Rigorously Combined Multi–System GNSS Analysis

R. Dach, U. Hugentobler, M. Meindl, and A. Gaede

rolf.dach@aiub.unibe.ch

Astronomical Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern

S. Schaer

Federal Office of Topography (swisstopo), Seftigenstrasse 264, CH-3084 Wabern

European Geosciences Union; General Assembly 2006 Vienna, Austria, 02–07 April 2006

Outline

Rigorously Combined Multi–System GNSS Analysis:

- 1. Description of the multi–system analysis
- 2. Comparison of the satellite clock performance of the individual GNSS
- 3. Receiver antenna models for GNSS
- 4. Frequency dependent receiver code biases for GLONASS
- 5. Summary and Outlook

General situation with multiple independent GNSS:

	GPS	GLONASS
Orbits refer to	WGS-84	PZ-90
Satellite clocks refer to	UTC(USNO)	UTC(SU)
Signal propagation	dual-frequency microwave systems	
Multipath	individual for each GNSS (mainly freq. dependent)	
constellation repeatability	one sidereal day	one sidereal day
ground track repeatability	one sidereal day	eight sidereal days
Station coordinates refer to	WGS-84	PZ-90
Station clocks refer to	UTC(USNO)	UTC(SU)

The observations from all GNSSs are analysed together in one parameter estimation process to get the best possible consistency for all products.

	GPS	GLONASS
Orbits refer to	IGS 00b	
Satellite clocks refer to	one common reference clock, or IGST	
Signal propagation	dual-frequency microwave systems	
Multipath	individual for each GNSS (mainly freq. dependent)	
constellation repeatability	one sidereal day	one sidereal day
ground track repeatability	one sidereal day	eight sidereal days
Station coordinates refer to	IGS 00b	
Station clocks refer to	one common reference clock, or IGST	

GNSS Station Distribution (used by CODE)

Availability of GLONASS satellite clocks

Dach et al.: Multi–System GNSS Analysis - p. 6/22

Redundacy for estimated satellite clocks

Satellite clock performance

Legend:

- GPS (Block II, IIA), Cs
- GPS (Block II, IIA), Rb
- GPS (Block IIR, IIF), all Rb
- GLONASS
- GLONASS-M

The same stations were used to estimate the GPS and GLONASS satellite clock corrections.

Satellite clock performance

GPS satellites of plane f

Satellite clock performance

GLONASS satellites of plane a

Receiver/Antenna Bias

If consistent products for multiple GNSS are available to the user community

- PPP solutions for single system receivers of different GNSS give comparable results and
- GNSS network solutions.

If consistent products for multiple GNSS are available to the user community

- PPP solutions for single system receivers of different GNSS give comparable results and
- GNSS network solutions.

Nevertheless the biases of the users GNSS receiver/antenna remains in the data analysis:

Receiving signals from different GNSS with one equipment let us expect biases because of different signal structure and different frequencies that are used:

- Receiver antenna model
- Receiver intersystem, interfrequency biases

Receiver Antenna Bias

Receiver antenna model

Estimated corrections for GLONASS observations wrt. the GPS derived model.

Receiver Antenna Bias

Receiver antenna model

Estimated corrections for GLONASS observations wrt. the GPS derived model.

Receiver antenna model

Estimated corrections for GLONASS observations wrt. the GPS derived model.

Receiver satellite biases for ONSA

only plotted for the GLONASS satellites

Receiver satellite biases for ONSA

only plotted for the GLONASS satellites

Receiver satellite biases for ONSA

Receiver satellite biases for ONSA

Receiver interfrequency biases for ONSA

Relative to the GPS frequencies

Receiver interfrequency biases for ASHTECH Z18

Receiver interfrequency biases for JPS LEGACY

Relative to the GPS frequencies

Receiver interfrequency biases for TPS LEGACY

Receiver Frequency Bias

Receiver interfrequency biases for JPS E_GGD

Receiver inter-frequency biases for TPS E_GGD

Summary and Outlook

- The consequent combined analysis of measurements from multiple GNSS guarantee the best possible consistency of the products.
- The performance of the GLONASS satellite clocks corresponds to the GPS block II/IIA satellites driven with Cs clocks.
- In the case of GPS and GLONASS no significant difference in the receiver antenna model was detected.

Summary and Outlook

- The GNSS receivers have not only intersystem but also interfrequency code biases that have to be considered (estimate or introduce) when analyzing GLONASS code data.
- The interfrequency code biases are different for individual receivers, not only for receiver types.
- For the carrier phase observations these biases may be absorbed by the phase ambiguity parameters. They become only relevant if the ambiguities are resolved to their integer values.

Summary and Outlook

- The launch of more GLONASS satellites and the densification of the GNSS stations in the IGS network will improve the situation for the rigorous GNSS analysis.
- When adding GALILEO as the third GNSS to a combined analysis only an additional intersystem time bias for each receiver is expected.
- The rigorous combined analysis of multiple GNSS allows the consistent processing of data from single system receivers of different GNSS as long as enough multi-system receivers are available.

