Benefit of tracking GNSS satellites with SLR

D. Thaller 1), R. Dach 1), G. Beutler 1), M. Mareyen 2), B. Richter 2)

(1) Astronomical Institute, University of Bern (AIUB), Switzerland
(2) Bundesamt für Kartographie und Geodäsie (BKG), Frankfurt / Main, Germany
Overview

1. **Statistics**

2. Two major applications:
 1. GNSS orbit validation using SLR
 2. **Combined GNSS+SLR solution**

3. **Expectation** from a combination GNSS and SLR@GNSS

4. **Results** from one year of combining GNSS and SLR@GNSS

5. Conclusions and outlook
Network in 2008

SLR sites that tracked GNSS satellites in 2008

Altogether:
- 8 sites with > 1000 NP
- 5 sites with > 500 NP
- 6 sites with > 100 NP
- 6 sites with < 100 NP
- 25 SLR sites
- 32165 normal points (NP)
Number of observations in 2008

Number of SLR observations

- G05
- G06
- R15
- R24
- R07
- R11

Workshop „SLR Tracking of GNSS Constellations“, 14.-19. September 2009, Metsovo
SLR residuals

SLR residuals for satellite G05, Orbit G3

Residual [mm]

Month in 2008
SLR residuals: Mean Bias

Satellite- / site-specific bias

Bias [mm]

-100 -80 -60 -40 -20 0 20 40 60 80 100

Satellite / site-specific bias

- G05
- G06
- R15
- R24
- R07
- R11

Workshop „SLR Tracking of GNSS Constellations“, 14.-19. September 2009, Metsovo
SLR residuals: RMS

Satellite-/site-specific RMS of SLR residuals

RMS [mm]

G05 G06 R15 R24 R07 R11
Expectation from combined analysis

Strength of *SLR to geodetic satellites* (Lageos,...): Reference frame scale and geocenter
⇒ Applicable as well for SLR @ GNSS?

GNSS deficiencies: modeling of radiation pressure and satellite antenna phase center
- Radiation pressure (RPR) correlated with geocenter
- Antenna phase center correlated with scale
⇒ GNSS scale and geocenter not “true”

SLR@GNSS:
- RPR parameters have to be estimated from SLR as well
 ⇒ Geocenter is affected as well
- SLR observations independent from GNSS antenna phase center
 ⇒ Scale can be gained from SLR
Expectation from combined analysis

<table>
<thead>
<tr>
<th></th>
<th>GNSS @GNSS</th>
<th>SLR @GNSS</th>
<th>SLR @Lageos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation pressure ↔ Geocenter</td>
<td>Problems in RPR modelling</td>
<td>Problems in RPR modelling</td>
<td>RPR well modelled</td>
</tr>
<tr>
<td>GNSS satellite antenna phase center ↔ Scale</td>
<td>Problems in phase center modelling</td>
<td>independent</td>
<td>-</td>
</tr>
<tr>
<td>Range biases ↔ Scale</td>
<td>-</td>
<td>To be defined</td>
<td>For a few sites only</td>
</tr>
</tbody>
</table>

Other topics to be considered:
- “Local ties” and “space ties”
GNSS+SLR combination

- Studies using one year of data: 2008
- Analysis and combination with the Bernese GPS Software

→ **GNSS-only NEQs (daily):**
 - Combined GPS+Glonass analysis performed at CODE

→ **SLR-only NEQs (daily):**
 - SLR data to GPS and Glonass satellites
 - Parameterization identical to GNSS analysis (orbits, ERP, geocenter)
 - In addition: Range biases

→ **Combination on normal equation level:**
 - Daily combination
 - Accumulation to annual solution
 - Use of “space ties” only, no “local ties”!
GNSS+SLR combination

Validation of estimated coordinates and of datum definition:
- Comparison of coordinate differences at co-located GNSS–SLR sites using **local tie values**
- Helmert transformation of combined solution to GNSS-only and SLR-only solutions: **Scale**

Parameters to be checked:
- SLR range biases
- GNSS satellite antenna offsets
- Geocenter
- Orbits
- …
Comparison with local ties

Level of agreement when using one year of data only
→ Coordinate differences from GNSS-only and SLR-only solutions (1 year)
→ Datum definition for both solutions using NNR+NNT (core sites)
→ Velocities from ITRF2005

3D vector difference: AIUB (zero difference), ITRF2008

Red: ITRF2008 (prelim.)

Blue: From annual single-technique solutions

Plot provided by M. Seitz, DGFI
Comparison with local ties

Changes when combining GNSS and SLR@GNSS using „space ties“ only
→ Combined yearly GNSS+SLR solution
→ Datum definition: NNR+NNT (GNSS core sites), **no Local ties**
→ **GNSS antenna phase center (SAO) fixed** = Scale defined by GNSS and SLR

3D vector difference [mm]

Red:
From annual single-technique solutions

Blue:
Combined solution, GNSS SAO fixed

Plot provided by M. Seitz, DGFI
Comparison with local ties

Changes when combining GNSS and SLR@GNSS using „space ties“ only
→ Combined yearly GNSS+SLR solution
→ Datum definition: NNR+NNT (GNSS core sites), no Local ties
→ GNSS antenna phase center (SAO) estimated = Scale defined by SLR only!

Plot provided by M. Seitz, DGFI
Comparison with local ties

Impact of GNSS antenna phase center (SAO) estimation:
→ No big differences ⇒ Estimation of SAO is possible
→ Slightly better agreement with local ties if scale is NOT defined by GNSS (has to be verified using longer time span of data!)

Blue:
Combined solution,
GNSS SAO fixed

Green:
Combined solution,
GNSS SAO estimated

Plot provided by M. Seitz, DGFI
SLR range biases

Question 1:
What is reasonable from technical point of view?

- Satellite-dependent? → Separate for every satellite
- System-dependent? → Average over GPS, over Glonass, ...
- Station-dependent? → Average over all GNSS satellites

Question 2:
Are the SLR range bias estimates influenced by estimating GNSS satellite antenna offsets?
System-specific range biases seem to be sufficient for most sites
Station-specific range biases seem to be sufficient

SLR range biases
Simultaneous estimation of GNSS antenna phase center offsets and SLR range biases is possible.
Scale between solutions (GNSS core sites)

Scale between solutions (GNSS core sites)

$L = $ Satellite-specific SLR range biases

$K = $ System-specific SLR range biases

$J = $ Station-specific SLR range biases

<table>
<thead>
<tr>
<th></th>
<th>L1A</th>
<th>K1A</th>
<th>J1A</th>
<th>L1B</th>
<th>K1B</th>
<th>J1B</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNSS-only</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>L1A</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>K1A</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>J1A</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>L1B</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>K1B</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Lageos</td>
<td>0.0 ±0.9</td>
<td>-0.8 ±0.7</td>
<td>-0.4 ±0.7</td>
<td>0.3 ±1.0</td>
<td>-0.6 ±0.6</td>
<td>-0.3 ±0.7</td>
</tr>
</tbody>
</table>

Notes:

- **A**: GNSS Sat.ant. fixed
 = Scale fixed
- **B**: GNSS Sat.ant. estimated
 = Scale free \Rightarrow from SLR

Workshop „SLR Tracking of GNSS Constellations“, 14.-19. September 2009, Metsovo
Conclusions and outlook

- Combination on observation level using SLR@GNSS works fine

- Connection via „space ties“ is possible (without local ties)

 BUT:

 Accurate ties (in space and on sites) required for combination

- Scale from SLR can be transferred to GNSS (estimation of GNSS SAO)

- Open question: Best handling of SLR range biases to GNSS satellites?

- Studies have to be extended to longer time span

- Thanks to Manuela Seitz from DGFI for providing comparisons with local tie values!
SLR orbit validation for R23

- Switch to new z-offset for GNSS antenna of Glonass satellite R23 within IGS
- ILRS agreed to track R23 during the transition phase (10 weeks)

⇒ Many thanks to all SLR sites for supporting this tracking request!

```
SLR residuals to satellite R23
```

```
Day of the year 2009
```

```
SLR residuals [mm]
```

```
190 200 210 220 230 240 250 260
−300 −200 −100 0 100 200 300
```

Workshop „SLR Tracking of GNSS Constellations“, 14.-19. September 2009, Metsovo
SLR residuals

SLR residuals for satellite G06, Orbit G3

Month in 2008

Residual [mm]
SLR residuals

SLR residuals for satellite R24, Orbit G3

Residual [mm]

Month in 2008
SLR residuals

SLR residuals for satellite R15, Orbit G3

Month in 2008

Residual [mm]