbüro deutschland

IAPG

Dynamic positions are **fully dependent** on the force models used, e.g., on the gravity field model

Reduced-Dynamic Orbit Representation (1)

Equation of motion (in inertial frame) is given by:

$$\ddot{r} = -GMrac{r}{r^3} + f_1(t, r, \dot{r}, Q_1, ..., Q_d, P_1, ..., P_s)$$

 $P_1, ..., P_s$ Pseudo-stochastic parameters

Pseudo-stochastic parameters are:

GOCE projektbüro deutschland

- additional empirical parameters characterized by a priori known statistical properties, e.g., by expectation values and a priori variances
- useful to **compensate** for deficiencies in dynamic models, e.g., deficiencies in models describing non-gravitational accelerations
- often set up as **piecewise constant accelerations** to ensure that satellite trajectories are continuous and differentiable at any epoch

Reduced-Dynamic Orbit Representation (2)

Reduced-dynamic orbits are well suited to compute LEO orbits of **highest quality**

(Jäggi et al., 2006; Jäggi, 2007)

GOCE projektbüro deutschland

IAPG

Reduced-dynamic orbits heavily depend on the force models used, e.g., on the gravity field model (Jäggi et al., 2008)

Partial Derivatives

Orbit improvement ($\boldsymbol{r}_0(t)$: numerically integrated **a priori orbit**):

$$\boldsymbol{r}(t) = \boldsymbol{r}_0(t) + \sum_{i=1}^n \frac{\partial \boldsymbol{r}_0}{\partial P_i}(t) \cdot (P_i - P_{0,i})$$

yields corrections to a priori parameter values $P_{0,i}$ by least-squares

Previously, for each parameter P_i the corresponding variational equation

$$m{\ddot{m{z}}}_{P_i} = m{A}_0 \cdot m{m{z}}_{P_i} + m{A}_1 \cdot m{\dot{m{z}}}_{P_i} + rac{\partial m{f}_1}{\partial P_i}$$

has to be solved to obtain the partials $\boldsymbol{z}_{P_i}(t) \doteq \frac{\partial \boldsymbol{r}_0}{\partial P_i}(t)$, e.g., by:

- Numerical integration for initial osculating elements
- Numerical quadrature for dynamic parameters

GOCE projektbüro deutschland

- Linear combinations for pseudo-stochastic parameters

(Jäggi, 2007)

Reduced-dynamic Orbit Representation (3)

			Po	sition epochs			
	¥ 20	AQ 11	2 0				
Positions (km) & Velocities (dm/s)	PL15 VL15	-391 13710	.718353	6623.836682 1908.731015	79.317661 -77015.601314	999999.999999 999999.999999	Clock corrections are not provided
(Earth-fixed)	* 20 PL15 VL15	09 11 -377 13764	20 .980705 .602016	<u>6625.284690</u> 987.250587	2.298385 -77021.193676	9999999.9999999 999999.9999999	
	* 20 PL15 VL15	09 11 -364 13815	2 0 .190222 .825127	0 20.0000000 6625.811136 65.631014	-74.721213 -77016.232293	999999.999999 999999.999999	
	* 20 PL15	09 11 -350	2 0 .350131	0 30.0000000 6625.415949	-151.730567	999999.999999	
	¥L15 * 20	13863. 09 11	2 0	-855.9954// 0 40.00000000	-//000./19/34	999999 999999	
	VL15 VL15 * 20	-336. 13908. 09.11	2 0	-1777.497047	-76974.660058	999999.9999999	
	 PL15 VL15	-322	.534047	6621.861041 -2698.741871	-305.676371 -76938.058807	999999.999999 999999.999999	
	* 20 PL15	09 11 -308	2 <mark>0</mark> .564533	1 0.00000000 6618.701833	-382.591743	999999.999999	
	¥L15	13988.	.382807	-3619.598277	-76890.923043	999999.999999	

Excerpt of reduced-dynamic GOCE positions at begin of 2 Nov, 2009 GO_CONS_SST_PRD_2_20091101T235945_20091102T235944_0001

IAPG TIT

Herrsching, 31.05 - 04.06. 2010

GOCE Sensor Offsets (1)

Phase center offsets $\delta r_{leo,ant}$:

- are needed in the inertial or Earth-fixed frame and have to be transformed from the satellite frame using **attitude data** from the star-trackers
- consist of a frequency-independent **instrument offset**, e.g., defined by the center of the instrument's mounting plane (CMP) in the satellite frame
- consist of frequency-dependent **phase center offsets** (PCOs), e.g., defined wrt the center of the instrument's mounting plane in the antenna frame (ARF)
- consist of frequency-dependent phase center variations (PCVs) varying with the direction of the incoming signal, e.g., defined wrt the PCOs in the antenna frame

IAPG 🎵

Herrsching, 31.05 - 04.06. 2010

GOCE Sensor Offsets (2)

Herrsching, 31.05 - 04.06. 2010

GOCE projektburo deutschland

GOCE Sensor Offsets (3)

СоМ	X _{SRF} [m]	Y _{SRF} [m]	Z _{SRF} [m]
Begin of Life (BoL)	2.4990	0.0036	0.0011
End of Life (EoL)	2.5290	0.0038	0.0012

Table 1: CoM coordinates in SRF system

Table 2: SSTI antenna CMP coordinates in SRF system

CMP coordinates	X _{SRF} [m]	Y _{SRF} [m]	Z _{SRF} [m]
Main	3.1930	0.0000	-1.0922
Redundant	1.3450	0.0000	-1.0903

Table 3: SSTI antenna CMP coordinates wrt to CoM (BoL)

CMP coordinates	X _{CoM} [m]	Y _{CoM} [m]	Z _{CoM} [m]
Main	0.6940	-0.0036	-1.0933
Redundant	-1.1540	-0.0036	-1.0914

 Table 4: SSTI antenna phase center offsets in ARF system

Phase center offsets	X _{ARF} [mm]	Y _{ARF} [mm]	Z _{ARF} [mm]
Main: L1	-0.18	3.51	-81.11
Main: L2	-1.22	-1.00	-84.18
Redundant: L1	-0.96	3.14	-81.33
Redundant: L2	-1.48	-1.20	-84.18

Derived from Bigazzi and Frommknecht (2010)

Measured from ground calibration in anechoic chamber

Empirically derived during orbit determination according to Jäggi et al. (2009b)

L1, L2, Lc phase center offset:

CMP

GOCE High-level Processing Facility: Orbit Groups

GOCE High-level Processing Facility: Orbit Products

	Orbit solution	Software	GPS Observ.	GPS products	Sampling	Data batches	Latency
RSO	reduced- dynamic	GEODYN	triple-diff	IGS rapid	10 sec	30 h	1 day
	kinematic	GHOST	zero-diff	CODE rapid	1 sec	24 h	1 day
PSO	reduced- dynamic	BERNESE	zero-diff	CODE final	10 sec	30 h	7-10 days
	kinematic	BERNESE	zero-diff	CODE final	1 sec	30 h	7-10 days

(Visser et al., 2009)

Accuracy requirement: 2 cm

(Bock et al., 2007)

IAPG ШП

Herrsching, 31.05 - 04.06. 2010

SST_PSO_2 Product

The final Level-2 PSO product consists of:

SST_PKI_2: Kinematic positions, 1 sec, SP3c format

SST_PRD_2: Reduced-dynamic positions and velocities, 10 sec, SP3c format

SST_PRM_2: Rotation from Earth-fixed to inertial frame, 1 sec, quaternions

SST_PCV_2: Covariance matrix of kinematic positions, 4 off-diagonal blocks

SST_PRP_2: Report, PDF format

The data files cover a time span of 24h

(GOCE Level 2 Product Data Handbook, 2009)

Herrsching, 31.05 - 04.06. 2010

GPS Data Availability

GPS data availability is excellent:

IAPG

- 12 channel GPS receiver provides 1Hz data with hardly any gaps; less than 5 satellites are tracked for less than 0.2% of all measurement epochs
- → Missing kinematic positions: **about 0.5%**

GOCE projektbůro deutschlarid Herrsching, 31.05 - 04.06. 2010

Visualization of GOCE PSO Product

It is more instructive to look at differences between orbits in well suited coordinate systems ...

Herrsching, 31.05 - 04.06. 2010

Co-Rotating Orbital Frames

GOCE projektbüro deutschland **R**, **S**, **C** unit vectors are pointing:

- into the radial direction
- normal to **R** in the orbital plane
- normal to the orbital plane (cross-track)

T, N, C unit vectors are pointing:

- into the tangential (along-track) direction
- normal to **T** in the orbital plane
- normal to the orbital plane (cross-track)

Small eccentricities: S~T (velocity direction)

Herrsching, 31.05 - 04.06. 2010

Orbit Differences KIN-RD (Begin of Mission)

Orbit Differences KIN-RD, Time-Differenced

Pseudo-Stochastic Accelerations (Begin of Mission)

Improving GOCE Orbit Determination (1)

PCV modeling is one of the limiting factors for most precise LEO orbit determination. Unmodeled PCVs are systematic errors, which

- directly propagate into kinematic orbit determination and severly degrade the position estimates
- propagate into reduced-dynamic orbit determination to a smaller,
 but still large extent

IAPG

Improving GOCE Orbit Determination (2)

w/o PCV with PCV

Herrsching, 31.05 - 04.06. 2010

Orbit Differences KIN-RD

Remark on KIN-RD differences:

The differences show the **consistency** between both orbits and give an impression of the quality of kinematic positions, but they are **not** an indicator for orbit accuracy

Herrsching, 31.05 - 04.06. 2010

GOCE Orbit Validation by Satellite Laser Ranging (SLR)

Distribution of SLR measurements as seen from the GOCE satellite (mission beginning)

Herrsching, 31.05 - 04.06. 2010

GOCE Orbit Accuracy from SLR Residuals (1)

LEO orbits may be shifted up to several cm's in the cross-track direction by unmodeled PCVs.

Thanks to the low orbital altitude of GOCE it could be confirmed for the first ⁵ time with SLR data that the PCV-induced crosstrack shifts are real (see measurements from the SLR stations in the east and west directions at low elevations).

IAPG

GOCE projektbüro deutschland

GOCE Orbit Accuracy from SLR Residuals (2)

П

Orbit Differences KIN-RD on 2 Nov, 2009 (1)

Herrsching, 31.05 - 04.06. 2010

GOCE projektbüro deutschland

Orbit Differences KIN-RD on 2 Nov, 2009 (2)

Herrsching, 31.05 - 04.06. 2010

GOCE projektbüro deutschland

Orbit Differences KIN-RD on 2 Nov, 2009 (3)

Herrsching, 31.05 - 04.06. 2010

GOCE projektbüro deutschland

Herrsching, 31.05 - 04.06. 2010

GPS-only Gravity Field Recovery

(Jäggi et al., 2009a)

GOCE projektburo deutschland

GOCE GPS-only Solutions (1)

GOCE GPS-only Solutions (2)

Kinematic positions should be used with at least 5-sec sampling for GOCE gravity field recovery

Herrsching, 31.05 - 04.06. 2010

GOCE projektbüro deutschland

Comparison of different GPS-only Solutions

Low orbital altitude of GOCE significantly improves the slope of the difference degree amplitudes

Herrsching, 31.05 - 04.06. 2010

GOCE projektbüro deutschland

Impact of the Polar Gap (1)

Differences seem to become significantly larger when increasing the parameter space ...

GOCE projektbüro deutschland Herrsching, 31.05 - 04.06. 2010

Impact of the Polar Gap (2)

Zonal terms are weakly estimated (polar gap) and suffer when increasing the parameter space

GOCE projektbüro deutschland

Herrsching, 31.05 - 04.06. 2010

Selection of the Maximum Degree

A maximum degree larger than 120 should be used when longer data spans will be processed

Herrsching, 31.05 - 04.06. 2010

GOCE projektbüro deutschland

Impact of PCVs on gravity field recovery

Unmodelled PCVs significantly contribute to the error-budget of GPS-only gravity field recovery

Herrsching, 31.05 - 04.06. 2010

GOCE projektbůro deutschlarid

Contribution to Gradiometer Solutions

GPS contributes up to about degree 30 to combined GOCE-only gravity field solutions

GOCE projektbüro deutschland

Herrsching, 31.05 - 04.06. 2010

Literature (1)

- Blewitt, G. (1997): Basics of the GPS Technique: Observation Equations, in *Geodetic Applications of GPS*, Swedish Land Survey, pp. 10-54, available at http://www.sbg.ac.at/mat/staff/revers/lectures/2006_2007/GPS/ GPSBasics.pdf
- Bigazzi, A., B. Frommknecht (2010): Note on GOCE instruments positioning, XGCE-GSEG-EOPG-TN-09-0007, Issue 3.1, European Space Agency, available at http://earth.esa.int/download/goce/GOCE-LRR-GPSpositioning-Memo_3.1_[XGCE-GSEG-EOPG-TN-09-0007%20v3.1].pdf
- Bock, H., A. Jäggi, D. Švehla, G. Beutler, U. Hugentobler, P. Visser (2007): Precise orbit determination fort he GOCE satellite using GPS. *Advances in Space Research*, 39(10), 1638-1647, doi: 10.1016/j.asr.2007.02.053
- Bock, H., R. Dach, A. Jäggi, G. Beutler (2009): High-rate GPS clock corrections from CODE: Support of 1 Hz applications. *Journal of Geodesy*, 83(11), 1083-1094, doi: 10.1007/s00190-009-0326-1
- Dach, R., E. Brockmann, S. Schaer, G. Beutler, M. Meindl, L. Prange, H. Bock, A. Jäggi, L. Ostini (2009): GNSS processing at CODE: status report, *Journal of Geodesy*, 83(3-4), 353-366, doi: 10.1007/s00190-008-0281-2

GOCE projektbüro deutschland
Literature (2)

- GOCE Standards (2009): GO-TN-HPF-GS-0111, Issue 3.1. European GOCE Gravity Consortium, available at http://earth.esa.int/pub/ESA_DOC/GOCE/ GOCE_Standards_3.1.pdf
- GOCE Level 2 Product Data Handbook (2009): GO-MA-HPF-GS-0110, Issue 4.1. European GOCE Gravity Consortium, available at http://earth.esa.int/ pub/ESA_DOC/GOCE/Product_DATA_Handbook_4.1.pdf
- Jäggi, A., U. Hugentobler, G. Beutler (2006): Pseudo-stochastic orbit modeling techniques for low-Earth satellites. *Journal of Geodesy*, 80(1), 47-60, doi: 10.1007/s00190-006-0029-9
- Jäggi, A. (2007): Pseudo-Stochastic Orbit Modeling of Low Earth Satellites Using the Global Positioning System. *Geodätisch-geophysikalische Arbeiten in der Schweiz*, 73, Schweizerische Geodätische Kommission, available at http://www.sgc.ethz.ch/sgc-volumes/sgk-73.pdf
- Jäggi, A., H. Bock, R. Pail, H. Goiginger (2008): Highly Reduced-Dynamic Orbits and their Use for Global Gravity Field Recovery: A Simulation Study for GOCE, *Studia Geophysica et Geodaetica*, 52(3), 341-359, doi: 10.1007/s11200-008-0025-z

Literature (3)

- Jäggi, A., G. Beutler, L. Prange, R. Dach, L. Mervart (2009a): Assessment of GPS-only observables for Gravity Field Recovery from GRACE, in *Observing our Changing Earth*, edited by M. Sideris, pp. 113-123, Springer, doi: 10.1007/978-3-540-85426-5_14
- Jäggi, A., R. Dach, O. Montenbruck, U. Hugentobler, H. Bock, G. Beutler (2009b): Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. *Journal of Geodesy*, 83(12), 1145-1162, doi: 10.1007/s00190-009-0333-2
- Svehla, D., M. Rothacher (2004): Kinematic Precise Orbit Determination for Gravity Field Determination, in *A Window on the Future of Geodesy*, edited by F. Sanso, pp. 181-188, Springer, doi: 10.1007/b139065
- Visser, P., J. van den IJssel, T. van Helleputte, H. Bock, A. Jäggi, G. Beutler, D. Švehla, U. Hugentobler, M. Heinze (2009): Orbit determination for the GOCE satellite, *Advances in Space Research*, 43(5), 760-768, doi: 10.1016/j.asr.2008.09.016.

IAPG 📶

Herrsching, 31.05 - 04.06. 2010

GOCE-SUMMER SCHOOL